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Abstract—Prolonging the activation period, and maximizing
the throughput are important factors in designing an efficient
communications system, especially for energy harvesting-based
systems. In this work, the problem of maximizing the throughput
of point-to-point energy harvesting communications system, while
prolonging its lifetime is investigated. This work considers more
real communications system, where this system does not have a
priori knowledge about the environment. This system consists of
a transmitter and receiver. The transmitter is equipped with an
infinite buffer to store data, and energy harvesting capability
to harvest renewable energy and store it in a finite battery.
The problem of finding an efficient power allocation policy is
formulated as a reinforcement learning problem. Two different
exploration algorithms are used, which are the convergence-based
and the epsilon-greedy algorithms. The first algorithm uses the
action-value function convergence error and the exploration time
threshold to balance between exploration and exploitation. On
the other hand, the second algorithm tries to achieve balancing
through the exploration probability (i.e. epsilon). Simulation
results show that the convergence-based algorithm outperforms
the epsilon-greedy algorithm. Then, the effects of the parameters
of each algorithm are investigated.

Index Terms—Energy harvesting communications, Markov de-
cision process, Reinforcement learning, Exploration, Exploitation.

I. INTRODUCTION

Energy harvesting has been considered as an efficient so-

lution that provides more sustainable wireless communica-

tion systems. Energy harvesting communications have been

introduced to find communication nodes that are able to

recharge their batteries using natural sources, and then use

this energy for data transmission [1]. To find efficient energy

harvesting communications systems, it is needed to optimize

their parameters such as transmission power.

Based on the available knowledge about the environment,

there are two main frameworks used to optimize energy

harvesting systems [2]. The first one is the offline framework,

where communications systems have non-causal information

about the environment. The second framework is the online

approach. This framework is more realistic, where the system

performance is optimized based on the available statistical

information about the environment [3]. The Markov decision

process (MDP) is one of the techniques that are able to

formulate such decision-making problems [2].

In the previous two frameworks, a priori knowledge, either

deterministic or statistical, of the energy harvesting process is

required. However, in more practical scenarios, this knowledge

might be unavailable, or the energy harvesting process is non

stationary that makes it challenging to be tracked [2], [3].

To solve such challenges, the well-known learning approach

that is called reinforcement learning is used to optimize the

performance of such systems [3]. Reinforcement learning

is considered as an efficient technique, which enables an

autonomous agent to select optimal actions at different states

in an unknown environment [4].

In [3], [5], the problem of optimizing energy harvesting

communications systems are investigated. In this context, at

each time, the energy harvesting nodes have only current

local knowledge of the energy harvesting process. The authors

aim to find a power allocation policy that maximizes the

throughput. In these two works, the reinforcement learning

algorithm, which is known as the state action reward state

action (SARSA), is used to evaluate the taken actions. On

the other hand, the ǫ-greedy exploration algorithm is used to

balance between exploring and exploiting available actions.

In [2], a point-to-point communications system is investi-

gated. The transmitter is capable to harvest energy and store

it in rechargeable battery. The energy and data arrivals are

formulated as Markov processes. In this work, the authors

use Q-learning to find the optimal transmission policy when

the system does not have a priori information on the Markov

processes governing the system. They use ǫ-greedy exploration

algorithm to balance between exploration and exploitation.

Balancing between exploiting the current greedy policy,

and exploring new policies that may have better performance

than the current greedy policy is known as the exploration-

exploitation dilemma [6]. Balancing problem is one of the

main challenges facing reinforcement learning. Finding a

balancing criteria between exploration and exploitation con-

tributes in maximizing the cumulative rewards, which is the

goal of the reinforcement learning.

This balancing dilemma has been discussed intensively in

the literature [7]–[13]. Boltzmann and ǫ-greedy exploration

algorithms are considered as the most popular exploration

algorithms [14], where these two methods are intensively

used in the literature [7]–[12]. These two algorithms use

random action selection to evaluate new actions [14]. In ǫ-
greedy, the agent takes a new action from uniformly distributed

action set with probability ǫ, while selects the greedy action

with probability 1− ǫ [9]. Boltzmann or softmax exploration

algorithm is characterized by using Boltzmann distribution for

assigning selection probability to different actions [10].



