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Abstract—This paper studies the achievable cognitive sum rate
of an overlay cognitive radio (CR) system assisted with multiple
antennas two-way relays in which primary users (PUs) cooperate
with cognitive users (CUs) for mutual benefits. In this context, the
problem of both bandwidth and power allocation is investigated.
We propose that the CUs are allowed to allocate a part of
the PUs spectrum to perform their cognitive transmission. In
return, acting as amplify-and-forward two-way relays, they are
exploited to support PUs to reach their target data rates over the
remaining bandwidth. Power expressions for optimal transmit
power allocated per PU and CU antenna are derived under
primary quality-of-service constraint in addition to bandwidth
and power budget constraints. More specifically, CUs act as relays
for the PUs transmission and gain some spectrum as long as they
respect these constraints. After deriving the optimal transmit
powers, we employ a strong optimization tool based on swarm
intelligence to optimize the full and complex relay amplification
gain matrices in addition to the bandwidths released to primary
and cognitive transmission. Furthermore, three different utility
functions are considered in our optimization problems depending
on the level of fairness among CUs.

Index Terms—Overlay cognitive radio systems, two-way relay-
ing technique, multiple-input multiple-output antennas, particle
swarm optimization algorithm.

I. INTRODUCTION

A. Background

Cognitive radio (CR) is proposed as an intelligent novel
approach to solve the spectrum deficit problem [1]. The basic
idea of CR is that cognitive users (CUs) are allowed to
utilize the spectrum of licensed users which are also known
as primary users (PUs) in an opportunistic fashion. CR can be
grouped into three main techniques; interweave, underlay, and
overlay [2]. The original idea of cognitive radio was based on
the interweave technique, where the CUs are allowed to access
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the primary spectrum only when the PUs are inactive [3]. In
other words, CUs sense primary spectrum holes before utiliz-
ing them. In the underlay technique, CUs access the spectrum
simultaneously with PUs under some interference limitation
constraints to maintain a certain quality-of-service (QoS) of
the primary transmission [4]. In the overlay technique, CUs are
allowed to use a part of their resources to enhance the primary
signal. In counterpart, the PUs may release some bandwidths
for CUs data transmission [5]. This technique can be exploited
with cooperative relaying techniques to enhance the system
performance.

Two-way relaying (TWR), has lately attracted a lot of
attention in the literature. In conventional TWR, exchanging
different messages between two terminals takes place into
two phases only to accomplish the transmission instead of
four phases in the traditional one-way relaying. In the first
phase, the users transmit their signals simultaneously to the
relays. Subsequently, in the second phase, the relays broadcast
the signal to the users [6]. The authors in [7] investigated
the performance and the spectral efficiency of the TWR
transmission and compared them to the traditional one-way
relaying transmission. To perform this, several relay strategies
are used: decode-and-forward (DF), compress-and-forward
(CF), and amplify-and-forward (AF), [8], [9]. In DF protocol,
the relay decodes the received signal and removes the noise
before transmitting a clean copy of the original signal to the
destination, while in CF protocol, the relay compresses the
received signal from the source node and forwards it to the
destination without decoding the signal. In AF protocol, the
relay amplifies the received signal before broadcasting it to
the destination. In our framework, we are interested in AF
protocol due to its low computational complexity and low
delay in the relay node (i.e., AF allows faster transmission
without processing delay). Moreover, AF requires much less
computing power compared to DF and CF protocols.

The multiple-input multiple-output (MIMO) technique pro-
vides more degrees of freedom to the system to enhance the
system throughput. Various studies have employed MIMO
antennas with TWR [10], [11]. Moreover, many studies em-
ployed TWR system in conjunction with interweave and
underlay cognitive modes in order to minimize the total power
consumption or to enhance the cognitive sum rate while
respecting the primary QoS, respectively, [12], [13]. The work
in [12] and [13] compared the single and multiple antenna
cases in underlay cognitive scenario.



B. Overlay Cognitive Radio: Literature Review

Leasing model, which is also called property rights model,
can be categorized into two categories; spectrum leasing
and time leasing. For spectrum leasing, PUs who own the
spectrum can possibly lease a part of the spectrum to CUs
for appropriate remuneration and can exploit the existence of
CUs to enhance their performance and QoS. In counterpart,
CUs can use the leased spectrum for their own transmission
by performing decentralized power control [14]–[16]. On the
other hand, for time leasing, PUs can lease a portion of their
time for CUs’ transmission. In return, in the remaining time,
CUs help the PUs to enhance their performance. Indeed, the
data transmission takes place in three time slots, in the first
time slot, PUs transmit their signals to CUs, while in the
second time slot, CUs broadcast the primary signal to the
primary destination, finally, the CUs use the remaining time
slot for their own transmission [17], [18]. In this paper, the
“overlay” model term is used to indicate the spectrum leasing
model.

Overlay CR technique has been introduced in literature
as a solution to enhance the spectral efficiency of primary
transmissions while exploiting the existence of CUs [19].
Most of the studies model CUs as one-way relays that DF
the primary signals to the destination in order to improve
the system reliability. This operation requires the knowledge
of the primary user’s data sequence and/or codebook [19].
Furthermore, in overlay CR, CUs need to know the primary
channel gains in addition to encoding techniques if they will
decode the primary signal. However, compared to interweave
and underlay CR, overlay offers to CUs the possibility to
freely transmit their signals without any constraints in terms of
time and transmitted power. It just requires that PUs know the
existence of overlaying cognitive relays in order to coordinate
their transmissions. Note here that priority is given to PUs
in contrast with the non-cognition case where relays have the
unique role of forwarding the primary signals.

Few work have employed TWR systems with overlay CR
technique [20]–[24]. These studies assume the absence of
direct link between primary terminals and utilize CU relays to
forward their signals simultaneously. This scenario overcomes
the hidden terminal problem which happens when the PUs are
shadowed or are in severe multipath fading. In return, CUs are
allowed to share a part of the primary bandwidth to perform
their communication. This spectrum sharing scenario might
involve some forms of coordination and cooperation between
the two types of users (i.e., primary and secondary users),
mainly when this cooperation is optimized. For instance,
this can be implemented when all users belong to the same
network as suggested in [20]. The authors have considered a
device-to-device (D2D) communication scenario overlaying a
cellular network where D2D users, playing the role of CUs,
communicate bi-directionally with each other while assisting
the two-way communications between a cellular user and its
base station. The work in [21] and [22] proposed a typical
model comprising a pair of PUs and a pair of CUs. The
objective was to find an optimal power allocation at the single
relaying cognitive node that minimizes the outage probability

at the cognitive receiver for given outage constraints on the
primary system. A joint relay selection and resource allocation
algorithm for TWR overlay CR networks is also proposed in
[23], where the best relays (CUs) with higher channel gain are
selected to act as relays to help for primary transmission.

