
Delay-Stable Communications in Simultaneous
Multicast Networks

David A. Miller and Ahmed E. Kamal
Dept. of Electrical and Computer Eng., Iowa State University, Ames, IA 50011, U.S.A.

E-mail: {davidam, kamal}@iastate.edu

Abstract—To properly operate closed industrial control net-
works, it is required that communication with nearly constant
delay bounds be supported. In [24] the authors introduced
FlexTDMA in order to provide this support, and with minimal
delay-jitter in an asynchronous network, under unicast com-
munication. In this paper we consider providing this support
for simultaneous multicasting, and introduce the FlexTDMA++
protocol. Under this protocol, and with periodic on-off traffic
that is directed to multiple receivers, frame losses and switch
failures are managed in the presence of component clock drifts
and bandwidth loads.

I. INTRODUCTION

Closed industrial control networks require that data be de-
livered from the source, which is typically a central controller,
to target nodes with nearly constant delay bounds, and with
minimal delay-jitter. For example, robotic controllers commu-
nicate through a network to control multiple target robots.
The problem with such systems is that networked components
are not synchronized, they may be distributed in a wide area,
they do not use the same clock, and their clocks may exhibit
drifts, in different amounts, and with different polarities. In
[24] the authors introduced a new strategy, FlexTDMA, which
provided near constant delay bounds, with minimal delay jitter
in such networks, when one-to-one (or unicast) communication
is used. In many systems, the central controller may try to
control multiple points simultaneously, and once it issues a
command, the command should be multicast to all networked
nodes. In many applications, for the global task to proceed
correctly, it is necessary that the command be received at all
receiver nodes nearly at the same time, and with very small
delay-jitter. From a system perspective, all nodes receiving
the multicast message will react at the same time. At the same
time, from the perspective of any single node, fair access to the
received data is provided. This is referred to as simultaneous
multicasting (SM).

This paper considers the SM problem in industrial control
systems, and introduces the FlexTDMA++ protocol. This
strategy will guarantee that data is delivered from the source
to any receiver in the multicast session with a nearly constant
delay bound, and that the delay-jitter within the flow of frames
delivered to the same node is minimized. Moreover, minimum
delay variation between multiple nodes, which are receivers
within the multicast session, will be achievable. This is done
under the assumption of periodic on-off traffic, and will be
supported when frames may be lost, when switches may fail,

and when components may exhibit clock drifts and sustain
different loads.

The literature contains a number of solutions to achieve
bounded delay periodic traffic, constant delayed periodic traffic
and simultaneous delivery of multicasting data. Bounded delay
periodic traffic is supported in [25] using a probabilistic model,
and in [18] by exchanging messages for synchronous opera-
tion. References [17] [21] [23] [22] support nearly constant
delayed traffic in a synchronous network, and require message
exchange to maintain a synchronous state. Simultaneous mes-
sage arrival is supported in [19] with a solution not designed
for packet networks, and in [10] for TCP Internet connections
by using bandwidth reservation. The authors of [16] achieve
SM by attaching a transmit release time-stamp to messages
while maintaining a synchronized state. The authors of [15]
achieve SM by maintaining a synchronized state between the
members of the multicast group. These solutions require a
synchronous state, have probabilistic delay bounds, require
message exchanges for synchronous operation, are not suitable
for sub millisecond message exchanges, or are not suitable for
a packet network.

We propose a protocol for simultaneous delivery of mul-
ticast data in an asynchronous packet network without the
use of clock coordination or message time stamping. In [24]
we introduced FlexTDMA to provide minimal delay-jitter
with nearly maximal delays in an asynchronous network.
FlexTDMA works by periodically transmitting a maximally
delayed frame on each flow allowing downstream switches
to establish a maximal eligibility time (ET) basis, where
ET is the time at which an arriving frame is in confor-
mance with the original traffic envelope of the transmitting
node. Each FlexTDMA switch traffic shapes arriving frames
using this ET basis, providing maximal constant delays in
an asynchronous network. The FlexTDMA protocol shares
maximal delay bound transmission opportunities in a process
called baselining. We expand the consideration of FlexTDMA
to include end node periodic on-off traffic, switch failures
and network conditions while supporting SM (FlexTDMA++).
Three network conditions are considered: clock drift, frame
loss due to bit errors, and bandwidth load. The FlexTDMA++
SM improvement provides data delivery with maximal delay
performance for multicast data.