In this work, a real point-to-point communications sys-

tem is studied. This communications system does not have

a priori knowledge about the environment. The goal is to

optimize the transmission power to prolong its battery life

and maximize its throughput. Reinforce learning is used to

solve this problem. SARSA learning algorithm is used to

evaluate different actions. The performance of proposed model

is investigated using two different exploration algorithms,

which are the convergence-based algorithm, and the ǫ-greedy

algorithm. The convergence-based algorithm tries to balance

between exploration and exploitation using two parameters,

which are the exploration time threshold τ , and the action-

value function convergence error ζ. In the first session of

this algorithm, the agent tries to evaluate available actions,

and then it exploits the best resulted policy in the remaining

time. On the other hand, the ǫ-greedy tries to find a balance

point between exploration and exploitation through the ex-

ploration probability ǫ. Then, We show the performance of

proposed model using different methods. It is noticed that

the convergence-based algorithm outperforms the ǫ-greedy

algorithm in our numerical experiments. Finally, the effects

of the parameters of each exploration algorithm are studied.

II. REINFORCEMENT LEARNING

In this section, the reinforcement learning framework is

explained, which will be used in later sections. Firstly,

Markov Decision Processes is presented. Secondly, State-

action-reward-state-action (SARSA) learning algorithm is de-

scribed. Finally, the term of exploration algorithms is illus-

trated.

A. Markov Decision Processes

In general, Markov decision process (MDP) is used to

describe an environment for reinforcement learning [15]. An

MDP can be described by the following elements:

1. A set of states S , which consists of discrete states S ,

{s1, s2, ..., sNs}, where Ns is the number of possible states.

The state at time slot i is denoted by si, where si ∈ S .

2. A set of discrete actions A, where A = {a1, a2, ..., aNa},
and Na is the number of available actions. Each state s has

a subset of actions As such that As ∈ A. At time slot i, the

executed action is denoted by ai, where ai ∈ A.

3. Transition probabilities between states, where p(s, a, s′)
is the transition probability from current state s to next state

s′, given that the action a is selected at the state s.

4. The immediate reward R(s, a, s), which is the obtained

reward when transiting from state s to state s′ such that the

action a is selected at state s.

5. A discount factor γ ∈ [0, 1]. It is used to weight

the immediate reward relative to future rewards. In general,

this factor has a value less than one to guarantee that the

cumulative rewards is finite given that the immediate reward

is bounded [16].

With the MDP defined, there is an important definition

that should be visited, which is the policy. The deterministic

policy π(s) can be defined as mapping the visited states to

actions to be taken at these states. In reinforcement learning,

the goal is to find the optimal policy π∗, which is mapping the

visited states to the optimal actions that maximize the expected

cumulative reward over an infinite horizon [15]. The expected

sum reward is given by:

E

[

∞
∑

i=1

γiR(si, ai, si+1)|ai = π(si)

]

(1)

For a state s, let us define two important functions, which

are the state-value function vπ , and the action-value function

qπ . The state-value function is the expected reward given that

the agent follows the policy π starting from state s [6]

vπ(s) = Eπ

[

∞
∑

k=0

γkRj+k+1

∣

∣

∣

∣

∣

s

]

(2)

The action-value function is the expected reward starting

from state s, selecting action a and following policy π there-

after [6]:

qπ(s, a) = Eπ

[

∞
∑
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γkRj+k+1

∣
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∣

∣

s, a

]

(3)

The optimal state-value function for state s, and the optimal

action-value function for the state-action pair (s, a) are given,

respectively, by:

vπ∗(s) = max
π

vπ(s) ∀s ∈ S (4)

qπ∗(s, a) = max
π

qπ(s, a) ∀a ∈ As, ∀s ∈ S (5)

From (4), (5)

vπ∗(s) = max
a

qπ∗(s, a) ∀s ∈ S (6)

A main property for action-value function is that it can

be written recursively in the form that is known as the

Bellman equation [6]. The Bellman equation for the action-

value function is given by:

qπ(s, a) =
∑

s′∈S

P (s, a, s′)
[

R(s, a, s′) + γvπ(s
′)
]

(7)

B. State-action-reward-state-action (SARSA)

In this work, SARSA learning is used to estimate the action-

value function for different state-action pairs. SARSA is an on-

policy updating strategy, which attempts to evaluate the policy

that is used to make decisions. On the other hand, in off-policy

methods, the value function is estimated for the policy that

may be unrelated to the policy used for evaluation [6].