C. Contributions

In this paper, we investigate the problem of bandwidth and
power allocation for TWR-MIMO overlay cognitive networks
using multiple AF relays. The AF scheme is less complex than
the DF one as it does not require the decoding of the primary
signals in the relay level. Therefore, the knowledge of the
primary sequences and codebooks is not required with the AF
scheme. The contributions of this paper can be summarized as
follows:

• We formulate an optimization problem that maximizes
the TWR-MIMO overlay cognitive rate while taking into
account all transceiver power budgets in addition to the
PU QoS requirements. In our framework, we assume
that each CU is allowed to share the primary bandwidth
in order to perform its transmission. In return, they are
engaged to complete the primary transmission by am-
plifying and forwarding the PU data over the remaining
bandwidth.

• Due to the non-convexity of the problem, we firstly derive
expressions of the transmit powers allocated to primary
and cognitive users for a fixed user bandwidth and relay
amplification gain. Then, we employ a meta-heuristic
approach based on particle swarm optimization (PSO)
algorithm to find sub-optimal CU bandwidth allocation
in addition to the relay amplification matrix gains.

• We consider different cognitive objective functions de-
pending on the level of fairness among CUs.

• Finally, we analyze the performance of our scheme
under different system parameters and we compare the
algorithm performance in terms of convergence speed
and computational complexity with a recently proposed
heuristic approach entitled the grey wolf optimizer
(GWO) [25].

D. Paper Organization

The remainder of this paper is organized as follows. Sec-
tion II presents the MIMO-TWR overlay cognitive system
model using AF relays. The problem formulation is described
in Section III. Section IV gives optimal power expressions
for the different considered utilities and describes the PSO
algorithm for bandwidth and relay gain optimization. The
numerical results are discussed in Section V. Finally, the paper
is concluded in Section VI.

We need to make some notes about the notations used in
this paper. The superscripts (.)T and (.)H correspond to the
transpose and the hermitian operator, respectively. C and R
denote the field of complex and real numbers, respectively.
E(.) and Tr(.) denote the expectation and the trace operator.
(x)+ denotes a maximum between x and zero.



II. SYSTEM MODEL

We consider an overlay half duplex CR network with two
primary users PU1 and PU2 in addition to a cognitive network
consisting of L CUs and one cognitive base station. All
nodes are equipped with M antennas. A non-line of sight
link between PU1 and PU2 is considered as illustrated in
Fig. 1. The L CUs act as two-way relays for the PUs over the
primary bandwidth. In exchange, the PUs may release some
of their bandwidths to the CUs to accomplish their own data
transmission as long as the PUs maintain their QoS.

Let T denote the time duration that a primary user is allowed
to transmit data over the bandwidth Btot. In our overlay
MIMO-CR scheme, we assume that the total bandwidth is
divided into L+ 1 fractions denoted B0, B1,...,BL, where the
primary transmission is held over B0 while for each lth CU,
we allocate the bandwidth fraction Bl such that there is no
inter-user interference between all the primary and secondary
nodes

(∑L
l=0Bl = Btot

)
, as shown in Fig. 2.

Assuming independent and identically distributed (i.i.d)
complex Gaussian signals, PUs exchange their messages via
L CUs as follows: In the first phase, both PU1 and PU2

transmit their messages x1 and x2 simultaneously to the L
CUs with a covariance power matrix of vector xt denoted
P t = E(xtx

H
t ) Watt/Hz (power per unit frequency), where

t = {1, 2}. Perfect synchronization between PU1 and PU2 is
assumed [26]. In the second phase, the CUs play the role
of relays by transmitting the amplified signal to the PUs
with a covariance power matrix denoted P rl Watt/Hz, where
l = 1, ..., L. During PUs transmission and reception, the CUs
transmit their data xcl to the cognitive base station over the
remaining bandwidth (i.e., B1,...,BL) with a covariance power
matrix denoted P cl = E(xclx

H
cl

) Watt/Hz, where l = 1, ..., L.

Fig. 1 Overlay TWR-MIMO system model.

Let us define Ēp and Ēc as the peak energy at each
PU and the peak energy at each CU, respectively. H1rl ∈
CM×M ,H2rl ∈ CM×M , and Hcl ∈ CM×M are the MIMO
channel gains in the first time slot between PU1 and the lth
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Fig. 2 Time-bandwidth allocation.

CU, PU2 and the lth CU, and the lth CU and the cognitive
base station, respectively. Where in the second time slot the
MIMO channel gains are denoted by Ĥ1rl ∈ CM×M , Ĥ2rl ∈
CM×M , and Ĥcl ∈ CM×M . All the channel gains are
assumed to be i.i.d fading channel gains and constant during
the coherence time. If the channels are highly correlated during
two consecutive time slots, then channel reciprocity is assumed
i.e., H1rl = Ĥ1rl ,H2rl = Ĥ2rl ,Hcl = Ĥcl In addition
to that, perfect channel state information at transmitters and
receivers are considered. Without loss of generality, all the
noise variances are assumed to be equal to N0.

Let V t and U t, where t ∈ {1, 2} be two unitary precoder
and decoder matrices, respectively, employed by PUs. In the
first phase, PUt employs the precoder matrix V t such as: xt =
V tx̃t where xt is the transmitted signal after being precoded
by PUt. Subsequently, during the second phase, PUt employs
the decoder matrix U t such as: rt = UH

t yt, where yt and
rt are the received signals at PUt before and after decoding,
respectively. The choice of V t and U t will be defined later.

The approach of the paper was initially designed to a sce-
nario where PUs and CUs belong to the same legacy system;
e.g. LTE with LTE device-to-device (D2D) communications.
In the case where it must be extended to deal with different
legacy scenario, then the following rules apply:
• Each CU needs to support both standards.
• Each CU needs to have two separate RF chains: one to be

used for the secondary transmissions over the secondary
system (e.g., 802.11ac standard) and one to be used over
the primary system (e.g., LTE standard) to relay PUs’
data.

• This requires doubling the number of antennas since
transmission over both systems will be simultaneous: If
M is the current number of antennas in the paper, each
CU would need “2M” antennas: M to be used over the
primary system (LTE) and another M to be used over the
secondary system.

• This will lead to increase the costs of the CU devices,
but they would still be able to use the spectrum for free.

• It should be noted that the different legacy scenario
assumes that the two standards use overlapping spectrum
bands. Otherwise, PUs cannot share a portion of their
bandwidth with CUs, since the technology used by CUs



would be operational on different frequency bands.

III. PROBLEM FORMULATION

In this section, we formulate an optimization problem that
maximizes the cognitive objective function for multiple MIMO
TWR-CR networks while satisfying the required QoS of the
PUs. Different utility metrics leading to different bandwidth
and power allocation are presented and discussed depending
on the cognitive objective. Without loss of generality, channel
reciprocity is assumed.

