
A Combined Delay and Throughput Proportional Scheduling Scheme for
Differentiated Services

Samyukta Sankaran and Ahmed E.Kamal
Department of Electrical and Computer Engineering

Iowa State University
Ames, IA 50011

fsamyukta,kamalg@iastate.edu

Abstract—The proportional differentiation model is a newly in-
troduced approach for differentiated services networks. This pa-
per proposes and evaluates a scheduling mechanism for the com-
bined control of delay and throughput metrics, according to the
proportional differentiation model. The scheme is based on the
well known Little’s Law. A moving window averaging mechanism
and an active queue management scheme are simultaneously, and
respectively used to achieve control over the relative throughputs
as well as the relative delays between classes. The scheme does
away with measurement of the actual packet delays, and state in-
formation is minimized. Some feasibility bounds are presented,
and a simulation study shows the effectiveness of this scheme.

I. I NTRODUCTION

The Internet Engineering Task Force (IETF) introduced
the Differentiated Services(DiffServ) architecture [1] as a
lightweight, scalable approach to high-performance network-
ing. In this approach, flows with similar requirements are
aggregated into a limited number of service classes, and are
marked with a suitable DiffServ codepoint (DSCP) [2]. Routers
inside the DiffServ domain have class sensitive packet forward-
ing mechanisms that provide service differentiation. Since state
information is maintained for a limited number of classes, Diff-
Serv scales well. Further, policing mechanisms are required
only at the edge of domain.

Research within DiffServ has been proceeding along three
broad directions:Absolute, Relative, andProportional DiffServ
[3]. Proportional Differentiation is a refinement and general-
ization of Relative DiffServ, and aims to achieve the two goals
of Predictability, or consistent differentiation independent of
class loads, andControllability, or the ability to externally ad-
just the quality spacing between classes based on dynamically
changing criteria. The model aims to control some chosen class
performance metric, proportional to the differentiation parame-
ters chosen by the network operator. Ifmi is the chosen metric
for classi, andci is the corresponding operator-chosen quality
differentiation parameter, then the proportional differentiation
model attempts to achievemi=mj = ci=cj over all classes. So,
even though actual service levels vary with class loads, service
ratios are always maintained.

Several protocols have been proposed within the frame-
work of Proportional Differentiation. The MulTCP approach
[5] introduced bandwidth proportional differentiationusing
weighted proportional fairness, where the weight of each flow
is related to the price paid by the user. A connection with a
weight ofN behaves like an aggregate ofN TCP connections.

Reference [4] proposes two schedulers to achieveproportional
delay differentiation. Given thatwi is the mean queueing de-
lay of a classi andWi is theDelay Differentiation Parameter
for classi such that (W1 > W2 > :::WN > 0), proportional
delay differentiation was defined as satisfyingwi

wj
= Wi

Wj
over

all pairs of classes. Two schedulers were proposed: theBacklog
Proportional Rate (BPR) Scheduler, in which class service rates
are dynamically adjusted so that they are weighted proportional
to the class backlog; and theWaiting Time Priority Scheduler,
in which the priority of a packet increases with the waiting time
of the packet. The same authors extend the proportional dif-
ferentiation model toloss differentiationin [6], and propose a
Proportional Loss Rate (PLR) dropper to achieve this.

This paper proposes a scheduler based on the Proportional
DiffServ model. During periods of congestion or saturation,
the throughput is limited by the throughput weights. Under con-
ditions of light load, when the buffer sizes are never exceeded,
throughput is equal to the offered load. Bursty traffic, where
there are alternating periods of heavy and light loads, show a
combination of these two behaviors. Note that, in all cases, we
achieve delay differentiation. In addition, this is achieved us-
ing simple mechanisms which do not require book-keeping of
packet delays, or even measurement of packet delays.

Our paper is organized as follows. In Section II, we introduce
our strategy. Numerical examples based on a simulation model
are presented in Section III. Finally, Section IV concludes the
paper with a few remarks.

II. STRATEGIES FORCOMBINED DIFFERENTIATION

This section introduces our strategy to achieve combined pro-
portional differentiation. We lay out the theoretical foundations
of our model, and present the limitations to achieving combined
proportional differentiation. Theoretical limits to the achievable
ratios are presented, along with the formal algorithm.

