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Abstract—In this paper, we investigate the problem of routing
for supporting many-to-many communication and optimizing
the Quality of Service (QoS) for the Secondary Users (SUs)
in Cognitive Radio Networks (CRN). The goal is to build the
routing tree for many-to-many communication that optimizes the
delay, rate and the number of transmission links. We model the
network using the Multi-Layer Hyper Graph, and we model the
optimization problem as an Integer Linear Program (ILP). We
also study the problem of many-to-many communication schedul-
ing in CRNs. We employ a modified version of an Ant Colony
optimization algorithm (MOACS) to solve our problem of finding
the routing tree that optimizes our objectives. Our simulation
results show that the performance of MOACS outperforms the
Shortest-Path Tree (SPT) in all our objectives.

Index Terms—Many-to-many communication, group commu-
nication, cognitive radio network, scheduling, multi-objective
optimization, ant colony system.

I. INTRODUCTION

Cognitive Radio (CR) is a promising technology, which
enables dynamic sharing of the spectrum. In Cognitive Radio
Networks (CRNs), Primary users (PUs) are licensed to use a
certain part of the spectrum with a highest priority. On the
other hand, Secondary Users (SUs) can access the licensed
spectrum opportunistically when a PU is idle. By employing
CR technology, spectrum scarcity problem in wireless net-
works can be alleviated by allowing the SUs to share unused
parts of the spectrum.

With increasing demand of wireless networks, many-to-
many communication arises as an essential service for many
nowadays’ applications. This communication paradigm has a
wide range of applications, including video/audio conferenc-
ing, distributed gaming and cooperative processing. In many-
to-many communication, the session consists of a group of
users, where each user sends its messages to all other users in
the group. To support a reliable many-to-many communication
session, users’ traffic is routed under certain minimum QoS
requirements.

Provisioning a minimum cost many-to-many communica-
tion session is a hard problem, since finding the Steiner
minimum tree [1] is NP-Hard problem [2]. Considering certain
QoS requirements makes the problem harder. On the other
hand, several challenges are also imposed as a result of the
nature of CRNs. For example, channels availability for SUs in
CRNs can be heterogeneous, which means that two SUs may
have no common channel. Moreover, the SU may need to
switch between different channels to receive and/or forward

the traffic, and that imposes more delay which is called
switching delay.

In this paper, we study multi-objective many-to-many com-
munication optimization in CRNs. Given a many-to-many
communication group, we establish a routing tree from each
user to all other users in the group. We consider certain QoS
requirements while provisioning the many-to-many communi-
cation tree, including delay minimization, data rate maximiza-
tion and minimizing the number of used links in the network.
The rest of paper is organized as follows. We introduce
the system model in Section II. In Section III, we describe
the multi-objective optimization problem for many-to-many
communication in CRNs. Scheduling of SUs’ transmission
is described in Section IV, and we show in Section V how
to solve the multi-objective optimization for many-to-many
communication using Ant Colony Optimization. Finally, we
discuss the simulation results in Section VI and conclude the
paper in Section VII.

II. SYSTEM MODEL

We consider a multi-hop cognitive radio network with n
Secondary Users (SUs). Each SU is equipped with a single
radio and can access a single channel at a time either for
transmission or reception. Channels availabilities for SUs are
heterogeneous, i.e., the set of available channel for each user
may vary depending on the location of the SU and the channel
condition in its vicinity. SUs in the network use TV white
space spectrum, where the spectrum activities are quasistatic.

The network is modeled using the Multilayer Hyper-Graph
model introduced in [3]. The multilayer Hyper-Graph consists
of a number of layers which represent the communication
channels. Each layer (channel) has a set of Hyper-Edges (HE),
and each HE consists of a set of SUs. Let t = {t1, · · · , tmax}
be a set of transmission ranges, where tmax is the maximum
transmission range. The SU can transmit to the other SUs with
rate ri using a transmission range ti, where t1 ≤ ti ≤ tmax.
For each transmission range ti, SUs using the same channel
are grouped in one HE if all of them can transmit/receive
to/from each other and within one hop. Therefore, the distance
between any two SUs (say SUj and SUk) located within one
HE is no more than the transmission range within the HE.