A. Primary Data Rate

In the first phase, the baseband received signal at the lth

CU over B0 is given as follows

yrl
= H1rlx1 +H2rlx2 + nrl , (1)

where nri is the additive Gaussian noise at the lth relay and
xt is the transmitted signal after precoding by PUt, where
t ∈ {1, 2}. During the second phase, each relay CU amplifies
yrl

by multiplying it by a full matrix Gl ∈ CM×M and
broadcasting it to the PUs. Finally, the received signals at PU1

and PU2 are respectively given as

y1 = Φ̂x1︸︷︷︸
Self Interference

+Φx2 + z1, (2)

y2 = Ψx1 + Ψ̂x2︸︷︷︸
Self Interference

+z2, (3)

where Φ =
L∑

l=1

HT
1rl
GlH2rl , Φ̂ =

L∑
l=1

HT
1rl
GlH1rl ,Ψ =

L∑
l=1

HT
2rl
GlH1rl , and Ψ̂ =

L∑
l=1

HT
2rl
GlH2rl , are the equiv-

alent MIMO channels obtained at PU1 and PU2, respectively

before decoding. zt =
L∑

l=1

(
HT

trl
Glnrl

)
+ nt and nt are

the equivalent amplified noise at PUt before decoding and the
additive Gaussian noise vectors at PUt, respectively, where
t ∈ {1, 2}. Using the knowledge of the channel information
and channel reciprocity, the PUs can remove the self interfer-
ence by eliminating their own signals (i.e., x1 for PU1 and x2

for PU2). Thus, the received signal r1 and r2 after employing
the decoders U t are given, respectively, by

r1 = UH
1 Φx2 + z̃1 = UH

1 ΦV 2x̃2 + z̃1 (4)

r2 = UH
2 Ψx1 + z̃2 = UH

2 ΨV 1x̃1 + z̃2 (5)

where z̃t = UH
t zt is the equivalent amplified noise at PUt

after decoding. The covariance matrix of the noise z̃t can be
given as

C z̃t
= E[z̃tz̃

H
t ]

= N0

L∑
l=1

UH
t H

T
trl
Gl(U

H
t H

T
trl
Gl)

H +N0IM ,
(6)

where IM denotes the identity matrix of size M .
Let us now define the unitary precoding and decoding

matrices using the singular value decomposition (SVD) which

converts the MIMO channel into parallel channels character-
ized by their associated eigenmodes. Thus, we perform SVDs
for the matrices Φ and Ψ as follows: Φ = U1SΦV

H
2 and

Ψ = U2SΨV
H
1 , where SΦ and SΨ are diagonal matrices

with square roots of the eigenvalues of matrix Φ and Ψ,
respectively. As such, the primary rates of the PU1 and PU2

after SVD can be respectively given as

Rp1 =
B0

2

M∑
m=1

log2

(
1 +

S2
Φ(m,m)P 2(m,m)

C z̃1(m,m)

)
, (7)

Rp2
=
B0

2

M∑
m=1

log2

(
1 +

S2
Ψ(m,m)P 1(m,m)

C z̃2
(m,m)

)
. (8)

The factor 1
2 is added as primary transmission is held over

two time slots. In order to meet the target transmission rate
for the primary network, Rp1

[bits/s] and Rp2
[bits/s] should

be no less than the primary target transmission rate R0[bits/s],
i.e.,

Rp1
≥ αR0 and Rp2

≥ (1− α)R0, (9)

where α ∈ [0, 1] is the rate profile of the system to characterize
the boundary rates at the PUs. From (9), we can show that the
fractional bandwidth needed for the primary network should
satisfy

B0 ≥ max

(
2αR0

M∑
m=1

log2

(
1 +

S2
Φ(m,m)P 2(m,m)

Cz̃1
(m,m)

) ,
2(1− α)R0

M∑
m=1

log2

(
1 +

S2
Ψ(m,m)P 1(m,m)

Cz̃2
(m,m)

)
)
.

(10)

Therefore, the PUs may release the remaining fractional band-
width (Btot −B0) to CUs.

B. Secondary Data Rate

On other hand, the received signal at the cognitive base
station from the lth CU over bandwidth Bl can be given as

ycl
= Hclxcl + ncl , (11)

where ncl is the additive Gaussian noise at the cognitive base
station. Thus, the received signal rcl after decoding is given
by

rcl = UH
cl
Hclxcl +UH

cl
ncl = UH

cl
HclV cl x̃cl +UH

cl
ncl .

(12)

Define Hcl = U clSclV
H
cl

, where Scl is a diagonal matrix
with square roots of the eigenvalues of matrix Hcl . Therefore,
the cognitive rate of lth CU at the cognitive base station can
be expressed in [bits/s] as

Rcl = Bl

M∑
m=1

log2

(
1 +

S2
cl

(m,m)P cl(m,m)

N0

)
. (13)



C. Optimization Problem

Recall that the PU and CU users have as energy budgets Ēp

and Ēc expressed in Joules, respectively, and that the power
budgets of PU and CU equal to P̄p and P̄c Watt, respectively.
Thus, the energy budget constraints at the tth PU and lth CU
are over time duration T given respectively as

T

2
B0Tr(P t) ≤ Ēp,

TBlTr(P cl) +
T

2
B0Tr

(
Ω1rlP 1Ω

H
1rl

+ Ω2rlP 2Ω
H
2rl

+N0GlG
H
l

)
≤ Ēc.

(14)

or equivalently

B0

2
Tr(P t) ≤ P̄p,

BlTr(P cl) +
B0

2
Tr
(
Ω1rlP 1Ω

H
1rl

+ Ω2rlP 2Ω
H
2rl

+N0GlG
H
l

)
≤ P̄c.

(15)

where Ω1rl = GlH1rl and Ω2rl = GlH2rl are the MIMO
equivalent channel gains.

Let U(Rcl) denote the rate utility of the cognitive system.
Thus, the optimization problem of MIMO TWR-CR with
multiple relays that maximizes the rate utility while satisfying
specific power budgets and target primary rate constraints can
be formulated as

maximize
B,P 1,P 2,P cl

,Gl≥0
U(Rcl) (16)

subject to:
(C1: Power budget constraints at the primary users):

0 ≤ B0

2
Tr(P t) ≤ P̄p, ∀t = 1, 2, (17)

(C2: Power budget constraints at the cognitive users):

BlTr(P cl)+
B0

2
Tr
(
Ω1rlP 1Ω

H
1rl

+ Ω2rlP 2Ω
H
2rl

+N0GlG
H
l

)
≤ P̄c, ∀l = 1, ..., L,

(18)

(C3: Rate constraint for the first primary user):

Rp1
≥ αR0, (19)

(C4: Rate constraint for the second primary user):

Rp2
≥ (1− α)R0, (20)

(C5: Total bandwidth constraint):
L∑

l=0

Bl = Btot, (21)

where B = [B0, B1, ..., BL] is the vector that contains the
fractions of bandwidth assigned to primary and cognitive
transmissions. Constraints (17) and (18) represent the peak
energy constraints at PUs and CUs, respectively. The term
Tr
(
Ω1rlP 1Ω

H
1rl

+ Ω2rlP 2Ω
H
2rl

+ N0GlG
H
l

)
in constraint

(18) is equivalent to the relay amplified power of the lth CU.