Updating in SARSA works as follows. Starting from the

time slot i, let the agent be at state s (i.e. si = s), and the

selected action according to the current policy π be ai = a.

Based on the selected action, it moves to the next state si+1

(i.e. si+1 = s′) and receives a reward R(s, a, s). According to

the current policy π, the action ai+1 = a′ is selected for the

state si+1. At this point, the action-value function qiπ(s, a) is



updated using the gained experience. The updating equation

in SARSA is given by [3]

qi+1
π (s, a)←qiπ(s, a) + α[R(s, a, s)+ (8)

qi+1
π (s′, a′)− qiπ(s, a)]

where 0 < α < 1 refers to the learning rate. This factor

determines the amount of contribution of the newly acquired

information for updating the the action-value function. If α =
0, then the agent will not learn any thing from the acquired

information. On the other hand, if α = 1, the agent will only

consider the newly acquired information [17].

III. THE EXPLORATION ALGORITHMS

The exploration algorithms play an essential role in rein-

forcement learning. Their role appears in finding a balance

between exploration and exploitation to maximize the cumu-

lative rewards. The exploitation mode can be defined as using

the current available knowledge to select the best policy to be

used. On the other hand, exploration is known as investigating

new policies in the hope of getting policy that is better than

the current best one [6].

A. The ǫ-greedy algorithm

This algorithm [9] uses the exploration probability ǫ to find

a balancing point between exploration and exploitation modes.

This parameter changes the mode based on its value at each

time slot.

In this algorithm, the current best action is selected with

probability 1 − ǫ. On the other hand, a random non-greedy

action is selected with probability ǫ. The ǫ can be either

fixed [6], or with adaptive value during the learning time

[11]. In the case of adaptive ǫ-greedy, ǫ takes values that

changes with time. For example, in [11], ǫ is set to 1/i,
where i the time slot number. In this case, at the beginning of

the session, the exploration probability ǫ has large values to

increase the probability of exploration. As the time increases,

the probability of exploration decreases and the exploitation

probability increases. This is to increase the opportunity of

exploitation at the end of the session, where most of the

policies have been explored and it is preferred to exploit the

best current policy.

B. The convergence-based algorithm

This algorithm [13] uses two parameters to balance between

exploration and exploitation. The first parameter is the action-

value function convergence error ζ. This parameter measures

the error in action-value function when the same action at a

state is exploited for a number of trials. The second parameter

is the exploration time threshold τ . This parameter controls

the exploration process, where the agent can explore different

actions for a maximum time of τ , after that, the agent is forced

to exploit the best policy during the remaining time.

In this algorithm, random actions are assigned to all avail-

able states. At each state, the taken action is exploited for

a time till its action-value function converges to a value

determined by ζ. Once the action-value function for a state-

action pair converges with an error ζ, a new random action is

assigned from uniformly distributed unexplored actions to that

state. This mechanism continues for all states, and it stops in

two cases.

The first one occurs if all available actions for a states are

evaluated before reaching τ . At this time, the action with

the best value is exploited in the future. The second case

occurs when the available time reaches τ . Then, the agent

suspends exploration, and starts exploiting the best available

policy regardless of exploring all available actions or not.

One of the main advantages of the convergence-based

algorithm is that once an action for a state is explored, and

the action-value function has converged to unfavorable value,

this action will not be used in the future. This is an important

property that contributes in discarding actions that may reduce

the cumulative rewards in the future. One more characteristic is

that it assigns dynamic learning time for different state-action

pairs.

IV. SYSTEM MODEL

In this section, a point-to-point communications system con-

sisting of a source (SR) and a destination (DE) is considered.

As shown in Fig. 2, Both SR and DE are equipped with infinite

data buffers to store data. SR is able to harvest renewable

energy and store it in a finite battery. A time slotted system

with time slots of equal length is considered. Each time slot

consists of two equal sub-slots. The first sub-slot is used to

transmit data from SR to DE. On the other hand, SR harvests

energy in the second one. Fig. 1 illustrates the slotted time

system model.