The remainder of this paper is organized as follows. In
Section II, we review FlexTDMA. In Section III, we introduce
the basics of our approach for supporting SM, FlexTDMA++,



and review Gang Scheduling and preemption approaches
which are used for concurrent scheduling by FlexTDMA++.
In Section IV, we characterize the delay bound calculations
of SM under FlexTDMA++. In Section V, we introduce the
operational details of FlexTDMA++. Section VI includes a
performance study of FlexTDMA++, which is followed by a
summary of findings and conclusions in Section VII.

II. BACKGROUND

In this section we describe the key properties of the
FlexTDMA protocol. The FlexTDMA frame processing

Algorithm 1: FlexTDMA
switch switch frame event on flow k do

case Frame Arrival
frame ← retrieve frame from input port
AT[k] ← now
ET[k] ← max(AT[k], ET[k] +
Xmin · (1− clockDrift))
frame deadline ← ET[k] + flow(k) delay bound
enqueue(Eligibility Queue, frame)

case Frame Eligibility
frame ← dequeue(Eligibility Queue)
store frame in FIFO or Flow01

case Frame Transmission Completion
if flow01 queue head scheduled time > now then

frame ← dequeue(Flow01 Queue)
Baselined[flow k] ← true
transmit frame

else if not empty(FIFO Queue) then
frame ← dequeue(FIFO Queue)
transmit frame

stages, shown in Algorithm 1, are arrival, eligibility, and
transmission. When a frame arrives the flow ET is determined.
The frame deadline is determined from ET and the flow
delay bound computed at the output port. A frame, held until
eligibility, is scheduled for transmission on flow01 or in a FIFO
queue.

In [24] we defined a Baselined flow as: A flow on which a
frame has been recently transmitted at the delay bound, and
each frame has been received before its eligibility time. A
newly baselined frame causes a series of eligibility times in
subsequent switches. Once a maximally delayed frame k is
received by switch j from switch j-1, the eligibility time ET k

j

will be computed as

max
(
AT k

j , ET
k−1
j +Xmin · (1− clockDrift)

)
(1)

where Xmin is the minimum frame inter-arrival time on the
flow and AT k

j is the arrival time of frame k at switch j. This
generates a series of eligibility times separated by the frame
period reduced by the clock drift so that the eligibility times
will not out pace arriving frames.

A virtual flow called flow01 provides high priority trans-
mission opportunities for baselining [24]. Flows are sched-
uled for baselining by reserving a transmission opportunity
in flow01 constrained by the allocated transmission period.
Flow01 scheduled transmissions are queued in ascending order.

III. SIMULTANEOUS MULTICASTING

In this section we introduce the basics of FlexTDMA++,
and how it supports SM, including gang scheduling and
preemption approaches.

A. FlexTDMA++ Simultaneous Support Mechanisms

The FlexTDMA baselines each output port independently
as baselining opportunities arise. Thus the baselining process
is not coordinated between multicast forwarded output ports
on each flow.

1) Coordinated Baselining: FlexTDMA++ switches initiate
a baseline event on a flow for each forwarded frame instance
so all sub-trees experience a baseline cascade. Each sub-tree
root switch schedules a baseline event on the flow.

Fig. 1. Simultaneous baselining at all forwarded ports establishes a common
eligibility time basis.

Figure 1 shows how concurrent baselining of a flow for-
warding set establishes a common ET basis. Switch 3 has a
flow forwarded to two connected nodes and switches 4 and 5.
When this flow is baselined, a baselining event is scheduled at
each output port. By using the same frame forwarding event
the ET basis of each connected switch is updated. The two
sub-trees switch 4 and 5 receive the baselined frame and in
turn establish a common ET basis.