D. Utility Selection

In this section, we characterize three different utility
metrics that will be employed in the optimization problem
(16).

Max C/I Utility:
The utility of this metric is equivalent to the sum data rate
of the cognitive network U(Rcl) =

∑L
l=1Rcl . This approach

is known in the literature as Max C/I [27] as it promotes
users with favorable channel and interference conditions
by allocating to them most of the resources, whereas users
suffering from higher propagation losses and/or interference
levels will be deprived from the bandwidth as well as the
power and will have very low data rates. Note that, thanks
to the employed overlay scheme, and thus, the elimination
of user interference, the Max C/I utility promotes users with
favorable channels conditions only.

Max-Min Utility:
Due to the unfairness of Max C/I resource allocation, the
need for more fair utility metrics arises. Max-Min utilities
are a family of utility functions attempting to maximize
the minimum data rate in the network U(Rcl) = min

l
(Rcl)

[28]. By increasing the priority of users having lower rates,
Max-Min utilities lead to more fairness in the network. In
order to simplify the problem for this approach, we define
a new decision variable Rmin = min

l
(Rcl). Therefore, our

optimization problem becomes

maximize
B,P 1,P 2,P c,Gl,Rmin≥0

Rmin (22)

subject to:

Rcl ≥ Rmin ∀l = 1, ..., L, (23)
(C1), (C2), (C3), (C4), (C5). (24)

Proportional Fair Utility:
A tradeoff between the maximization of the sum rate and the
maximization of the minimum rate could be the maximization
of the geometric mean data rate U(Rcl) = (

∏L
l=1Rcl)

1/L

[29]. The proportional fair (PF) metric is fair, since a user
with a data rate close to zero will make the whole product
go to zero. Hence, any algorithm maximizing the geometric
means would avoid having any user with very low data rate.
In addition to this, the metric will reasonably promote users
with good wireless channels (capable of achieving high data
rates), since a high data rate will contribute in increasing the
product.

IV. OPTIMAL POWER ALLOCATION AND PARTICLE
SWARM OPTIMIZATION ALGORITHM

The formulated optimization problem is a non-convex prob-
lem and its optimal solution remains unsolved. For this reason,
we propose to solve it in two steps. In the first step, we
derive power expressions at each iteration for the optimal
transmit primary powers (i.e., P 1 and P 2) and cognitive
transmit powers (i.e., Pcl ) by assuming fixed bandwidths



of both primary and cognitive users and fixed amplification
matrix gains (equivalent to fixed relay power), at all CUs.
As a result, we convert our formulated problem to a convex
one. The primal-dual method is used due to its simplicity
and to the fact that it provides an expression of the power
allocation per each antenna for the different utility functions.
This can help in interpreting the behavior of each terminal in
the network thanks to the water-filling expressions that will
be derived next. Then, we propose to employ the subgradient
method in order to optimize the Lagrangian multipliers. Note
that the interior-point method could be also employed to
solve the problem by finding numerically the optimal solution
using the Newton method. Although the convergence of the
subgradient method is slower than the interior-point method,
the subgradient method remains competitive mainly for large
scale problems as it requires little storage [30]. In the second
step, we employ swarm intelligence to jointly optimize the
system bandwidths with the CU amplification gain matrices.

A. Optimal Transmit Power Allocation

We can solve our convex optimization problem for fixed
B and Gl,∀l = 1, ..., L, by exploiting its strong duality as
follows [30]:

minimum
λ≥0

maximum
P 1,P 2,P cl

≥0
L(λ,P 1,P 2,P cl), (25)

where L is the Lagrangian function [30] which is given in
(26). λ is a vector that contains all the Lagrangian multipliers
of the system, where λpt

, λcl , λtht
and λB , represent the

Lagrangian multipliers related to the peak power budget
constraint at the tth PU, peak power budget constraint at
the lth CU, the primary target rate constraint for the tth

PU, and the bandwidth constraint, respectively. It includes
also λRl

, l = 1, · · · , L related to constraint (23) if the
Max-Min utility is used. By taking the derivative of the
Lagrangian with respect to the Pt(m,m), and Pcl(m,m)
where t ∈ {1, 2},m = 1, ...,M and l = 1, ..., L, we can find
the optimal primary power allocated to the mth antenna at
PUt as well as the optimal transmit powers allocated to the
mth antenna at CUl that maximize the Lagrangian function
and, consequently, the cognitive utility rate. Since the primary
powers are independent of the cognitive utility expression,
we can derive the closed-form expressions of P1(m,m) and
P2(m,m) at each iteration for fixed bandwidth and relay
amplification factors as given in (27), where ln(2) is the
natural logarithm of 2. However, the expression of the lth

CU transmit power depends on the utility approach as follows:

Max C/I Utility: For max C/I utility, the lth CU transmit
power over the mth antenna can be expressed as

Pcl(m,m) =

(
1

λcl ln(2)
− N0

S2
cl

(m,m)

)+

. (28)

We can see from (28) that the value of the Pcl(m,m) depends
on λcl related to constraint (18) (i.e., corresponding to the
primary powers and primary bandwidth). Also, it depends
on the channel values between the CUs and cognitive base

station. In this approach it is clear that, all resources are
allocated to the CUs with favorable channel conditions.

Max-Min Utility: By taking the derivative of the Lagrangian
of (22)-(24) with respect to Pcl(m,m) and equating it to
zero, the lth CU transmit power over the mth antenna can be
derived as

Pcl(m,m) =

(
λRl

λcl ln(2)
− N0

S2
cl

(m,m)

)+

. (29)

By taking the derivative of the Lagrangian with respect
to Rmin, we can deduce that

∑L
l λRl

= 1, which means
that λRl

∈ [0, 1]. By comparing (29) with (28), we can
see that λRl

values control the priority of the resource
allocation. However, enhancing the worst channel condition
(i.e., corresponding to the minimum rate achieved) could
come at the expense of users with good channel conditions
which leads to more fairness between the CUs.

Proportional Fair Utility: For PF utility, the lth CU
transmit power over the mth antenna can be derived as

Pcl(m,m) =

(
1

λcl ln(2)

L∏
k=1
k 6=l

Bk.

M∑
m=1

log2

(
1 +

Pck(m,m)S2
ck

(m,m)

N0

)
− N0

S2
cl

(m,m)

)+

.