Bi−1 Bi

Tc Tc

P
T

i
Ei

Transmission duration Harvesting duration

Fig. 1: Slotted system model.

In this context, the harvested, stored, and transmitted energy

occurs in amounts that are an integer multiple of a fundamental

unit. The battery has a limited storage capacity of Bmax. Let

Bi denote the battery charge level of SR at the beginning of

time slot i, where Bi ∈ B , {b1, b2, ..., bNB
}, bNB

= Bmax,

and NB is the number of elements in B.

During time slot i, the amount of harvested energy is

denoted by Ei, where Ei ∈ E , {e1, e2, ..., eNE
}, and

NE represents the number of elements in E . The transition

probability of harvested energy from state ej to state ek during

one time slot is given by pE(ej , ek). The channel state during

time slot i is given by Hi, where Hi ∈ H , {h1, h2, ..., hNH
},

and NH denotes the number of elements in H. The channel

transition probability from state hj to state hk during one time

slot is given by pH(hj , hk).
Let the transmitted power during the time slot i be denoted

by PT
i , where PT

i ∈ P , {pT1 , p
T
2 , ..., p

T
Np
}, and Np is the
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Fig. 2: Point-to-point communication system with an energy

harvesting source.

number of elements in P . Let Tc be the transmission duration,

which has a fixed value of 1 second during all time slots.

For this model, each state of the system sj consists of

three elements, which are the battery level of SR, amount of

harvested energy, and channel gain (i.e. sj = (bj , ej , hj)).
In this context, the states satisfies Markov property, where the

future state depends only on the current state, and independent

of the system states in previous time slots [6].

Based on the current battery level, SR selects the action (i.e.

transmission power level) that maximizes the cumulative sum

rates. The immediate reward for this model is the achievable

rate during time slot i, which is given by

Ri = log2

(

1 +
|Hi|

2PT
i

σ2
i

)

(9)

where σ2
i is the noise variance.

In this model, energy consumption is considered only due

to data transmission, and it does not take into account any

other energy consumption, such as processing, circuitry, etc.

V. SIMULATION RESULTS

In this section, the performance for different methods is

evaluated. Then, the effects of the parameters are investigated

for the convergence-based and the ǫ-greedy exploration algo-

rithms.

In the numerical experiments, it is assumed that each time

slot consists of two equal sub-slots, each of them is with 1 sec-

ond duration. during the first sub-slot, the transmitter transmits

its signal to the receiver, while during the second sub-slot, the

transmitter harvests energy. The available bandwidth BW is 1
MHz, and the noise spectral density is N0 = 10−16 W/Hz.

The discount factor γ is set to 0.99. The learning rate α is set

to 0.1. All results are averaged over 1000 runs.

In these experiments, SR is equipped with solar panels

with area of 100 cm2 and 10% harvesting efficiency, where

an outdoor solar panel can get the benefit of 10 mW/cm2

solar irradiance under standard environments with harvest-

ing efficiency between 5% and 30%, which depends on the

used material in the panel [18]. It is also assumed that the

fundamental energy unit for the net harvested, stored, and

transmitted is 20 mJ.

In all simulations, it is assumed that the set of harvested

energy is E = {0, 1} corresponding to fundamental energy

unit with transition probabilities pE(ej , ej) = 0.8. Let the

set of channel gains be H = {0.022361, 6.7082} × 10−7

with transition probabilities pH(hj , hj) = 0.9. The equipped

battery has a maximum capacity 2 units.

A. Comparison

In this part, we evaluate the performance of the ǫ-greedy and

the convergence based algorithms, where they are compared to

the optimal performance scenario. In the optimal performance

scenario the optimal policy is used from the first time slot. This

presents the upper-bound performance. This scenario needs a

priori knowledge of the environment, which is not available to

the other two algorithms. For the optimal scenario, the value

iteration algorithm (VI) [19] is used to find the optimal policy

before the simulation.

In this experiment, adaptive ǫ-greedy exploration algorithm

is used [3]. In this algorithm, the exploration probability ǫ =
1/i, where i is the time slot number. For the convergence-

based algorithm, ε is set to 0.1, and the Tthr is set to 0.05.
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Fig. 3: Sum rates versus the total available time for different

approaches

Fig. 3 shows the sum rates versus the available time. It can

be noticed that the sum rates of all approaches increase with

increasing the available time in the beginning of the session.