Coordinated baselining at multiple output ports of a
FlexTDMA++ switch requires that a bin-packing type algo-
rithm be applied to baselining opportunities across switch
output ports. This fits a general class of problems where job-
sets are scheduled on multiple machines. An algorithm called
Gang scheduling is defined which requires the task set of
each job be scheduled to run in parallel across the machine
set [11], [7], [6].

2) FlexTDMA++ Gang Scheduling: Under Gang Schedul-
ing, tasks of a job are scheduled in the same time slice. This
is often used to schedule software tasks of jobs onto a set
of available processors [14] [1]. Bin fitting is used to max-
imize the utilization of processors. For FlexTDMA++, Gang
scheduling provides the mechanism to schedule coordinated
baselining events. A job is an arriving frame and the task-set
is the output ports the flow is transmitted [5]. When an arriving
frame on a flow is selected for Gang scheduled baselining, a
baseline event will be planned to each forwarding output port.



B. FlexTDMA++ Gang Scheduling and Preemption

Here we review the gang scheduling approaches and pre-
emption strategies.

1) Preemption Classes: FlexTDMA++ allows preemption
of a flow scheduled for baselining in flow01 when its deadline
conflicts with the flow of an arriving frame. There are three
classes of preemption under FlexTDMA++ Gang scheduled
multicasting. The preemption type ’none’ allows no preemp-
tion, ’Per Output Port’ allows preemption on a per port basis,
and ’strict’ which requires all ports of the same flow be
preempted if any are [8].

2) Gang Scheduling Bin Fitting Strategies: FlexTDMA++
supports six Gang scheduling approaches:

• First Fit:
Under the first fit policy [20] a Gang scheduler allocates
the first set of available machines at the first matching
opportunity.

• Concurrent Gang:
Under a concurrent gang policy [11] flow preemption
priority is given to a flow with less time remaining to
its baseline deadline.

• Lazy Gang:
Under a lazy gang policy [7] flow preemption priority
is given to a flow having more frame arrivals after the
baseline deadline is exceeded.

• Best Fit:
Under a best fit policy [12] [13] a Gang scheduler gives
priority to a flow reducing idle output ports.

• FCFS w/Backfill:
Under the FCFS with Backfill policy [13], [4], [9] a Gang
Scheduler, with a certain probability does not commit
when one or more ports are left idle. No preemptions are
allowed. Three probability values are tested. Probabilities
of no commit with 1 idle output port are 5%, 10% and
15%, and for 2 idle output ports 25%, 50% and 75%.

• Bandwidth Weighted Fit For FlexTDMA:
We propose the Bandwidth Weighted Fit algorithm which
gives preemption priority to a frame on a non-baselined
or baseline deadline exceeded flow having lower band-
width than the currently scheduled flow in flow01. Low
bandwidth flows are given priority as they have fewer
potential baseline event opportunities.

IV. FLEXTDMA++ SWITCH DELAY BOUND
COMPUTATION

In this section we review the approach used to compute
delay bounds in each FlexTDMA++ switch to support SM.

Per Port Delay A delay bound di is computed for each port
using configured flows. The delay bound di is computed based
on schedulability analysis of flows forwarded to the port.

Sub Tree Depth The value subtreek,f is the maximal delay
depth of switch k for flow f which is the frame ET at
switch k to the maximal delay leaf node. Figure 2 shows the
computation of subtree depth and assigned delay bound for a
flow in switch 3. The delay bound for output ports 1, 2, 3 and
4 are 1, 2, 3 and 4 ms, respectively. The subTree delay depth

Fig. 2. Delay bounds are computed to insure equal subtree depth per port.

of switch 3 is determined as the maximum difference between
ET at switch 3 and AT at the destination node. The subTree
depth of switch 3 is computed as the maximum of the delay
depth for each output port as subTree3 = 10 = max(1, 7, 10,
4) = max(d1, d2 + subTree4, d3 + subTree5, d4).