(30)

In this approach, a tradeoff between the maximization of the
sum rate and the maximization of the minimum rate can be
clearly deduced in (30). The lth CU transmit power over the
mth antenna Pcl(m,m) depends directly on the sum rate of
other antennas at the same CU and the product of the other
CUs rates. This approach tries to avoid having any user with
very low data rate and maximize the product of the CUs rates
simultaneously.

For all utilities, we can employ the subgradient method to
find the optimal Lagrangian multipliers of this problem [31].
Hence, to obtain the solution, we can start with any initial
values for the different Lagrangian multipliers and evaluate the
optimal powers. We then update the Lagrangian multipliers at
the next iteration (i+ 1) as follows

λ(i+1)
pt

= λ(i)
pt
− δ(i)

pt

(
P̄p −

B0

2
Tr(P t)

)
,∀t = 1, 2, (31)

λ(i+1)
cl

=λ(i)
cl
− δ(i)

cl

(
P̄c −

(
BlTr(P cl)+

B0

2
Tr
(
Ω1rlP 1Ω

H
1rl

+ Ω2rlP 2Ω
H
2rl

+N0GlG
H
l

)))
,

∀l = 1, ..., L,

(32)

λ
(i+1)
th1

= λ
(i)
th1
− δ(i)

th1
(Rp1

− αR0) , (33)



L(λ,P 1,P 2,P c) = U(Rcl)−
2∑

t=1
λpt

(
B0

2 Tr(P t)− P̄p

)
−

L∑
l=1

λcl

(
BlTr(P cl) + B0

2 Tr
(
Ω1rlP 1Ω

H
1rl

+ Ω2rlP 2Ω
H
2rl

+N0GlG
H
l

)
− P̄c

)
+ λth1 (Rp1 − αR0) + λth2 (Rp2 − (1− α)R0)− λB

(
L∑

l=0

Bl −Btot

)
+

L∑
l=1

λRl
(Rcl −Rmin) .

(26)

P1(m,m) =

 λth2

ln(2)

(
λp1+

L∑
l=1

λcl
|Ω1rl

(m,m)|2
) − Cz̃2

(m,m)

S2
Ψ(m,m)


+

, P2(m,m) =

 λth1

ln(2)

(
λp2+

L∑
l=1

λcl
|Ω2rl

(m,m)|2
) − Cz̃1

(m,m)

S2
Φ(m,m)


+

.

(27)

λ
(i+1)
th2

= λ
(i)
th2
− δ(i)

th2
(Rp2

− (1− α)R0) , (34)

λ
(i+1)
B = λ

(i)
B − δ

(i)
B

(
Btot −

(
L∑

l=0

Bl

))
, (35)

λ
(i+1)
Rl

= λ
(i)
Rl
− δ(i)

Rl
(Rcl −Rmin) ,∀l = 1, ..., L. (36)

where δ
(i)
pt , δ

(i)
cl , δ

(i)
th1
, δ

(i)
th2
, δ

(i)
B and δ

(i)
Rl

are the updated step
size according to the nonsummable diminishing step length
policy (see [31] for more details). The updated values of the
optimal powers and the Lagrangian multipliers are repeated
until convergence.

B. Particle Swarm Optimization Algorithm

In the second step, we employ the PSO algorithm to opti-
mize B and Gl,∀l = 1, ..., L. The PSO idea was introduced
in 1995 [32] and it is inspired by swarm intelligence, social
behavior, and food searching by a flock birds and a school
of fish. This approach is widely used in several wireless
communication fields due to its simplicity and efficiency [33]–
[35]. Due to the following advantages of PSO compared with
the other heuristic approaches, we apply it for solving this
problem: (i) simple search process and easy to implement
by manipulating few numerical parameters (e.g., such as the
number of particles and acceleration factors for PSO) (ii) it
requires low computational cost attained from small number
of agents; and (iii) it provides a good convergence speed [36].
Thus, we propose to implement it to find near-optimal relay
amplification gains and bandwidth fractions.

First, the PSO generates N random particles (i.e., a vector
contains random B and Gl,∀l = 1, ..., L) W (n), n =
1, · · · , N , of length 1× (L(2M)2 +(L+1)) to form an initial
population set S, where (2M) corresponds to the fact that
during the PSO algorithm we optimize complex amplification
gain matrices of multiple antenna relays. Note that when
M = 1, we focus on optimizing a single real entry per relay:
the amplification gain. The algorithm computes the achieved
utility (16) of all particles by computing the optimal terminal
powers derived in Section IV-A for this W (n). Then, it finds
the particle that provides the global optimal utility for this
iteration, denoted W (global). In addition, for each particle n,
it memorizes the position of its previous best performance,
denoted W (n,local). After finding these two best values, PSO

Algorithm 1 Proposed Algorithm for Overlay TWR-CR Net-
works

1: Generate an initial population S composed of N random parti-
cles W (n), n = 1 · · ·N .

2: while Not converged do
3: for n = 1, · · · , N do
4: Find the optimal primary and cognitive powers by comput-

ing (27)-(30) corresponding to the particle W (n) ∈ S.
5: Compute the utility Un depending on the used metric as

given in Section III-D.
6: end for
7: Find (ng, qg) = arg max

n,q
Un(q) (i.e., ng and qg indicate the

index and the position of the particle that results in the highest
utility).

8: Set U(global) = Ung (qg) and W (global) = W ng (qg).
9: Find ql = arg max

q
Un(q) for each particle n (i.e., ql indicates

the position of the particle n that results in the highest local
utility).

10: Set U(n,local) = Un(ql) and W (n,local) = W n(ql).
11: Adjust the velocities and positions of all particles using

equations (37) and (38), respectively.
12: Move to the new iteration q = q + 1.
13: end while

updates its velocity ν
(n)
j and its particle positions W (n)

j ,
respectively at each iteration q as follows:

ν
(n)
j (q + 1) = ψν

(n)
j (q) + c1r1

(
W

(n,local)
j (q)−W (n)

j (q)
)

+ c2r2

(
W

(global)
j (q)−W (n)

j (q)
)
,

(37)

W
(n)
j (q + 1) =

(
W

(n)
j (q) + ν

(n)
j (q + 1)

)+

, (38)

where ψ is the inertia weight used to control the convergence
speed (0.8 ≤ ψ ≤ 1.2). r1 and r2 are two random positive
numbers generated for each element j. Finally, c1 and c2 are
the step size that a particle takes towards the best individual
candidate solution W (n,local) and the global best solution
W (global). This procedure is repeated until convergence (i.e.,
the utility remains constant for a certain number of iterations
or reaching maximum number of iterations). Details of the
proposed algorithm as it is applied to our optimization problem
are given in Algorithm 1.

Although PSO’s application has been proved to be effective,
convergence to its most optimistic solution cannot be guaran-
teed in theory [37].



