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Abstract—The generalized 1+N protection [9], protects N
unicast connections by a single Steiner tree connecting allend
points of the connections. By sending network coded packets
on the protection Steiner tree in parallel with the working
traffic, 1+N is able to recover from any single link failure
without enduring the delay from switching to the backup path.
Optimal cost provisioning and 1+N protection of a given set
of connections is an NP-hard problem comprising of three
NP-hard subproblems: partitioning of the connections, finding
edge disjoint primary paths and Steiner tree protection circuit
for the subset of connections in each partition. In this paper
a polynomial time heuristic algorithm for 1+N protection is
proposed which combines heuristic steps to address the three NP-
hard components of the problem. Our simulations show that the
heuristic algorithm provides average cost reduction of 29.2% and
18.5% compared to 1+1 protection in COST239 and NSFNET
networks. An asymptotic bound is also derived for the case of
complete graph networks which shows that 1+N can achieve
maximum of 66.6% cost improvement compared to 1+1. When
compared to the optimal 1+N solution from ILP formulation, t he
heuristic algorithm increases the cost no more than 13%.

I. I NTRODUCTION

The idea of 1+N protection was first introduced by one
of the authors [5][8] to protect multiple unicast connections
against single link failures by performing network coding [1]
over a single p-cycle [11] as the backup circuit. Compared
to the traditional 1:N protection, the application of network
coding allows 1+N to provide lower failure recovery time
while using the same backup capacity. The connections have
to be provisioned using link disjoint paths. The p-cycle which
protects these connections passes through all end points of
the connections and has to also be link disjoint from all the
connections. The connections and p-cycle itself are bidirec-
tional and are assumed to be of the same capacity. Each
end point receives and transmits coded backup data in two
opposite directions on the p-cycle (called half p-cycles).Upon
the failure of a connection (in result of a single link failure),
1+N scheme makes sure that end points of the corresponding
connection can recover their intended data (for a specific round
of communication) simply byxoring the coded data received
on the two half p-cycles and their own data (of the same
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round). In [6] the author extends 1+N scheme to protect against
multiple link failures.

In [7] and [9] the single failure protection version of 1+N is
extended to a more general protection circuit which might not
necessarily be a cycle. Hence, the constraint of having a p-
cycle as the backup circuit is relaxed. While [7] considers only
unidirectional connections and gives a general description of
the protection circuit, in [9] the authors show that the optimal
1+N protection circuit for a given set of bidirectional unicast
connections is a tree. More specifically it is a Steiner Minimal
Tree (SMT) that connects all the end points of the connections
and has the same bidirectional bandwidth as the connections.
To guarantee single link failure protection, the connections
have to be provisioned using link disjoint paths and the Steiner
tree must also be link disjoint from all the connections.

The authors further show how 1+N can actually be imple-
mented on top of the Steiner tree by rooting the tree at one
specific node, referred to as node X, and defining two flow
directions with respect to node X: from the leaf nodes toward
X (upstream) and from X toward leaf node (downstream).

In the upstream direction, each end point of each bidirec-
tional connection locallyxors the transmitted and received data
packets corresponding to each communication round. These
locally coded packets are sent toward the node X on the
Steiner tree. Each non-leaf node simplyxors all incoming
coded packets (and its locally coded packet if it is in fact an
end point) into one packet and sends it up toward the node X.
Ultimately the node Xxors all the coded packets it receives.
Under normal failure-free conditions, node X will simply get
a zero packet; since data packets coming from two end points
of the each connection will cancel each other. In the case of a
single failure, end points of the failed connection will receive
nothing (a zero packet) from the other end point and their
locally coded packets would simply be their own data packet
for that communication round. Therefore once all coded data
packets reach the node X and added together, the node X will
be left with one final packet which is thexor of two data
packets sent from end points of the failed connection.

While the upstream information flow involves collection and
coding of data packets, in the reverse direction node X simply
sends the final packet toward leaf nodes and each intermediate
node just forwards the received packet in that direction; no



coding occurs. End points of the failed connection can then
recover their intended data for each communication round by
adding the received coded data on the Steiner tree in the
downstream direction to their own data packet of the same
round.

Figure 1 [9] gives an example 1+N protection scenario in
which three connections(S1, D1), (S2, D2), and (S3, D3)
are protected using a simple Steiner tree. For simplicity the
Steiner tree is shown to be nicely symmetric around the node
X.