Given the transmission range, ti, within an HE, the upper
bound on the transmission rate within the HE can be calculated
using Shannon–Hartley’s formula, which is given by

Ci = W log2(1 +
Pg

tεiN0W
) (1)



where Ci is the channel capacity when the transmission range
equals to ti, W is the channel bandwidth, P is the transmission
power, g is the antenna gain, N0 is the noise spectral density
and ε is the path loss. The data rate of an HE depends on the
transmission range of the SUs forming that HE. Let HE q be
an HE where the transmission range of its corresponding SUs
is tk. The cost of the HE q is represented by transmission time
of a packet within HE q, which is given by Packet size

Ck
, where

Ck is the data rate of HE q.

A {1, 2}
B {1, 2, 3}

E {1, 3}

C {1, 2, 3}

D {2, 3}

Fig. 1. SUs’ locations and available channels.

Figure 1 shows a group of SUs and their channel as-
signments. In Figure 2, all SUs with a common channel
are assigned to a layer, and the SUs located within the
transmission range of each other are assigned to an HE. The
rate of transmission inside HE’s depends on the transmission
range of the SU, where a shorter transmission range leads to
a higher transmission rate. The transmission range of the SUs
in HE1 and HE4 is t1, in HE3 and HE6 is t2 and in HE2 and
HE5 is t3. The rates corresponding to t1, t2 and t3 are r3, r2
and r1 respectively, where t1 < t2 < t3 and r3 < r2 < r1.

An SU may have more than one channel available as shown
in Figure 2. The vertical dashed line represents switching delay
when an SU receives a packet over a certain channel and
forwards it over another channel. The switching delay between
band i (Wi) and band j (Wj) is given by [4]:

k|Wi −Wj | (2)

where k is a technology dependent parameter, and we assume
that k = 120µs

75MHz [5].
For each channel i, we assume that one Primary User (PU)

can be active at a time and with a probability PPUi , where
PUi is the PU licensed to channel i. Once PUi becomes active
on channel i, all SUs located within its transmission range
will be blocked from accessing channel i. All HE’s associated
with these SUs are considered inactive when the PU becomes
active.

Assume that there is a Many-to-Many communication re-
quest represented by SU A, SU B and SU C. Hence, it is
required to route the traffic initiated by each of these SUs
to all other SUs. The dummy nodes with t and r subscripts
in Figure 2 represent sources and destinations of the Many-
to-Many communication request, respectively. These dummy
nodes are used to make source and destination SUs tune
their radios to the channels that optimize our objective of
minimizing the delay and the number of links and maximizing
the data rate. The dummy links, which connect the dummy
nodes to source/destination SUs, are virtual. Hence, we do
not consider them in calculating the delay, number of links
and the date rate.

Packets routing in cognitive radio networks can be over a
single channel or multiple channels as needed. It is shown in
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Fig. 2. Routing in Multilayers Hyper-Graph.

Figure 2 that all source SUs in the Many-to-Many communi-
cation session (A, B and C) belong to HE 2. Therefore, SU
A can reach all other SUs in the session over channel 1 and
within one hop. The dummy node, At, indicates that SU A
needs to tune its radio over channel 1 for transmission, where
the dummy nodes Br and Cr indicate that they tune their
radios to channel 1 to receive the messages from SU A. SU
A has the choice of sending its messages with a higher date
rate using channel 2. However, it will need one hop to reach
SU B and two hops to reach SU C through SU D.

In contrast to SU A, SU B can reach all destinations with a
higher data rate, but with more hops. SU B can reach the other
SUs in the session over channel 2 and with one hop to SU
A (through HE 3) and two hops to SU C (through HE 3 and
HE 4). SU C sends its messages over channel 3 through HE
5, where SU B can rceive the messages over channel 3 and
within one hop. However, SU A cannot operate on channel 3,
and hence, SU E receives the traffic from SU C over channel
3 and switches to channel 1 to forward the traffic to SU A in
HE 1. Spectrum switching performed by SU E to route SU
C’s traffic causes switching delay, which is represented by the
dashed line between SU E on channel 1 and channel 3.

To construct the Many-to-Many communication subgraph,
we convert the Multilayer Hyper-Graph to the mapped graph
[3] as shown in Figure 3. Each HE is converted to a super-
node (SN), which represents all SUs associated with an HE.
An SN is equivalent to the HE, and we use both terms in this
paper interchangeably. If there is an SU belonging to multiple
HE’s, then there is an overlap between these HE’s. The overlap
between two HE’s means that an overlapping SU can forward
the messages between the overlapping HE’s. Therefore, any
two overlapping HE’s are represented by two super-nodes with
a link connecting them as shown in Figure 3.