V. SIMULATION RESULTS

In this section, we provide selected simulation results for
i.i.d Rayleigh fading channels to study the performance of the
proposed scheme given in Fig. 1. The total bandwidth and
average noise power per unit frequency are assumed to be
equal to Btot = 5 MHz and N0 = 1 Watt/Hz, respectively.
The PSO algorithm is executed using these parameters: the
initial number of particles is set to N = 30 and the maximum
number of iterations is equal to 200. It is assumed that the
PSO algorithm converges when the utility remains constant
for 10 consecutive iterations or reaching maximum number of
iterations.

A. System Performance

Fig. 3 plots the achieved cognitive sum rate using PSO
algorithm presented in Algorithm 1 versus the rate profile of
the system α for different utilities (Max C/I, PF, and Max-
Min) with fixed L = 4, R0 = 10 Mbits/s, P̄p = P̄c = 20
dBm and different number of antennas (i.e., M = {1, 2}).
It is shown that the optimal α that maximizes the cognitive
sum rate is equal to 0.5 (corresponding to the point where the
threshold rate at PU1 is equal to the threshold rate at PU2).
Also, we notice that the sum rate has a symmetric behvior
that reflects the symmetry of the TWR. We compare the three
utilities with the uniform bandwidth case using maximum
sum rate utility (i.e., we choose B0 such that it satisfies
(10). Then, we consider uniform power distribution among the
antennas and distribute the remaining bandwidth to the CUs
i.e., Bl = Btot−B0

L ,∀l = 1, ..., L). This figure also shows the
improvement of cognitive sum rate thanks to the use of MIMO
antennas (i.e., M = 2) instead of the single antenna scheme
(i.e., M = 1). For instance, for α = 0.5, we were able to
increase the achievable cognitive sum rate by going from 6.10
Mbits/s to around 9.87 Mbits/s, 4.31 Mbits/s to around 8.05
Mbits/s, and 3.34 Mbits/s to around 7.06 Mbits/s by using
two antennas instead of a single one for Max C/I, PF, and
Max-Min utilities, respectively.

All simulations show that Max C/I utility leads to the
highest sum rate in the network. However, this comes at the
expense of fairness as it is shown in Table I. Indeed, the table
compares between the different utilities for the same channel
realization with fixed α = 0.5, L = 4, R0 = 10 Mbits/s, and
P̄p = P̄c = 20 dBm. By using one realization, it can be shown
that Max C/I enhances the cognitive sum rate, by allocating
most of the resources to a unique user having the best channel
conditions (i.e., CU3 for M = 1 and CU2 for M = 2).
On the other hand, the PF approach maximizes the geometric
mean for all the users by allocating almost the same amount
of bandwidths to CUs, while Max-Min approach maximizes
the minimum cognitive rate and provides the same rate for
all cognitive users, hence, leads to fairness performance. The
choice of the utility is related to the service used by the CUs.
For instance, if the application requires same uplink rates Max-
Min utility can be used. However, if it consists in a pure
cognitive transmission without priorities, then Max C/I could
be employed.
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Fig. 3 Cognitive sum rate as a function of α for different utilities
with L = 4, R0 = 10 Mbits/s, and P̄p = P̄c = 20 dBm, for different
number of antennas (a) M = 2, (b) M = 1.

TABLE I: Strategy of cognitive users corresponding to each utility
with α = 0.5, L = 4, R0 = 10 Mbits/s, and P̄p = P̄c = 20 dBm.

M=1 M=2
Max C/I PF Max-Min Max C/I PF Max-Min∑L

l=1 Rcl [Mbits/s] 6.51 4.83 3.64 9.87 8.05 7.06
Rc1 [Mbits/s] ∼ 0 0.87 0.91 ∼ 0 2.01 1.77
Rc2 [Mbits/s] ∼ 0 1.39 0.91 9.87 2.35 1.77
Rc3 [Mbits/s] 6.51 1.37 0.91 ∼ 0 1.95 1.77
Rc4 [Mbits/s] ∼ 0 1.19 0.91 ∼ 0 1.74 1.77

B0 [%] 41.90 44.96 44.91 31.85 33.24 33.44
B1 [%] ∼ 0 13.76 17.16 ∼ 0 16.69 19.56
B2 [%] ∼ 0 13.76 12.51 67.59 16.69 12.78
B3 [%] 58.10 13.76 10.61 ∼ 0 16.69 19.01
B4 [%] ∼ 0 13.76 14.81 ∼ 0 16.69 15.21

In Fig. 4, we aim to investigate the impact of the power
budget constraint on the system performance. In this figure,
we plot the cognitive sum rate for all the utilities versus the
power budget (P̄p = P̄c) with α = 0.5, L = 4, M = 2,
and different values of R0 = {10, 20} Mbits/s. It is shown
that increasing the target rate R0 for the same power budget
reduces the cognitive sum rate, since satisfying constraints (19)
and (20) requires more bandwidth (i.e., higher B0) as Fig. 4(b)
shows, as well as higher P 1 and P 2 values. As a result, CUs
are forced to reduce their transmitted power P cl ,∀1, ..., L, to
support primary transmission and respect constraint (18). For
instance, for P̄ = 10 dBm with Max C/I approach, the total
cognitive sum rate is reduced by around 20% by going from
around 6.00 Mbits/s to around 4.80 Mbits/s using R0 = 20
Mbits/s instead of R0 = 10 Mbits/s. On the other hand, we
can see that increasing the power budget will provide more
bandwidth to secondary users to accomplish their transmission.
For instance, with 10 dBm, primary transmission needs 60%
of the total bandwidth whereas with 30 dBm only 20% of the
bandwidth is needed using Max C/I utility. Thus, the secondary
sum rate is multiplied by 2.
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[%]), versus number of antennas for α = 0.5, L = 4, R0 = 10
Mbits/s, and P̄p = P̄c = 20 dBm.

Fig. 5 illustrates the cognitive sum rate as a function of M
for α = 0.5, L = 4, R0 = 10 Mbits/s, and P̄p = P̄c = 20
dBm. From this figure, we can deduce that the achievable
rate is improving when M increases, in other words, MIMO
antennas provide more degrees of freedom to the system
which enhances the cognitive sum rate. Similar to the power
budget effect, increasing the number of antennas offers more
bandwidth to secondary transmissions. Indeed, with MIMO
antennas, primary transmission is enhanced as it demands less

relay power and thus more power can be allocated to secondary
transmissions.