Assigned Port Delay Switch k, will establish a modified
maximal delay Dk,port,f for flow f at output port ‘port’
in order to insure that the delay-depth of each sub-tree is
the same. The delay Dk,port,f is computed as: Dk,port,f =
subtreek,f − subtreeswitch(k,port),f for output port number
‘port’ of switch k and flow f, where switch (k, port) is the
number of the switch connected to switch k port ‘port’ (e.g.
switch(3, 2) = 4), and subtreeswitch(k,port),f the delay depth
of the switch connected to port number ‘port’ or zero when a
leaf node is connected to port number ‘port’. The assigned
delay bounds shown in Figure 2 are set to the subTree3
- subTreedownstreamswitch. The assigned delay bounds are
computed as follows:

• D1 = 10 = 10 - 0 = subTree3 - 0,
• D2 = 5 = 10 - 5 = subTree3 - subTree4,
• D3 = 3 = 10 - 7 = subTree3 - subTree5,
• D4 = 10 = 10 - 0 = subTree3 - 0.

Notice for all ports of switch 3, Di + subTreedownstreamswitch

= 10 ms, so the delay bound from switch 3 ET to destination
node AT is 10 ms.

V. FLEXTDMA++ SWITCH OPERATION

In this section we review the operational details of the
FlexTDMA++ protocol. Figure 3 shows the stages of frame
processing in a FlexTDMA++ switch: 1) arrival, 2) eligibility,
and 3) selection for transmission. Arriving frames are held
until frame ET [3], [2]. Once eligible, the frame is scheduled
for transmission at the output port in either the flow01 or FIFO
queue [24].

1) Frame Arrival At frame arrival the frame is stored
pending eligibility.

2) Frame Eligibility Once a frame reaches its eligibility time
it is processed for each forwarding output port. There are three
steps to frame processing.



Fig. 3. Major processing phases and events of the FlexTDMA switch.

Eligibility Step 1 - Determine Frame Deadline The frame
deadline is set to ET plus the port delay bound.

Eligibility Step 2 - Determine Flow01 Availability and
Preemption Potential (if needed) The next step is to deter-
mine the flow01 availability and preemption potential when
another flow is scheduled at the deadline time of the current
flow. Figure 4 shows the minimal interval period p between

Fig. 4. Flow01 queue is serviced using a minimal frame period

scheduled baseline times in the flow01 queue. Baseline times
are located in flow01 in accordance with this constraint, but as
close to the deadline as possible. The duration limits the extent
to which a flow is scheduled in flow01 prior to its deadline. The
extent of partial baselining allowed depends on the baseline
state of the flow. When the flow is baselined the duration limit
is set to driftPpmMax ∗ ((now+BDinterval)− curBD)
insuring the extent of early baselining is limited to the maximal
drift that may occur until the baseline deadline. When a
transmission opportunity is found in flow01 the flow is marked
as a candidate for baseline scheduling.

Eligibility Step 3 - Apply Gang scheduling Preemption Rules
Using the Gang scheduling policies and preemption rules
frames are scheduled in flow01 or FIFO queue.

3) Frame Transmission A ready frame is selected from
flow01 if any, otherwise from FIFO queue.

VI. FLEXTDMA++ EVALUATION

In this section we describe the evaluation of FlexTDMA++.
There are three phases of FlexTDMA++ evaluation: Periodic
on-off, Frame Loss and Switch Failure. A total of 13 com-
binations of preemption types and Gang Scheduling policies
were tested as all gang scheduling policies support both strict
and per port preemption with the exception of first fit and
FCFS w/Backfill. FlexTDMA++ was evaluated by configuring
the periodic on-off, frame loss or switch failure probability,
Gang Scheduling and preemption policy, clock drift, and band-
width load. The key performance criteria of FlexTDMA++

are: Time-to-baseline, Laxity and SM. The Time-to-baseline
criterion is the time needed for an active flow to achieve a
baselined state. The laxity criterion is the extent to which data
is delivered to a destination node prior to the delay bound.
The SM criterion is the maximal difference in delivery times of
multicast instances of a source frame. The topology in Figure 5

Fig. 5. FlexTDMA++ Testing Topology

shows the simulated physical topology used to demonstrate
the use of FlexTDMA++ for SM. The transmissions from end
nodes 0 to 9 are forwarded to receiving leaf nodes of the tree.
The bandwidth is allocated to the flows of the transmitting
nodes in increasing amounts so that the periodic transmissions
phase causing collisions. The delay bounds for the flows of this
testing topology range from 1,587 to 2,493 µs. This magnitude
is important relative to the performance criteria evaluation.