Let V and E be the sets of all SNs and all edges in
the mapped graph respectively. Then, the mapped graph of
the Multilayer Hyper-Graph is represented by G(V,E). The
solid lines in Figure 3 represent that both HEs at the end of
the line belong to one layer, and hence, no switching delay
is considered. However, if the overlapping HEs belong to
different layers, then the super-nodes representing them are



connected by a dashed line to reflect that a switching delay is
considered in delay calculation.
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III. MULTI-OBJECTIVE OPTIMIZATION PROBLEM FOR
MANY-TO-MANY COMMUNICATION IN CRN

The many-to-many session request is represented by a set of
SUs, S, where each SU ∈ S sends/receives messages to/from
all other SUs in the set. Establishing a minimum cost tree from
an SU to all other SUs in the many-to-many session group is
equivalent to finding the Steiner minimum tree [1], which is
an NP-Hard problem [2]. We formulate our problem as an
Integer Linear Program (ILP) as described in the following.

Let St be a set of transmitting dummy nodes and Sr be a
set of receiving dummy nodes corresponding to the SUs in S.
For an SU p, the transmitting and receiving dummy nodes
corresponding to p are denoted by pt and pr respectively.
Let M be a set of binary variables Mptqr

ij , ∀pt ∈ St,∀qr ∈
Sr\pr,∀i, j ∈ V , where Mptqr

ij is defined as

Mptqr
ij =

 1, if there is a path from pt to qr using
link (i, j).

0, otherwise.
(3)

Our objectives are maximizing the date rate and minimizing
the delay and the number of links that interconnect the
SNs for a given Many-to-Many session request. Let YL(M),
YD(M), and YR(M) be the number of links, delay, and data
rate of session S respectively. The number of links used
in the mapped Multilayer Hyper-Graph for session S is the
summation of all binary numbers in M . Hence, YL(M) is
given by

YL(M) =
∑

∀pt∈St,∀qr∈Sr\pr

∑
∀(i,j)∈V

Mptqr
ij (4)

The delay of the Many-to-Many session is the longest delay
among all paths in the Many-to-Many session, which is given
by

YD(M) = Max(
∑

∀(i,j)∈V

Mptqr
ij dij),

∀pt ∈ St,∀qr ∈ Sr\pr
(5)

where dij is the delay between node i and node j. dij includes
transmission and switching delay between i and j.

The rate of the transmission between node i and node j,
rij , is the rate of the node with the minimum rate. Hence,
rij = Min(ri, rj), where ri and rj are the rates of nodes i and
j respectively. To find the rate of the Many-to-Many session
S, we need to find the rate of the link with the minimum rate,
which is given by

YR(M) = Min(Mptqr
ij rij + (1−Mptqr

ij )K),

∀pt ∈ St,∀qr ∈ Sr\pr,∀(i, j) ∈ V.
(6)

where K is a very large number.
Let
−→
Y (M) be the objective function vector, which is given

by
−→
Y (M) = (YL(M), YD(M), YR(M)). (7)

Hence, the multi-objective optimization problem can be for-
mulated as follows:

Minimize :
M

−→
Y mm(M) = (YL(M), YD(M),−YR(M)) (8)

Subject to:

∑
∀(i,x)∈V

Mptqr
ix −

∑
∀(x,j)∈V

Mptqr
xj =

 1, ifx = qr
−1, ifx = pt
0, otherwise

∀pt ∈ St,∀qr ∈ Sr\pr
(9)

∑
∀pt∈St,∀qr∈Sr\pr

Mptqr
ij ≤ 1 ∀i, j ∈ V (10)

Mptqr
ij +Mptqr

ji ≤ 1 ∀pt ∈ St,∀qr ∈ Sr\pr,∀i, j ∈ V (11)

YD(M) ≤ dmax (12)

rmin ≤ YR(M) ∀pt ∈ St,∀qr ∈ Sr\pr (13)

YL(M), YD(M) > 0 ∀pt ∈ St,∀qr ∈ Sr\pr (14)

Mptqr
ij ∈ {0, 1} ∀pt ∈ St,∀qr ∈ Sr\pr,∀i, j ∈ V (15)

In this optimization problem, (9) is the routing constraint
for the flow in each link in the Many-to-Many session, (10)
ensures that each link between any couple of nodes is used
for routing a flow destined for only one path from a source to
a destination and (11) ensures that the transmission between
any couple of nodes is in one direction. The constraint in (12)
is an upper bound on YD(M), where dmax is the maximum
allowable delay. The constraints in (13-14) are lower bounds
on YL(M), YD(M) and YR(M), where rmin is the required
bit rate for the path between node pt and node qr, and (15)
indicates that Mptqr

ij is a binary number.
The optimization problem in (8-15) is an Integer Liner

Program (ILP) problem. The decision variables of this problem
are Mptqr

ij , where the parameters are K, dij , dmax, rmin, and
ri, ∀pt ∈ St,∀qr ∈ Sr\pr,∀i, j ∈ V .