After that, all of them take near-constant patterns. This can

be explained by the effect of the discount factor, which has

a value decreases with time. This factor diminishes the effect

of the future rewards on the cumulative rewards after a time,

which causes the near constant constant performance as the

time increases.

As shown, the upper-bound of the sum rates can be achieved

by exploiting the optimal policy from the first time slot.

It can also be noticed that the convergence-based algorithm

outperforms the adaptive ǫ-greedy. This returns to the reason

that the convergence-based algorithm starts by evaluating most

of the actions in an early stage of the session. This enables the

SR to exploit the best resulted policy based on the convergent

values in an early time, where the time effect on the discount

factor is small, and the exploited policy at these times affect



on the sum rates. On the other hand, the ǫ-greedy explores

the actions randomly, and exploits the greedy actions without

any criterion that ensures exploiting one of the best available

policies in early time. This is reflected on degrading the system

performance.

B. Effect of the τ - Convergence-based algorithm

This experiment investigates the effect of the exploration

time threshold τ on the performance of the convergence-based

algorithm. In this experiment, ζ is set to 0.1.
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Fig. 4: Sum rates versus the total available time for different

values of the τ

Fig. 4 shows the sum rates versus the total available time.

The sum rates for different values of τ increase as the

available time increases in the beginning. Then, they take

a near-constant shape due to the discount factor effect. As

shown in this figure, the sum rates increases as τ increases.

As mentioned previously, the SR is forced to exploit the

current greedy policy once reaching this threshold regardless

of evaluating all available policies. So, as the value of this

threshold increases, the opportunity of getting the optimal or

near optimal policy increases, which contributes in increasing

the sum rates that can be achieved.

C. Effect of the ζ - Convergence-based algorithm

In this experiment, the effect of ζ on the performance of

the convergence-based algorithm is studied. The value of τ is

set to 0.3.

Fig. 5 shows the influence of the available time on the sum

rates at different values of ζ. As shown, for all value of ζ,

increasing the available time increases the sum rates up to a

point, and then it takes a near-constant pattern due the time

effect on the discount factor. This figure also shows that the

best performance is achieved when ζ has a value of 0.5, and

the performance decreases as the convergence error decreases.

This returns to the reason that decreasing the convergence error

increases the required time to achieve that error. This slows

down the exploration process without achieving significant

difference after a certain value of ζ, and then, delays the
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Fig. 5: Sum rates versus the total available time for different

values of the ζ

exploitation of the best evaluated policy, which is reflected

on the sum rates by reduction.

D. Effect of the ǫ - ǫ-greedy algorithm

This part discusses the effect of the ǫ on the system

performance for the ǫ-greedy algorithm.
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Fig. 6: Sum rates versus the total available time for different

values of the ǫ

Fig. 6 compares the adaptive ǫ-greedy algorithm with three

scenarios (ǫ = 1/i, ǫ = 1/2i, and ǫ = 1/3i), where i is

the time slot number. This figure shows the increase in sum

rates with experience (i.e. with increasing the total available

time) in the beginning for all scenarios. And then, they take

a near-constant shape due to the effect of the time on the

discount factor. It can be noticed that the ǫ = 1/i scenario

outperforms the other two scenarios, since it explores more

in the beginning, which gives this scenario more opportunity

to find the optimal policy earlier. This is also correct when

comparing the other two scenarios. In general, it can be

concluded that increasing the ǫ increases the sum rates, since



it increases the probability of finding the optimal policy, and

exploiting it earlier.

VI. CONCLUSIONS

In this paper, a more realistic energy harvesting communica-

tion system was investigated. This system does not have a prior

knowledge about the environment. The source is equipped with

an infinite data buffer to carry data packets and finite battery

to store the harvested energy. We formulated the problem of

optimizing transmission power as a reinforcement learning

problem. Two different exploration algorithms were used,

which are the convergence-based and ǫ-greedy algorithms. It

was noticed that the convergence-based algorithm outperforms

the other one. Finally, we discussed the effects of the pa-

rameters of each algorithm on the system performance. As

a future work, these two algorithms can be compared with

other algorithms and this work can be extended to consider

the case of having infinite number of states.
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