A. Results
1) Clock Drift Effect on FlexTDMA++: Table I shows a

summary of the effect of clock drift on FlexTDMA++ for each
key performance criterion and for each phase of evaluation.
Time-To-Baseline had the highest impact from increasing drift.
Frame delay bound laxity performances were no more than
4% of the flow delay bound. The SM performance varies
between clock drift types. Increasing drift consistently has

TABLE I
CLOCK DRIFT EFFECT ON FLEXTDMA++

FlexTDMA++
Phase

FlexTDMA++
Phase:
Periodic On-
Off

FlexTDMA++
Phase:
Frame Loss

FlexTDMA++
Phase:
Switch Failure

Time To Baseline 1.15 to 14.2 ms 1.27 to 14.9 ms 1.15 to 13.2 ms
Time To Baseline
(Variation between
drift types)

0.5 to 13% 0.13 to 12% 0.5 to 16.4%

Laxity 0 to 55.3 µs 4.4 to 36.9 µs 0 to 53.5 µs.
SM
(percent difference)

3.6% (0.2 of
6.9 us)
to
33% (4.7 of
14.5 us)

1.1% (0.91 of
81.1 us)
to
22.8% (11.5 of
57.7 us)

5.5% (2.5 of
48.7 us)
to
41.4% (50.3 of
88.4 us)

the highest impact as it accelerates the number of baselines



needed. FlexTDMA++ managed clock drift efficiently for all
modes of operation for each key performance criterion, and
clock-drift had a minimal but consistent result on performance.

2) Bandwidth Load on FlexTDMA++: The total bandwidth
loading is set for each test. Table II shows the average
performance relating to bandwidth loads of 20%, 50%, and
90%. The average time-to-baseline was consistently influenced
by bandwidth load. As the bandwidth load was increased the
time needed to achieve a baselined state on a non-baselined
flow increased. In phase Periodic on-off the average delay
bound laxity and SM increased with increasing bandwidth.
This follows as multiple flows are discontinued each time
a transmitting node pauses transmission, and all flows from
that node must be re-baselined. In phase Frame Loss and
phase Switch Failure the average delay bound laxity and
SM decreased with increasing bandwidth. More frames are
transmitted within the time needed between baseline attempts
(minimal baseline interval) as the bandwidth increases. This
increases the utilization frame quantity once the flow achieves
a baselined state.

TABLE II
IMPACT OF BANDWIDTH LOAD ON FLEXTDMA++

FlexTDMA++
Phase

FlexTDMA++
Phase:
Periodic On-Off

FlexTDMA++
Phase:
Frame Loss

FlexTDMA++
Phase:
Switch Failure

Time To Baseline
(average)