B. Convergence Speed

In Fig. 6, we compare between the performance of PSO and
a recently proposed meta-heuristic approach entitled GWO,
which are both employed with the primal-dual method, by
investigating their convergence speed defined by the number of
iterations needed to reach convergence. Note that an iteration
in Fig. 6 corresponds to one iteration of the “while loop” given
in Algorithm 1 line 2-13. GWO is inspired by grey wolf hunt.
It mimics the leadership hierarchy and hunting mechanism
of grey wolves in nature. During an iteration, the algorithm
categorizes the candidates (i.e., grey wolves) into four groups
for simulating the leadership hierarchy: Group 1 corresponds
to the fittest solution, Group 2 and 3 are the second and
third best solutions. Finally, Group 4 contains the remaining
candidates of the population. Also, the algorithm simulates the
hunting, searching for prey, encircling prey, and attacking prey
of grey wolves. For example, the hunting corresponds to the
position update of each candidate from an iteration to another
(see [25] for more details). We plot the cognitive sum rate
versus the number of iterations for PSO and GWO. It can be
clearly seen that PSO achieves its suboptimal solution faster
than GWO. For instance, it requires around 10-20 iterations
to converge with the Max C/I utility while GWO needs 30-40
iterations. Moreover, we can notice that PSO reaches a better
suboptimal solution than GWO.
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Fig. 6 Algorithms convergence speed for α = 0.5, L = 4,M =
2, R0 = 10 Mbits/s, and P̄p = P̄c = 20 dBm.

For a given maximum number of iterations of the subgradi-
ent method Imax, the complexity is given by min(Imax, 1/ε

2),
where ε represents the accuracy-guarantee which is defined
by the difference between the best value and the iterate
value [30]. According to (31)-(36), subgradient needs to
calculate 12ML + 8M + 16L + 15 multiplications and
6ML + 8M + 9L + 12 additions at each iteration. These
operations are computed for each particle of the meta-heuristic
approach. On the other hand, PSO and GWO are two meta-
heuristic algorithms where the exact number of iterations
needed to reach the solution is arbitrary and depends on
the studied scenario. However, the computational complexity
per iteration can be determined. According to (37) and (38),
PSO needs to calculate 5 multiplications and 5 additions for



every element of W (n). Hence, 5(L(2M)2 + (L + 1))N
multiplications and 5(L(2M)2 + (L + 1))N additions are
calculated every iteration for the total N particles whereas
GWO calculates 13(L(2M)2 + (L + 1))N multiplications
and 11(L(2M)2 + (L + 1))N additions according to [25].
In our simulation results, we set ε = 0.1 and Imax = 200
iterations for subgradient algorithm. While PSO and GWO
algorithms are executed for at most 200 iterations (i.e., the
utilities are computed at most 200×N times), they are stopped
if the achieved utility remains constant for a certain number
of consecutive iterations.

TABLE II CPU times (sec) and number of iterations for the pro-
posed joint-optimization method. The first row shows the total CPU
times, while the second row shows the number of iterations needed
when solving the joint power, bandwidth, and amplification factors
problem.

Max C/I PF Max-Min
PSO GWO PSO GWO PSO GWO

Total CPU time 39 59 57 86 76 121
I∗ 15 32 22 48 16 39

For 200 realizations, N = 30, L = 4 and M = 2, results
show that on average PSO is faster than GWO and requires less
time to converge as shown in Table II. In Table II, we compute
the CPU times in seconds of both algorithms and record the
iteration number (denoted by I∗) needed to reach the near
optimal solution of the joint optimization (i.e., optimizing the
power, bandwidth, and relay amplification matrices), which
exactly marks the instant when the algorithm achieves its
steady state utility. Increasing the number of particles N would
enhance the convergence speed of the algorithms. In fact, PSO
and GWO are able to achieve their solutions with a lower
number of iterations but they require more CPU times as they
need to perform more additions and multiplications during
each iteration. Note that all tests were performed on a laptop
machine featuring an Intel(R) Core(TM) i7 CPU and running
Windows 8.1. The clock of the machine is set to 2.66 GHz
with a 8 GB memory.

VI. CONCLUSION

In this paper, we investigated multiple-input multiple-output
two-way relaying scheme for overlay cognitive radio networks
where cognitive users are engaged to support primary trans-
mission over a fraction of the bandwidth. More specifically,
we considered multiple amplify-and-forward relays where
the primary and cognitive terminal powers were optimized
adaptively with the bandwidth and amplification gains. The
objective was based on maximizing the cognitive utility while
satisfying a certain primary target rate. Starting with expres-
sions of primary and cognitive powers for fixed bandwidths
and amplification gains, we employed the heuristic particle
swarm optimization algorithm to reach a near-optimal solution.
Moreover, in addition to the sum rate objective function,
we investigated other utilities that introduce more fairness
among cognitive users. In our ongoing task, we are trying to
develop an approximation algorithm to solve the formulated
optimization problem.

REFERENCES

[1] S. Haykin, “Cognitive radio: Brain-empowered wireless communica-
tions,” IEEE Journal on Selected Areas in Communications, vol. 23,
no. 2, pp. 201–220, Feb. 2005.

[2] A. Goldsmith, S. Jafar, I. Maric, and S. Srinivasa, “Breaking spectrum
gridlock with cognitive radios: An information theoretic perspective,”
Proceedings of the IEEE, vol. 97, no. 5, pp. 894–914, May 2009.

[3] J. Mitola III, Cognitive Radio: An Integrated Agent Architecture for Soft-
ware Defined Radio. Ph.D. Dissertation, Royal Institute of Technology
(KTH), Stockholm, Sweden, 2000.

[4] A. Alsharoa, F. Bader, and M. Alouini, “Relay selection and resource
allocation for two-way df-af cognitive radio networks,” IEEE Wireless
Communications Letters, vol. 2, no. 4, pp. 427–430, Aug. 2013.

[5] W. Su, J. Matyjas, and S. Batalama, “Active cooperation between
primary users and cognitive radio users in heterogeneous Ad-Hoc
networks,” IEEE Transactions on Signal Processing, vol. 60, no. 4,
pp. 1796–1805, Apr. 2012.

[6] B. Rankov and A. Wittneben, “Spectral efficient protocols for half-
duplex fading relay channels,” IEEE Journal on Selected Areas in
Communications, vol. 25, no. 2, pp. 379–389, Feb. 2007.

[7] K. Jitvanichphaibool, R. Zhang, and Y.-C. Liang, “Optimal resource
allocation for two-way relay-assisted OFDMA,” IEEE Transactions on
Vehicular Technology, vol. 58, no. 7, pp. 3311–3321, Sep. 2009.

[8] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and ca-
pacity theorems for relay networks,” IEEE Transactions on Information
Theory, vol. 51, no. 9, pp. 3037–3063, Sep. 2005.

[9] J. Laneman, D. Tse, and G. W. Wornell, “Cooperative diversity in
wireless networks: Efficient protocols and outage behavior,” IEEE Trans-
actions on Information Theory, vol. 50, no. 12, pp. 3062–3080, Dec.
2004.

[10] K.-J. Lee, H. Sung, E. Park, and I. Lee, “Joint optimization for one
and two-way MIMO AF multiple-relay systems,” IEEE Transactions on
Wireless Communications, vol. 9, no. 12, pp. 3671–3681, Dec. 2010.