TABLE I: Notations

Notation Definition

SNi Super Node i.
s(SNi) Source SU of SNi.
d(SNi) A set of destination SUs of SNi.
Ti Many-to-Many subgraph initiated by SUi.

IV. SCHEDULING OF SNS’ TRANSMISSION

In wireless networks, simultaneous transmissions may cause
interference as a result of sharing the wireless medium. Hence,
random access MAC protocols or transmission scheduling
need to be utilized in order to avoid transmission collision.
In this paper, we schedule the transmissions of the SNs over a
cycle T, where T is slotted into several synchronized slots. An
SN’s transmission may conflict with another SN’s transmission
due to reasons other than interference. For example, two
overlapping SNs may conflict with each other due to the
assumption that each SU has a single radio and can not
transmit and receive at the same time.

In this section, the possible conflicts between SNs (or
Hyperedges) is studied. In each SN, one SU is responsible
for transmission to all other SUs belonging to that SN. This
transmission must be scheduled in such a way that no conflict
happens between any two or more transmitting SUs. A conflict
between any two SNs means that they cannot be scheduled for
transmission in the same time slot.

The reasons for conflict between SNs can be summarized
as follows:

1) Let SUB transmit to SUD over channel h. According
to the protocol interference model in [6], SUD can
successfully receive transmissions from SUB if

|LSUz − LSUD| ≥ (1 + δ)|LSUB − LSUD| (16)

where SUz is any simultaneously transmitting SU over
the same channel other than SUB, and δ is a positive
parameter. Let SNi and SNj belong to one layer and
s(SNk) ∈ d(SNj). If the source of SNk, s(SNk), is
located within the interference range of SNi’s source,
s(SNi), then there is a conflict between SNi and SNj .
In Figure 4 (a), SUD is located within the interference
range of SUA, and SUD ∈ d(SN2). Therefore, there
is a conflict between SN1 (HE 1) and SN2 (HE 2).

2) If s(SNj) ∈ d(SNi), and both SNi and SNj are
destined for routing the traffic initiated by one Many-
to-Many session’s source, then SNi conflicts with SNj .
If s(SNi) = s(SNj), then there is no conflict between
SNj and SNi when they are destined for routing the
traffic initiated by one SU. Figure 4 (b) shows that the
source of SN2, SUB, is also a destination for SU A
in SN1. Hence, SN1 and SN2 cannot be scheduled for
transmission at the same time slot. If SN2 operates on
different channel as in Figure 4 (c), the conflict between
SN1 and SN2 is still valid since the above condition is
met, and each node uses a single transceiver.

3) If s(SNi) = s(SNj), and SNi and SNj are destined for
routing the traffic initiated by different Many-to-Many

session’s sources, then SNi conflicts with SNj . Figure 4
(d) shows that there is a conflict between SN1 and SN3

since s(SN1) = s(SN3) and both SN1 and SN3 are
destined for different routing trees.

4) If SNi and SNj are on different layers, and s(SNi) =
s(SNj), then there is a conflict in transmission schedule
between SNi and SNj . For example, SUA is the source
for SN1 and SN3 as shown in Figure 4 (e). SUA cannot
transmit on different channels at the same time while
having only a single radio. Hence, SN1 and SN3 must
be scheduled for transmission in different time slots.

5) Let SNi and SNk belong to one layer, SNj and
SNm belong to another layer, s(SNk) ∈ d(SNi) and
s(SNm) ∈ d(SNj). if s(SNk) = s(SNm), then there is
a conflict between s(SNi) and s(SNj). In Figure 4 (f),
SN1 conflicts with SN3 because the condition above is
satisfied.
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Fig. 4. Conflicts Between SNs.