1.28, 4.23 and
10.5 ms

1.47, 4.83 and
11.2 ms

1.28, 4.27 and
9.87 ms

Laxity (average) 1.22, 4.05 and
5.93 µs

22.6, 15.7 and
12.4 µs

29.2, 13.5 and
4.44 µs

SM (average) 8.83, 11.0, and
12.8 µs

59.9, 35.3 and
34.0 µs

91.8, 38.2 and
38.4 µs

TABLE III
COMPARISON OF BEST FIT AND BW WEIGHTED GANG SCHEDULING

Performance
Criteria

Parameter Load Favor-
ing Best Fit

Load Favoring BW
Weighting

Time-to-
Baseline

Frame
Loss

50%-60%
3.9 - 4.1 ms

10%-40%
1.3 - 3.7 ms

Periodic
On-0ff

50%-60%
3.5 - 3.6 ms

10%-40%
1.1 - 2.8 ms

Switch
Failure

50%-60%
3.4 - 3.6 ms

10%-40%
1.0 - 2.6 ms

Laxity Frame
Loss

30%-60%
7 - 22 µs

10%-20%
26 - 28 µs

Periodic
On-0ff

40%-60%
1.4 - 2.0 µs

Same as Best Fit
10%-30%
0.7 - 3.0 µs

Switch
Failure

10%-60%
1.0 - 24 µs

none

SM Frame
Loss

20%-60%
45 - 66 µs

Same as Best Fit
10%
90 µs

Periodic
On-0ff

10%-60%
10 - 52 µs

None

Switch
Failure

10%-60%
30 - 95 µs

None

3) Performance Under Heavy Bandwidth Load on
FlexTDMA++: The Gang Scheduling algorithms best fit and
bandwidth weighted were tested at loads of 10% to 90%.
These policies were not stable at bandwidth loads of 70%
to 90% as sufficient numbers of baselining transmission
opportunities went unused so that the utilized rate was less

than the rate needed to maintain the flows in a baselined
state. Table III shows the bandwidth loads, 10% to 60%,
favoring the usage of the best fit or bandwidth weighted gang
scheduled baselining policies for each critical performance
criterion. In each case the performance is characterized.
The time-to-baseline performance criterion favors the best fit
policy under bandwidth loads of 50% to 60%, with bandwidth
weighted policy favored for loads of 10% to 40%. As the
bandwidth loading is reduced the baseline density is reduced.
This reduces the importance of best fit, and amplifies the
importance of relative bandwidth utilization on each flow.
The laxity performance criterion had mixed results depending
on the parameter under test. Under frame loss and periodic
on-off conditions best fit policy was favored for higher loads
with bandwidth weighted policy favored for lower loads using
per port preemption. Under switch failure conditions best fit
policy was favored for all bandwidth loads.

The conclusion of this comparison is that when the band-
width load is heavy, 50% to 60%, the best fit policy should
be used. When the bandwidth load is 10% to 40% the best
fit policy should be used when SM performance is critical
and bandwidth weighted policy when either time-to-baseline
performance or laxity is critical.

4) Effect of Probability of Periodic On-Off, Frame Loss
and Switch Failure on FlexTDMA++: Table IV shows the
increase achieved by modifying the probability of periodic on-
off, frame loss and switch failure. Periodic on-off probability,
frame loss probability and switch failure testing showed little
effect on time-to-baseline. This follows as time-to-baseline is
fundamentally how quickly the flow can be baselined. The
periodic on-off probability, frame loss probability and switch
failure probability have a consistent effect of increasing frame
delay bound laxity and SM. Further evaluation uses maximum
probability values.

TABLE IV
IMPACT OF PROBABILITY OF FLOW INTERRUPTION

FlexTDMA++
Phase

Periodic
On-Off

Frame
Loss

Switch
Failure

Time To Baseline 0.4% 0.2% 1.7%
Laxity 30.1% 44.0% 21.3%
SM 41% 50.3% 4.4%

5) Improvements to FlexTDMA++: We consider the com-
parative performances of the gang scheduling algorithms using
bandwidth loading 50% and 90%. Table V shows the favored
gang scheduling policies for each performance criteria. All
13 gang scheduling policies and preemption strategy pairs are
evaluated. At a 90% bandwidth load the performance results
for the three key performance criterion, time-to-baseline, laxity
and SM, were similar for all gang scheduling policies. The
gang scheduling policies resulting in better performance than
no coordinated baselining is listed under a 50% bandwidth
load. The time-to-baseline performance criterion favors the
best fit policy using strict preemption. The laxity performance
criterion favors the best fit policy using per port preemption.
The SM performance criterion favors best fit policy using per



TABLE V
GANG SCHEDULING IMPROVEMENT PERFORMANCES

Bandwidth
Load

Performance Cri-
teria

Gang Scheduling (Preemp-
tion)