Fig. 1. Example of 1+N protection using a simple Steiner tree[9].

As the figure shows, connection(S2, D2) is failed; S2
receives nothing fromD2 and vice versa. In other words data
packetsd̂2 (received version ofd2) and ŝ2 (received version
of s2) are zero. The sum expressions on each link represent
the coded packets in the upstream direction. The node X
adds two received upstream packets to gets2 + d2 which it
then sends back in the downstream direction to end points
of all connections. Clearly nodesS2 and D2 can recover
their intended data by adding their own data to the received
downstream data.

The preceding 1+N scheme provides 100% protection
against any single link failure. Compared to traditional 1:N
protection technique which acheives the same protection level
at the same cost, it offers the advantage of having much
lower recovery time. Compared to 1+1 protection technique
which offers instantaneous recovery from single failures,1+N
presents near instantaneous recovery at lower cost: N connec-
tions are protected by single protection circuit in 1+N while
each connection requires a dedicated disjoint protection path
in 1+1.

Optimal cost 1+N solution, however, is not easy to find.
Simply trying to protect all connections together will not
necessarily give the optimal cost (it could even be infeasible).
The first step, therefore, is to partition the set of connections.
The subset of connections in each partition are then protected
together. To find the optimal partitioning is NP-hard [2]. Even
after partitioning is done, provisioning link disjoint paths and
Steiner tree protection of the subset of connections in each
partition are still NP-hard problems [4][13].

Therefore we revert to polynomial time heuristic algorithms
to solve the three NP-hard components of the problem. The
suboptimal cost of 1+N protection is then compared to optimal
cost of 1+1 for real world networks. To have an idea of

how well those heuristic algorithms perform compared to the
optimal 1+N protection, an analytical-experimental studyis
presented for the case of complete graphs.

Section II introduces basic models and assumptions. In Sec-
tion III problem statement and algorithm design are presented.
Simulation results and experimental comparison between 1+N
and 1+1 are shown in Section IV. Our analytical bound on the
performance of 1+N compared to 1+1 is given in Section V.
Section VI concludes the paper.

II. M ODELS AND ASSUMPTIONS

An optical network is modeled as an undirected graph
G(V, E) with V as the set of nodes andE as the set of
undirected edges. Each edge represents a fiber link. Edge
capacity represents the number of wavelength channels per
fiber link. All edge capacities are assumed to be equal.

A set of κ bidirectional connectionsC is defined as

C = {(si, ti)|si, ti ∈ V, si 6= ti, 1 ≤ i ≤ κ}

All connections are assumed to demand unit capacity equal
to one wavelength channel. This means that a single unit of
capacity (equal to the bandwidth of one wavelength channel)
is enough to carry the traffic of one and only one connection,
i.e. no traffic grooming is allowed.

We further assume that the edge capacity is not a limiting
constraint in provisioning connections or protection circuit.
This assumption reflects the fact that each fiber link has huge
amount of bandwidth.

We also define one unit of cost as one unit of capacity used
on one edge. Therefore the cost of provisioning a connection
is equal to reserving one unit of capacity on a simple path
connecting end points of the connection, i.e. is equal to
length of the path (since each connection demands one unit
of capacity per each edge).

III. PROBLEM STATEMENT AND ALGORITHM

Given the network graphG and the set of connectionsC,
the main problem is to provision and protect all connections
against any single link failure using the technique of 1+N at
minimum cost. As stated before, the optimal solution involves
the following two steps:

1) Optimal partitioning of the set of connections: The
partitioning determines which connections should be
protected together, i.e., the subset of connections in
each partition are protected using the same Steiner
tree. Different partitions are provisioned and protected
independently, therefore, the total cost associated with a
partitioning is equal to the sum of individual partitions
costs. Minimum cost partitioning is an instance of fa-
mous Set Partitioning Problem (SPP) which is NP-hard
[2].

2) Minimum cost provisioning and protection of each
partition: This problem is comprised of two NP-hard
subproblems namely, minimum cost edge disjoint paths
[4] and Steiner Minimal Tree [13]. Since the optimal



solution to the problem requires solving the two sub-
problems jointly, it is at least as hard as the hardest of
the two subproblems, i.e., NP-hard.