[11] Y. Rong, “Joint source and relay optimization for two-way MIMO
multi-relay networks,” IEEE Communications Letters, vol. 15, no. 12,
pp. 1329–1331, Dec. 2011.

[12] A. Alsharoa, H. Ghazzai, and M.-S. Alouini, “Near optimal power allo-
cation with PSO algorithm for MIMO cognitive networks using multiple
AF two-way relays,” in Proc. of the IEEE International Conference on
Communications (ICC’2014), Sydney, Australia, Jun. 2014.

[13] A. Alsharoa, H. Ghazzai, and M.-S. Alouini, “Efficient multiple antenna-
relay selection algorithms for MIMO unidirectional-bidirectional cog-
nitive relay networks,” Transactions on Emerging Telecommunications
Technologies (ETT), Apr. 2014.

[14] S. Toroujeni, S. Sadough, and S. Ghorashi, “Spectrum leasing for
OFDM-Based cognitive radio networks,” IEEE Transactions on Vehic-
ular Technology, vol. 62, no. 5, pp. 2131–2139, Jun. 2013.

[15] S. Jayaweera and T. Li, “Dynamic spectrum leasing in cognitive radio
networks via primary-secondary user power control games,” IEEE
Transactions on Wireless Communications, vol. 8, no. 6, pp. 3300–3310,
Jun. 2009.

[16] L. Song, W. Liu, J. Li, Q. Liu, and C. Li, “Power efficient spectrum leas-
ing in cooperative cognitive radios,” in Proc. of the IEEE International
Conference on Communications in China (ICCC 2013), Xian, China,
Aug. 2013.

[17] F. Gomez-Cuba, R. Asorey-Cacheda, F. Gonzalez-Castano, and
H. Huang, “Application of cooperative diversity to cognitive radio
leasing: Model and analytical characterization of resource gains,” IEEE
Transactions on Wireless Communications, vol. 12, no. 1, pp. 40–49,
Jan. 2013.

[18] O. Simeone, I. Stanojev, S. Savazzi, Y. Bar-Ness, U. Spagnolini, and
R. Pickholtz, “Spectrum leasing to cooperating secondary Ad Hoc
networks,” IEEE Journal on Selected Areas in Communications, vol. 26,
no. 1, pp. 203–213, Jan. 2008.

[19] E. Biglieri, A. Goldsmith, L. Greenstein, N. Mandayam, and H. Poor,
Principles of cognitive radio. New York, NY, USA: Cambridge Univer-
sity Press, 2012.

[20] Y. Pei and Y.-C. Liang, “Resource allocation for device-to-device com-
munications overlaying two-way cellular networks,” IEEE Transactions
on Wireless Communications, vol. 12, no. 7, pp. 3611–3621, Jul. 2013.

[21] Q. Li, S. H. Ting, A. Pandharipande, and Y. Han, “Cognitive spectrum
sharing with two-way relaying systems,” IEEE Transactions on Vehicu-
lar Technology, vol. 60, no. 3, pp. 1233–1240, Mar. 2011.

[22] A. Hyadi, E. Driouch, W. Ajib, and M.-S. Alouini, “Overlay cog-
nitive radio systems with adaptive two-way relaying,” in Proc. of



the IEEE Global Communications Conference (GLOBECOM’2013),
Atlanta, Georgia, USA, Nov. 2013.

[23] A. Alizadeh, S.-S. Sadough, and N. Khajavi, “Optimal beamforming
in cognitive two-way relay networks,” in Proc. of the IEEE 21st
International Symposium on Personal Indoor and Mobile Radio Com-
munications (PIMRC’2010), Istanbul, Turkey, Sep. 2010.

[24] A. Alsharoa, H. Ghazzai, E. Yaacoub, and M.-S. Alouini, “Bandwidth
and power allocation for two-way relaying in overlay cognitive radio
systems,” in Proc. of the IEEE Global Communications Conference
(GLOBECOM’2014), Austin, Texas, USA, Dec. 2014.

[25] S. Mirjalili, S-M. Mirjalili, and A. Lewis, “Grey wolf optimizer,”
Elsevier Advances in Engineering Software, vol. 69, no. 1, pp. 46–61,
Mar. 2014.

[26] S. Chang and B. Kelley, “An efficient time synchronization scheme for
broadband two-way relaying networks based on physical-layer network
coding,” IEEE Communications Letters, vol. 16, no. 9, pp. 1416–1419,
Sep. 2012.

[27] X. Bi, J. Zhang, Y. Wang, and P. Viswanath, “Fairness improvement of
maximum C/I scheduler by dumb antennas in slow fading channel,”
in Proc. of the 72nd IEEE Vehicular Technology Conference (VTC
Fall’2010), Ottawa, Ontario, Canada, Sep. 2010.

[28] Y. Song and G. Li, “Cross-layer optimization for OFDM wireless
networks-Part I: Theoretical framework,” IEEE Transactions on Wireless
Communications, vol. 4, no. 2, pp. 614–624, Apr. 2005.

[29] T. Zhang, Z. Zeng, and Y. Qiu, “A subcarrier allocation algorithm for
utility proportional fairness in OFDM systems,” in Proc. of the 67th
IEEE Vehicular Technology Conference (VTC Spring’2008), Singapore
City, Singapore, pp. 1901–1905, May 2008.

[30] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY,
USA: Cambridge University Press, 2004.

[31] S. Boyd and A. Mutapcic, “Stochastic Subgradient Methods.” Notes for
EE364, Stanford University, Winter 2006-07.

[32] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of
the IEEE International Conference on Neural Networks, Perth, Australia,
Nov/Dec. 1995.

[33] H. Chen, C. Tse, and J. Feng, “Minimizing effective energy consumption
in multi-cluster sensor networks for source extraction,” IEEE Transac-
tions on Wireless Communications, vol. 8, no. 3, pp. 1480–1489, Mar.
2009.

[34] J. Zhang, S. Chen, X. Mu, and L. Hanzo, “Evolutionary-algorithm-
assisted joint channel estimation and turbo multiuser detection/decoding
for OFDM/SDMA,” IEEE Transactions on Vehicular Technology,
vol. 63, no. 3, pp. 1204–1222, Mar. 2014.

[35] S. Efazati and P. Azmi, “Effective capacity maximization in multirelay
networks with a novel cross-layer transmission framework and power-
allocation scheme,” IEEE Transactions on Vehicular Technology, vol. 63,
no. 4, pp. 1691–1702, May 2014.

[36] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and
convergence in a multidimensional complex space,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 3, pp. 58–73, Feb. 2002.

[37] Q. Bai, “Analysis of particle swarm optimization algorithm,” Computer
and Information Science, vol. 3, no. 1, Feb. 2010.