Performance

90% Time-to-Baseline No Clear Difference 10.5 - 14.0 ms
90% Laxity No Clear Difference 3 - 25 µs
90% SM No Clear Difference 20 - 67 µs
50% Time-to-Baseline Best Fit (Strict) 3.1 - 3.7 ms
50% Time-to-Baseline Best Fit (Per Port) 3.5 - 4.0 ms
50% Time-to-Baseline BW Weighted (Per Port) 3.9 - 4.8 ms
50% Time-to-Baseline BW Weighted (Strict) 4.0 - 4.8 ms
50% Laxity Best Fit (Per Port) 1 - 7 µs
50% Laxity Best Fit (Strict) 1 - 10 µs
50% Laxity BW Weighted (Per Port) 6 - 18 µs
50% Laxity BW Weighted (Strict) 5 - 23 µs
50% SM Best Fit (Per Port) 10 - 42 µs
50% SM Concurrent Gang (Per Port) 15 - 50 µs
50% SM Lazy Gang (Strict) 17 - 56 µs
50% SM BW Weighted (Strict) 17 - 62 µs

port preemption.
We conclude that the best approach is to increase the

allocation to the baselining flow flow01 so that the effective
load on baseline scheduling is 50%. When this is done the
gang scheduling policy best fit using per port preemption will
offer the best performance to FlexTDMA++ considering time-
to-baseline, laxity and SM criteria. When time-to-baselining
performance criterion is most important the strict preemption
policy should be used.

VII. SUMMARY

In this paper we introduced an enhancement to the
FlexTDMA protocol to support SM. The details needed to
support SM were characterized. An evaluation of several
approaches to concurrent baseline scheduling and preemption
policies supporting SM within FlexTDMA++ was completed.
This evaluation demonstrated the ability of FlexTDMA++
to support SM. The evaluation showed the performances of
FlexTDMA++ support of SM for the key performance criteria.
Comparing the performances achieved to the delay bounds
on the flows being supported relates the performances to the
frame transmission time rather than the line rate. The time-
to-baseline performance was typically 2 times the flow delay
bound when 50% bandwidth loaded and 4 times when 90%
loaded. This indicates the time needed to wait for a baselined
state is a small multiple of the delay bound on the flow. The
laxity performance was typically about 2% of the flow delay
bound, indicating the delay bounds were nearly maximal. The
SM performance was typically 10% of the flow delay bound.

We demonstrated the ability of FlexTDMA++ to manage
clock drift. We determined the effect flow transmission inter-
ruption has on the FlexTDMA++ performance. We performed
full evaluation of all gang scheduling policies and preemption
policies at 50% and 90% bandwidth loading. We demonstrated
that the best gang scheduling policy under 50% loading is best
fit using per port preemption.

REFERENCES

[1] D. G. Feitelson and L. Rudolph, “Gang Scheduling Performance Benefits
for Fine-Grained Synchronization,” Journal of Parallel and Distributed
Computing, vol. 16, no. 4, pp. 306-318, 1992.

[2] H. Zhang and D. Ferrari, “Rate-Controlled Static-Priority Queueing,” In
Proc. IEEE Infocom, pp. 227-236, 1993.

[3] H. Zhang and D. Ferrari, “Rate-Controlled Service Disciplines,” Journal
of High Speed Networking, 1994.

[4] D. Lifka, “The ANL/IBM SP Scheduling System,” In Proceedings of
JSSPP, pp. 295-303, 1995.

[5] D. G. Feitelson and L. Rudolph, “Parallel Job Scheduling: Issues and
Approaches,” in Job Scheduling Strategies for Parallel Processing, pp.
1-18, Springer-Verlag, 1995.

[6] A. C. Dusseau, R. H. Arpaci and D. E. Culler, “Effective Distributed
Scheduling of Parallel Workloads,” Proc. ACM SIGMETRICS, pp. 25-36,
1996.

[7] F. Wang, “Scheduling in Multiprogrammed Parallel Systems,” Research
Report RC 19790 (87657), IBM T.J.Watson Research Center, 1997.

[8] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik and P.
Wong, “Theory and Practice in Parallel Job Scheduling,” JSSPP, pp.
1-34, 1997.

[9] D. G. Feitelson and A. M. Weil, “Utilization and Predictability in
Scheduling the IBM SP2 with Backfilling,” In 12th Intl. Parallel
Processing Symp. (IPPS), pp. 542–546, 1998.