A. Little’s Result and Proportional Differentiation
This work has its basis in the fundamental result, first proven

by J. D. C. Little, and known as Little’s Result, e.g., see [7].
Consider any general queueing system, with notations as de-
fined in Table I. Little’s result states thatqi = si �wi. This result
makes no assumptions about the nature of arrival or departure
processes in the queuing system. Taking multiple classes into
account, a straightforward application of the above gives:

qi
qj

=
si
sj
�
wi
wj

(1)



TABLE I
L IST OF SYMBOLS USED IN THE PAPER

Symbol Definition
i; j class number indices, with0 � i; j < N

bi mean service time for pkt from classi
b2i 2nd moment of service time for pkt from classi
�i arrival rate from classi in pkts/sec
�i offered load (Erlangs) from classi = �ibi
si throughput of classi in pkts/sec
�i carried load from classi in Erlangs =sibi
wi mean packet delay for classi packets
qi mean number of packets from classi in buffer
Si throughput weight for classi
Wi mean delay weight for classi
B buffer size

Differentiation Parameterscan be associated with the perfor-
mance metrics of each class, so that the problem of achiev-
ing delay and throughput proportional differentiation between
classes then reduces to a problem of enforcing (1).

B. Limitations and Choice of metrics
Combined proportional differentiation has its limitations

with regard to the metrics that can be combined. We propose
the following, which is proven inAppendix A:

Proposition 1: It is not possible to achieve combined pro-
portional differentiation in the delay and loss metrics, inde-
pendent of actual values of packet loss ratios.

It is possible, however, to achieve combined delay and loss
differentiation if the actual values of packet loss ratios are taken
into account. Given this restriction, we have chosen to imple-
ment combined delay and throughput differentiation. That is,
for every pair of classesi andj, (1) must hold. Control of any
two of the three ratios in this equation will result in a propor-
tional control of the third. Controlling the mean delay of a class
involves greater complexity, since router bookkeeping and de-
lay measurement has to be done for each packet passing through
the router. Also, accuracy of measurement can vary widely be-
tween systems, as it depends on clock granularities. Overruling
active delay control leads to the choice of controllingqi andsi
as the optimal approach.

C. Strategies for Combined Differentiation
This section discusses our strategies for controlling the queue

size and throughput proportions, hence achieving combined
proportional differentiation. It also establishes bounds on the
achievable proportions. In Section II-C.1 we present algorithms
for separately controlling the throughput and queue ratios dur-
ing departure, while in Section II-C.2 we show how to integrate
them. Section II-C.3 shows how to handle packet arrivals to a
full buffer. The symbols defined in Table I will be used in the
discussion.

1) Mechanisms for departure-The Packet Scheduler:Serv-
ing a packet from a class changes the throughput ratios and
also the queue length ratios (hence, delay ratios) of associated
classes. So, the packet scheduler must be designed to control
these ratios appropriately. In this section, we define scheduling
mechanisms to control each of these ratios separately.

a. Controlling si=sj
To control the throughput of all classes proportionally, a mov-
ing window averaging mechanism is used. Throughput data for
departing packets of each class is collected over a moving win-
dow. A moving window of sizeM will hold throughput infor-
mation about theM most recently served packets. The moving
window size has been chosen to be of the same order as the
buffer size. When the throughput mechanism chooses a class
to serve a packet from, it will base its choice of the class on
minimizing the difference between the throughput ratios of all
flows in the system and the ideal ratio, using min-max optimal-
ity. That is, packet departures are scheduled from that class for
which the maximum deviation of any of its throughput ratios
from the ideal, after service, is minimal. This strategy, when
used exclusively, will fulfill the requested throughput weights
of all flows, provided the input traffic satisfies certain condi-
tions. The satisfaction of the throughput ratios is governed by
the following proposal:

Proposition 2: The necessary and sufficient conditions for
the throughput ratios to be satisfied depend on the offered
load, and are as follows:
Case 1: When�1 + �2 � 1, then�1=�2 must equalS1=S2
Case 2: When�1 + �2 � 1:
2a: if �1=�2 > S1=S2, then�2 � S2=(S1b1 + S2b2)
2b: if �1=�2 < S1=S2, then�1 � S1=(S1b1 + S2b2)

The proof of Propositions 2,3 and 4 are omitted in this paper due
to lack of space, and are included in our longer work [9]. When
the offered traffic is less than the system capacity, it may not be
possible to satisfy the throughput ratios. All incoming packets
are served, so throughput differentiation is not possible unless
the offered traffic satisfies the desired throughput ratios as in
Proposition 2 (we assume a work conserving system). How-
ever, when input traffic exceeds the server capacity, the system
is overloaded and packets must be dropped. Without route pin-
ning in DiffServ domains such a case may arise, and it might be
possible to guarantee throughput differentiation subject to the
above conditions.