After finding all pairs of conflicting SNs, we construct the
conflict graph GC of the original graph G(V,E). By using
the Weighted coloring Algorithm in [7] while considering
the weighted SNs instead of weighted links, we can find the
schedule of the transmission for each SN. Therefore, all non-
conflicting SNs can transmit in one time slot. The SN with a
lower data rate requires more time slots than the SN with a
higher data rate. To calculate the weight of each SN, the SN
with the highest rate is assigned weight 1 and all other SNs
are weighted by dMax Rate

SN’s Ratee [8].

V. SOLVING THE MULTI-OBJECTIVE OPTIMIZATION FOR
MANY-TO-MANY COMMUNICATION USING ANT COLONY

OPTIMIZATION

In Section III, we modeled the optimization problem as an
ILP since the problem is NP-Hard [12]. To obtain a solution
of the problem in polynomial time, we use the Ant colony
optimization (ACO) [9] meta-heuristic approach to solve our
problem. ACO was inspired by the behavior of ants when



they search for a food source. The ants deposit pheromone
along their path from their nest to the target source. Since
the pheromone evaporates over time, the shortest path to
the source will have the strongest pheromone concentration.
Therefore, future ants tend to select shorter paths.

In this paper, we use ACO to solve the multiobjective
optimization problem for Many-to-Many communication in
CRNs. Given a set S, which represents a many-to-many
session, each SUl ∈ S establishes a subtree Tl that reaches all
other SUm ∈ S\SUl. The union of all subtrees forms a many-
to-many communication subgraph Tm2m, and the optimization
is performed over this union. Each SUl ∈ S is associated
with a pheromone matrix τ l such that each matrix is updated
independently. τ l = ∪ τ lij , ∀ (i, j) ∈ E, where τ lij is
the pheromone intensity on the link between SNi and SNj
observed by the ants during the establishment of subtree Tl.
For each subtree Tl ∈ Tm2m, the probability that ant k in SNi
chooses to move to SNj is given by [9]

P kij(l) =


[τ lij ]

α ηβij∑
∀q∈Zk

[τ liq ]
α ηβiq

if j ∈ Zk,

0 Otherwise.
(17)

where Zk is a set of all neighboring nodes unvisited by ant
k, and α and β are parameters used to weight τ lij and ηij
respectively. ηij is the visibility to SNj when the ant is on
SNi, which is given by

ηij =
1

T jx + T ijsw
(18)

where T jx is the transmission time inside supernode j, and T ijsw
is the switching time between the channels corresponding to
supernode i and supernode j. For an ant in supernode i, a
higher visibility to supernode j means lower delay for the ant
to transit to supernode j.

We use a modified version of the Multi-objective Ant
Colony Optimization Algorithms (MOACS) in [10] and [8]
to find the Pareto optimal set as described in Algorithm 1.
A solution is called Pareto optimal if it is not dominated
by any other solutions found by MOACS. The input of the
algorithm is a mapped Hyper-Graph and a Many-to-Many
session request S. The session request S is a set of SUs
denoted by {X1, X2, . . . , X|S|}, where each SU sends its
messages to all other SUs in S. The output of Algorithm 1 are
many-to-many subgraph, where each many-to-many subgraph
Tm2m provides a Pareto optimal solution in terms of delay,
rate and number of links.

Algorithm 1 starts by initializing Tm2m, Ysol and τ lmn,
where Ysol is a set of all Tm2m subgraphs and τ0 is the initial
pheromone value. In lines 3-7, |S| sub-trees are established
from each source to all other sources. In lines 8-9, the
transmissions of all SNs in Tm2m are scheduled, and the
number of links, delay and rate are calculated. The Algorithm
in lines 10-11 dismisses the solution if it is not feasible. In
lines 12-13, Ysol is updated to remove any solution dominated
by Tm2m. If the recently generated Tm2m is not dominated
by any other Many-to-Many tree, the pheromone matrices
are reinitialized as shown in lines 14-15. This reinitialization
helps in finding another solution in the following iterations,

Algorithm 1: MOACS
Input: Mapped Hyper-Graph G(V,E) and a

Many-to-Many session S = {X1, X2, . . . , X|S|}.
Output: Optimal Many-to-Many trees Ysol.

1 Initialize: Tm2m = φ, Ysol = φ, τ lmn = τ0,∀ l s.t. SUl ∈
S, ∀(m,n) ∈ E.

2 while (Iteration <Max Iteration) do
3 G

′
(V,E) = G(V,E), Tm2m = φ.

4 for (k ← 1 to |S|) do
5 Build kth subtree, Tk, from Xkt to every node

Xjr s.t. Xjr ∈{Sr \Xkr} using BuildTree(S,
Xk).