[10] J. Pulido and K. Lin, “SM: Real-Time Multicast Protocols for Simulta-
neous Message Delivery,” in Proc. RTCSA, pp. 66-66, 1998.

[11] F. Silva and I. D. Scherson, “Towards Flexibility and Scalability in
Parallel Job Scheduling,” 11th IASTED International Conference on
Parallel and Distributed Computing and Systems, Boston, USA, 1999.

[12] F. Silva and I. D. Scherson, “Improvements in Parallel Job Scheduling
Using Gang Service,” International Symposium on Parallel Architec-
tures, Algorithms and Networks (ISPAN ’99), p. 268, 1999.

[13] W. Leinberger, G. Karypis and V. Kumar, “Multicapacity Bin Packing
Algorithms with Applications to Job Scheduling Under Multiple Con-
straints,” in Proc. of the Intl. Conf. on Parallel Processing, IEEE, pp.
404-412, 1999.

[14] Y. Zhang, A. Sivasubramaniam, H. Franke and J. E. Moreira, “Improving
Parallel Job Scheduling by Combining Gang Scheduling and Back-
filling Techniques,” Parallel and Distributed Processing Symposium,
International, 14th International Parallel and Distributed Processing
Symposium (IPDPS’00), p. 133, 2000.

[15] A. Benslimane, “A Multimedia Synchronization Protocol for Multicast
Group,” in Proc. EUROMICRO, pp. 1456-1456, 2000.

[16] J. U. Klcking, C. Maihfer and K. Rothermel, “A Smart Card Based So-
lution to Minimize Inter-receiver Delay Jitter,” Proceedings of the Tenth
International Conference on Computer Communications and Networks
(IEEE ICCCN 2001), 2001.

[17] J. Ferreira, P. Pedreiras, L. Almeida and J. A. Fonseca, “The FTT-CAN
protocol for flexibility in safety-critical systems,” Micro, IEEE, vol. 22,
no. 4, pp. 46-55, Jul/Aug 2002.

[18] D. M. Cuong, M. K. Kim and H. C. Lee, “Supporting Hard Real-time
Communication of Periodic Messages over Switched Ethernet,” The 1st
International Forum on Strategic Technology, vol., no., pp. 419-422, Oct.
2006.

[19] R. Yuen and N. F. Xavier, “Simultaneous delivery of wireless LAN and
cellular radio signals over optical fiber,” GCC Conference (GCC), 2006
IEEE, vol., no., pp. 1-6, March 2006.

[20] J. Hurink and J. J. Paulus, “Special Cases of Online Parallel Job
Scheduling,” CTW University of Twente, pp. 82-85, 2008.

[21] R. Santos, R. Marau, A. Oliveira, P. Pedreiras and L. Almeida, “Design-
ing a costumized Ethernet switch for safe hard real-time communica-
tion,” IEEE International Workshop on Factory Communication Systems,
WFCS, vol., no., pp. 169-177, May 2008.

[22] M. Jakovljevic, “Synchronous/asynchronous Ethernet networking for
mixed criticality systems,” Digital Avionics Systems Conference, 2009.
DASC ’09. IEEE/AIAA 28th, vol., no., pp. 1.E.3-1-1.E.3-10, Oct. 2009.

[23] R. Santos, R. Marau, A. Vieira, P. Pedreiras, A. Oliveira and L. Almeida,
“A synthesizable ethernet switch with enhanced real-time features,” 35th
Annual Conference of IEEE Industrial Electronics, IECON 09, vol., no.,
pp. 2817-2824, Nov. 2009.

[24] D. A. Miller and A. E. Kamal, “FlexTDMA for Delay-Stable Commu-
nications in Asynchronous Industrial Control Networks,” Proceedings of
the IEEE Local Computer Networks (LCN) Conference, 2010.

[25] G. Y. Keung, B. Li and Q. Zhang, “Message Delivery Capacity in Delay-
Constrained Mobile Sensor Networks: Bounds and Realization,” IEEE
Transactions on Wireless Communications, vol. 10, no. 5, pp. 1552-1559,
May 2011.