b. Controlling qi=qj
Ratios of queue sizes of different classes need to be also con-
trolled in order to control the mean class delays proportionally.
The scheduler can control the queue lengths by serving a packet
from that class for which the maximum deviation of the queue
lengths, after service, is minimal. This strategy, when exclu-
sively used, will control the queue lengths (and hence delays)
proportionally, with the following caveat: when one or more
of the queues are empty, the above min-max approach presents
anomalous behavior. This can be explained by understanding
that when one or more of the queue sizes are 0, considering
q1=q2 may give a different service decision than by considering
q2=q1. We have dealt with this by applying a simple, deter-
ministic heuristic in such cases, i.e., serving the class with the
smallest delay weightWi (this is not shown in the pseudocode).
Additionally, there are certain constraints to the delay control



System::onServerIdlef
if SYSTEM-STATUS = LIGHTf

For each classi
compute�(q)ijqj=qj�1

find classj for which
max0�i<Nf�(q)ijqj=qj�1g �

max0�i<N f�(q)ijql=ql�1g, for j 6= l
Serve a packet from classj

g
else if SYSTEM-STATUS = HEAVYf

For each classi
compute�(s)ijqj=qj�1

find classj for which
max0�i<Nf�(s)ijqj=qj�1g �

max0�i<N f�(s)ijql=ql�1g, for j 6= l
Serve a packet from classj

g
g

Fig. 1. Packet Scheduler

using min-max optimality, which we state below1:

Proposition 3: When�1 + �2 < 1, and under Poisson ar-
rivals and general service times, the achievable delay ratio
is such that:

(1� �1 � �2) �
b0 + b1(1� �1)

b0 + b2(1� �1)(1� �1 � �2)
�
w1

w2

�
1

1� �1 � �2
�
b0 + b2(1� �1)(1� �1 � �2)

b0 + b1(1� �1)

whereb0 is the residual service time as seen by an arrival,
and is given by

b0 =

2X

i=1

�i
bi
2

2bi
(2)

Further, for a saturated system (�1 + �2 = 1):
Proposition 4: Assuming Poisson arrivals and general ser-
vice times, when a system is saturated,

(b0 � �1b1 + b1)�2b1

[(B � 1)(1� �1)b1 � (b0 � �1b1)�1]b2
�
w1
w2

�
[(B � 1)(1� �1)b1 � (b0 � �1b1)�1]b2

(b0 � �1b1 + b1)�2b1

whereb0 is the residual service time given by (2).

We present the pseudocode for this algorithm in Fig. 1. For
all pseudocodes, we define a set of pairwise parameter ratio
offsets forN classes as:

�(x)i =
xi

x(i+1) mod N
�

Xi

X(i+1) mod N
(3)

for 0 � i < N , where the argumentx can take the valueq, s
andw for the queue length, the throughput, or the mean delay,
respectively, whileX corresponds tox’s target weight.

1Both bounds are also consistent with equation (4) in [8], with our result be-
ing the limit on the mean delay ratio when the WTP Scheduler is used, and
when the dynamic priority control parameters for class 1 is much higher (re-
spectively lower) than that for class 2.

2) Modes of Operation for the Packet Scheduler:The
throughput control mechanism, if used exclusively (i.e., if
packet scheduling is controlled by using this mechanism only),
will exactly satisfy throughput ratios, subject to the input con-
straints described earlier (Proposition 2). Likewise, the queue
control mechanism, when exclusively used, will provide the ex-
act delay ratios required, subject to Propositions 3 and 4. How-
ever, our work aims at combined delay and throughput differen-
tiation, when feasible. Accordingly, the system should employ
both mechanisms in a complementary manner in order to satisfy
both requirements. We informally define two modes of opera-
tion for the packet scheduler, namely, thelight andheavyload
modes:

a. Lightly loaded state: We define the system to be lightly
loaded when the total input traffic is less than or equal
to the server capacity. In this case, each class obviously
receives all the throughput it has requested. Since the
system is work-conserving, throughput control is neither
needed nor possible under this condition. However, the
delays of the classes may be controlled in this stage by
controlling the queue sizes. Therefore, when the system
is lightly loaded, the queue control mechanism is called
upon to choose the class to be served, therefore satisfying
the queue ratios.

b. Heavily loaded state: When the input traffic to the server is
greater than the server capacity, some packets will need to
be discarded. In this case, the throughputs of all classes are
controlled by invoking the throughput control mechanism
which will maintain the necessary throughput ratios.