6 Tm2m = Tm2m ∪ Tk .
7 Update G

′
(V,E).

8 Find the conflicting SN’s in Tm2m and schedule the
transmission accordingly.

9 Calculate the number of links, delay and rate of
Tm2m.

10 if the delay > dmax or the rate < rmin then
11 Start a new iteration.

12 if ( Tm2m is not dominated by any T ∈Ysol) then
13 Ysol = Ysol ∪ Tm2m − {Tr|Tr ≺ Tm2m}, ∀Yr ∈

Ysol.

14 if (Ysol was modified) then
15 τ lmn = τ0,∀ l s.t. SUl ∈ S, ∀(m,n) ∈ E
16 else
17 Repeat ∀Tl ∈ Ysol,∀ l s.t. SUl ∈ S, ∀(m,n) ∈ E,

τ lmn = (1− ρ)τ lmn + ρ∆l

18 Iteration++

which may not be dominated by any tree in Ysol. If Tm2m is
dominated, then τ lmn is updated as shown in lines 16-17 to
exploit all already found solutions to find a better solution in
the next iterations, where ρ is the pheromone evaporation rate,
and ∆l is given by

∆l =
1

w1Delayl + w2NumOfLinksl
+ w3Ratel. (19)

where w1, w2 and w3 are weighting factors, and Delayl,
NumOfLinksl, and Ratel are the delay the number of links
and the rate of Tl respectively. The while loop continues until
the maximum number of iterations is reached.

VI. SIMULATION RESULTS

In this section, we present simulation results for multi-
objective optimization for many-to-many communication in
a CRN. We consider a CRN with 6 channels and 50 SUs
distributed over 300 m by 300 m area. Transmission range of
each SU can be 120, 130, 140, 150, 160 or 170 m. The SUs
located within the transmission range of each other form an
SN , where the rate of the SN is calculated using equation 1.
Table II shows the parameters used in the simulation.

Using Algorithm 1, we find the optimal Pareto set. Then,
we compare the performance of the multi-ojective optimiza-
tion algorithm given by Algorithm 1 with a single-objective
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Fig. 5. The performance of the Algorithm 1 and SPT when: (a): group size
is 4, (b): group size is 5, (c) group size is 6.

TABLE II: Simulation Parameters

Parameter Value

W 6 MHz
P 0.1 W
g 1
ε 2
N0 W/Hz
δ 0.1

Parameter Value

dmax 1 µs
rmin 1 Mbps
PPUi 0.1,∀i ∈ {1, . . . , 6}

Packet Size 1500 Bytes
Group Size 4− 6

Algorithm 1 Iterations 2000

algorithm that finds the shortest-path tree (SPT). In the single-
objective algorithm, a shortest path tree is generated from each
source SN to all destination SN ′s using Dijkstra’s algorithm.
The shortest-path tree is an approximation to the minimum
Steiner tree. We consider each of the delay, rate and number
of links as single objectives for finding the shortest path tree
in terms of delay, rate and number of links, respectively.

In the simulation, we generate a random CRN according to

the parameters mentioned earlier. Then, we generate 5 random
sessions for a specific group size. Fig.5 shows comparisons
between the performance of Algorithm 1 (MOACS) with the
single-objective algorithms (SPT D, SPT R and SPT L) when
the group size is 4, 5 and 6, respectively. SPT D, SPT R and
SPT L represent SPT when the single objective is the delay,
rate and number of links, respectively.

As the group size increases, the delay and the number of
links increases and the date rate decreases. It is shown in Fig.5
that the solutions of MOACS are not dominated by either SPT
D, SPT R or SPT L. In other words, the solutions generated by
MOACS are better at least in one objective. Most of MOACS
solutions outperform the solutions obtained by SPT D, SPT
R and SPT L in all objectives. For example, four solutions
found by MOACS dominate the solutions of SPT D, SPT R
and SPT L algorithm when the group size is 4. Moreover, all
MOACSC solutions dominate the solutions of SPT D, SPT R
and SPT L when the group size is 5 or 6.

VII. CONCLUSION

We studied the routing and scheduling problem for many-
to-many communication in CRNs while optimizing the QoS of
the SUs. We modeled the optimization problem as an ILP, and
solved it using an Ant Colony meta-heuristic. The Pareto front
found by MOACS was found to outperforms single-objective
SPT algorithm in delay, rate and the number of transmission
links.
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