When the number of arrivals within a predefined, discrete time
frame is less than a predefined packet threshold, the system is
considered lightly loaded; otherwise it is heavily loaded. The
pseudocode is presented in the Part 1 of Fig. 2.

3) Mechanisms for arrival-The Queue Manager:To com-
plete the mechanism, we must decide on how to handle packet
arrivals. Notice that arrivals of packets from a class changes
the queue ratios (and hence delay ratios) of associated classes.
However, since the system is work-conserving, queue control
(by dropping packets to adjust queue ratios) is not a feasible
option when available buffer space exists. Recall that in this
state, the packet scheduler works to control queue ratios pro-
portionally. However when the buffer is full, multiple queuing
decisions are possible:an arriving packet may be dropped, or it
may be accepted by discarding an already-queued packet from
one of the other classes.This decision must be made with a
view to satisfying the delay ratios. The queue manager per-
forms this function. In this case, we use an active queue man-
agement scheme to achieve combined proportional differentia-
tion. Deviations of the queue ratios from the ideal are computed
for each of the above-mentioned decisions. That decision is
chosen for which deviation of the queue ratios from the ideal is
optimal, using min-max optimality criterion alluded to earlier.
Part 2 of Fig. 2 presents the pseudocode.

III. N UMERICAL RESULTS

In this section we provide several numerical examples based
on a simulation model to show the effectiveness of our algo-



System::onPktArrivalf
/*Part 1: choosing mode of Packet Scheduler*/
if number of pkt arrivals in window� packet-threshold

SYSTEM-STATUS = LIGHT
else

SYSTEM-STATUS = HEAVY
/*Part 2: Queue Manager*/
/* j = class of incoming packet */
if buffer = NOT-FULL

accept incoming packet
elsef
for classi

compute�(q)ijqj=qj
for classk

compute�(q)ijqj=qj+1;qk=qk�1
find the queuing decision and classj
for that decision in which:
max0�i<Nf�(q)ijqj=qj ;�(q)ijqj=qj+1;qk=qk�1,8k 6= jg

�max0�i<N f�(q)ijql=ql ;�(q)ijql=ql+1;qk=qk�1,8k 6= lg
Apply the chosen queueing decision.
g

g

Fig. 2. Queue Manager
TABLE II

HEAVY TRAFFIC: THROUGHPUT ANDDELAY RATIOS

Thruput Target Measured Delay Target Measured
Ratio Ratio
s0=s1 1.0 1.00 w0=w1 2.0 2.05
s1=s2 2.0 1.96 w1=w2 1.0 0.97
s2=s0 0.5 0.51 w2=w0 0.5 0.50

rithm. We show that we achieve delay control in all scenarios.
Further, during heavy load periods in any scenario, throughputs
are limited by their weights; during light load periods, through-
put is equal to the offered load.

We consider a single server which is fed by three packet
streams. Each stream generates packets according a Markov
modulated Poisson process (MMPP). The modulating process
is exponential, and its parameters are set to control the bursti-
ness of the traffic. Packets are generated during ON and OFF
periods according to a Poisson process with rates that determine
the traffic intensity. As such, the Poisson process is a special
case of the MMPP. Each stream is controlled independently.

Packets from all streams are assumed to require the same
transmission time, which is exponentially distributed with a
unity mean. The buffer at the server can hold a maximum of
100 packets. The sliding window size (M ) which is used for
throughput measurement is 100 time units. The thresholds used
to determine light and heavy load are 60 packets arriving within
60 time units. If the number of packets arriving within a win-
dow exceeds this threshold, then the system is considered to be
in the heavy load state; otherwise it is in the light load state.

The first scenario we consider is the heavy traffic case, where
the system is almost always in the heavily loaded state. This is
the case in which our scheme should be able to achieve full con-
trol over the throughput and mean delay ratios. The traffic from
the three streams is adjusted such that their offered loads are 1,
1 and 2 Erlangs, respectively, and it is Poisson. The through-
put weights are 2, 2 and 1, while the mean delay weights are 2,
1 and 1, respectively. In Table II we show both the target and
achieved ratios for throughput and delay.

The achieved values are very close to the target values, with
maximum errors of 2% in the throughput ratios, and 3% in
the mean delay ratios. In Fig. 3(a) we plot the instantaneous

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

100000 100500 101000

T
h

ro
u

g
h

p
u

t 
ra

ti
o

Clock (time units)

Cumulative s0/s1 (1.0)
Cumulative s1/s2 (2.0)
Cumulative s2/s0 (0.5)

Instantaneous s0/s1 (1.0)
Instantaneous s1/s2 (2.0)
Instantaneous s2/s0 (0.5)

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

100000 100500 101000

D
e

la
y
 r

a
ti
o

Clock (time units)

Cumulative w0/w1 (2.0)
Cumulative w1/w2 (1.0)
Cumulative w2/w0 (0.5)

Instantaneous w0/w1 (2.0)
Instantaneous w1/w2 (1.0)
Instantaneous w2/w0 (0.5)

(a) (b)

Fig. 3. Heavy traffic: (a) Throughput and (b) Delay ratios

and cumulative throughput ratios over a total duration of 1000
packet transmission times. The ratio measures are over the slid-
ing window. The instantaneous and cumulative mean delay ra-
tios, measured over the same interval, and using the same slid-
ing window, are also shown in Fig. 3(b). In the figures, the
ideal values are represented in braces in the legend.

Note that, for both delay and throughput, the cumulative
value graph is constant and very close to the ideal, and the
maximum deviations of instantaneous ratios from the ideal are
reasonable2. Such fluctuations occur due to the lack of packets
from one or more flows at a particular instant. However, these
fluctuations are corrected as soon as packets from the under-
served flow arrive. Note that the slope of the delay instanta-
neous ratios graph is fairly low.

The second scenario is with light traffic, where the system is
almost always lightly loaded. The three streams generate Pois-
son traffic at rates of 0.1, 0.3 and 0.2 Erlangs, for a total of 0.6
Erlangs. In this case, the queue size never exceeds 20 pack-
ets, and no packet losses are ever encountered. The individual
stream throughputs are equal to the offered load, and therefore
cannot be controlled. However, setting the target mean delay
weights to 1, 1 and 1.25, our scheme was able to control the
mean delay ratios, as shown in Table III. The error in the ratios
is less than 3%.

TABLE III
L IGHT TRAFFIC: DELAY RATIOS

Delay Ratio Target Measured
w0=w1 1.0 0.976
w1=w2 0.8 0.812
w2=w0 1.25 1.261

The graphs of the cumulative mean delay ratios were almost
flat and close to the ideal, as shown in Fig. 4(a). We note that
instantaneous ratios graph (delay) has a much steeper slope than
in the heavy load case (Fig. 3(b) ). This is due to the fact that the
idle-system case, when queues are momentarily empty, occurs
more frequently when the system is lightly loaded.

The third scenario shows the effectiveness of our scheme in
mixed loads, when the system alternates between periods of
heavy load and light load, which are generated using the MMPP
process. The three classes offer average loads of 0.4,0.4 and

2Comparing these fluctuations to those produced by WTP and BPR in [4]



0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

100000 100500 101000

D
e

la
y
 r

a
ti
o

Clock (time units)

Cumulative w0/w1 (1.0)
Cumulative w1/w2 (0.8)

Cumulative w2/w0 (1.25)
Instantaneous w0/w1 (1.0)
Instantaneous w1/w2 (0.8)

Instantaneous w2/w0 (1.25)

0

0.5

1

1.5

2

2.5

3

50000 60000 70000
T

o
ta

l 
lo

a
d

 (
E

rl
a

n
g

)

Clock (time units)

Input load (Erlang)

(a) (b)

Fig. 4. (a) Light traffic: Delay ratio and (b) Mixed traffic : Input load snapshot

0.85 Erlang during the heavy load periods, and average loads of
0.2,0.2 and 0.425 Erlang during the light load, or underloaded
periods. The durations of the heavy and light load periods were
exponentially distributed with a mean of 2,000 time units. The
length of the simulation run was 300,000 time units. Fig. 4(b)
shows a snapshot of the input load in the period of 50,000 to
75,000 time units.
We set the target delay weights to 1.0,1.0 and 1.25, which are to
be enforced over the entire simulation run. The target through-
put weights are set to 1.2,1.0 and 1.4, and are enforced under
periods of heavy load. Under the underloaded system condi-
tion, throughput is equal to the offered load. In Table IV, we
show the average delay ratios for the heavy and light load peri-
ods, as well as the overall delay ratios. The overall averages are
reasonably close to the target ratios, and so are the light load
period ratios. The average ratios for the heavy period show
somewhat larger deviations from the target.

TABLE IV
MIXED TRAFFIC: DELAY RATIOS

Delay Target Heavy Light Overall
Ratio period Avg. period Avg. Avg.
w0=w1 1.0 0.78 0.93 0.84
w1=w2 0.8 0.73 0.77 0.83
w2=w0 1.25 1.74 1.38 1.42

Table V shows similar results for throughput.Note that very
precise control is achieved over the ratios in the heavy load
phase. During the light load duration, no throughput control is
exercised, and all incoming traffic is served. Throughput ratios
in this phase are the same as that for the incoming traffic.

TABLE V
MIXED TRAFFIC: THROUGHPUT RATIOS

Delay Target (for Heavy Light Overall
Ratio heavy load) period Avg. period Avg. Avg.
s0=s1 1.2 1.19 0.99 1.11
s1=s2 0.71 0.71 0.47 0.59
s2=s0 1.16 1.17 2.1 1.50

It must be noted that, since the burst sizes are very large, we
need to increase the packet threshold to achieve these results.

It is important to point out that, for the lightly loaded sys-
tem, our scheme reduces to a new implementation ofPropor-
tional Delay Differentiation.

IV. CONCLUSIONS

This paper investigated the combined proportional differen-
tiation between multiple performance metrics. It first showed
that combined proportional differentiation between loss and
mean delay cannot be achieved independent of the actual loss
values. Therefore, we have presented an algorithm for com-
bined proportional differentiation between mean delay and
throughput ratios. The algorithm is based on an implementa-
tion that enforces the throughput ratios, and then enforces the
queue ratios. Based on the satisfaction of Little’s result, the
mean delay ratio will then be achieved.

The paper presented several numerical examples which show
the effectiveness of the algorithm. When throughput is uncon-
trollable, our algorithm is a new and simple implementation of
proportional delay differentiation. However, under heavy load,
the algorithm was able to control both throughput and mean de-
lay ratios properly.

Appendix A
Proposition 1: It is not possible to achieve combined proportional dif-
ferentiation in the delay and loss metrics, independent of actual values
of packet loss ratios.
Proof: Let li be the fraction of lost packets for classi, and�i be the
mean arrival rate for classi. Then the throughput for classi, si can be
expressed as�i(1 � li). Little’s Result states thatqi = siwi, which
yields

qi
qj

=
si
sj

�
wi

wj

=
�i
�j

�
(1� li)

(1� lj)
�
wi

wj

Let the target proportions bewi=wj = Wi=Wj and li=lj = Li=Lj .
Then the ratioqi=qj must be expressible in terms of these proportions
only. We prove the infeasibility of this using contradiction.

Assume these proportions can be simultaneously satisfied, then

qi
qj

=
�i
�j

�
(1� lj � Li=Lj)

1� lj
�
Wi

Wj

(4)

However, (4) depends onlj in addition toLi andLj . This contra-
dicts the assumption, proving that combined proportional delay and
loss differentiation is only possible if the actual loss ratios are taken
into account. 2

REFERENCES
[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, “An

Architecture for Differentiated Services”, IETF RFC 2475, December
1998

[2] K. Nichols, S. Blake, F. Baker and D. Black, “Definition of the Differen-
tiated Services Field (DS Field) in the IPv4 and IPv6 headers”, IETF RFC
2474, December 1998

[3] C. Dovrolis and P. Ramanathan, “A Case for Relative Differentiated
Services and the Proportional Differentiation Model”, IEEE Network,
September/October 1999

[4] C. Dovrolis, D. Stiliadis and P. Ramanathan, “Proportional Differenti-
ated Services: Delay Differentiation and Packet Scheduling”, IEEE/ACM
Transactions on Networking, February 2002

[5] J. Crowcroft and P. Oechslin, “Differentiated end-to-end Internet Services
using a Weighted Proportional Fair sharing TCP”, ACM Computer Com-
munication Review, July 1998

[6] C. Dovrolis and P. Ramanathan, “Proportional Differentiated Services,
Part II: Loss Rate Differentiation and Packet Dropping”, IEEE/IFIP
Eighth International Workshop on Quality of Service, June 2000.

[7] L. Kleinrock, Queueing Systems, Vol. I: Theory. John Wiley, New York,
1975.

[8] M. Leung, J. Lui and D. Yau, “Adaptive Proportional Delay Differentiated
Services: Characterization and Performance Evaluation”, IEEE/ACM
Transactions on Networking, Vol 9, No 6, December 2001

[9] S.Sankaran, “A combined scheme for delay and throughput scheduling
scheme for Proportional Differentiated Services”, M.S.thesis, Electrical
and Computer Engineering Dept., Iowa State University, 2002.