Due to the exponential time nature of the problem, the ILP
formulation of the problem as an optimization problem can
only find the optimal solution for small networks and a few
number of connections in a reasonable amount of time [9].
The way to solve real world instances of the problem is to
revert to efficient heuristic algorithms. We start by designing
a heuristic algorithm for the partitioning step.

Since there are exponentially many ways to partition a set
of given connections, a polynomial time algorithm should not
try to check all possible partitions. Two extreme cases are:
I) Single partition which includes all the connections. In this
case all connections are provisioned using edge disjoint paths
and a single edge disjoint Steiner tree is used to protect all
connections. II) Each connection is a separate partition and
protected separately; Steiner tree in this case is simply a
secondary path edge disjoint from connection’s primary path.
This is in fact equivalent to 1+1 protection; 1+1 protectionis
included as a special case of 1+N protection in the solution
space. It is worth noting that the number of connections in
a partition may be limited by the network graph connectivity
since to provision and protect a larger partition would require
more “disjointness”.

Algorithm 1 shows our greedy partitioning algorithm. The
COST function returns the cost to provision and protect a
partition. The algorithm starts by a new empty partitionp as
the current partition. The first connection to be added to a
new partition is the one whose COST is minimum among all
remaining connections (lines 3 to 6). The cost returned by
COST function for such a single-connection partition is equal
to the cost of 1+1 provision and protection (which is found
using Bhandari’s algorithm [3] and is optimal).

The algorithm then greedily chooses the next connection
c to be added to the current partitionp in such a way that
the cost of new partition is locally minimized (line 8). A
connectionc is considered a candidate only if the cost of
new partition formed by addingc to the current partition
(COST (p ∪ {c})) is less than the total cost of consideringc

as single-connection partition (COST ({c})) plus the cost of
current partitionCOST (p). If no such candidate connection
exists (line 12) the current partitionp is considered as complete
and is included in the final output partitioningP (line 13).
The algorithm stops when all connections are covered.P is
the partitioning of the connections.

The underlying component of above algorithm is minimum
cost provisioning and protecting of a partition (COST func-
tion) which is an NP-hard problem (consisting of two NP-hard
subproblems). We use the following heuristic steps to solve
this problem:

1) The problem is split into two separate subproblems: Pro-
visioning minimum cost edge disjoint paths and finding
minimum cost Steiner tree for subset of connections in
the partition.

Algorithm 1 Greedy algorithm to find a partitioning of con-
nections. The COST function returns the cost of provisioning
and 1+N protection of a partition.
Input: G(V,E): network graph, C: set of connections
Output: P: partitioning of connections

1: P ← ∅, p← ∅
2: while C 6= ∅ do
3: if p = ∅ then
4: cmin = argminc∈C {COST ({c})}
5: p← {cmin}
6: C ← C\cmin

7: else
8: Cp = {c ∈ C|COST (p ∪ {c}) < COST (p)

+ COST ({c})}
9: cmin = argminc∈Cp

{COST (p ∪ {c})}
10: if cmin 6= 0 then
11: p← p ∪ {cmin}
12: C ← C\cmin

13: else
14: P ← P ∪ p

15: p← ∅
16: end if
17: end if
18: end while
19: P ← P ∪ p

2) Two heuristic algorithms are used to solve the subprob-
lems: Greedy Shortest Paths algorithm [10] and Greedy
Steiner Tree algorithm by Takahashi [12].

Algorithm 2 shows the Greedy Shortest Paths algorithm
[10]. The algorithm tries to find a set of minimum cost edge
disjoint paths for the subset of connections in a partitionp. In
each round it finds the connection with the minimum length
shortest path among all remaining connections, routes the
connection, and removes the route from the graph to guarantee
edge disjointness. The Greedy Shortest Paths algorithm does
not guarantee that edge disjoint paths will be found for all
connections in the partition (even if they are actually feasible
to find). When the next shortest path does not exist (line 4) the
algorithm returns an empty set of routes. The Greedy Steiner
Tree algorithm by Takahashi [12] starts by a terminal node
(end point node of a connection) as the current subtree (line
2) and continuously finds the next closest terminal node to
the current subtree (line 5) and connects it to the subtree by
a shortest path (line 9). In the case that the Steiner cannot be
found, at some point the distance of the next closest terminal
would become infinity (line 6) and an empty tree would be
returned.

In our partitioning algorithm (Algorithm 1), for each parti-
tion the COST function runs Greedy Shortest Paths algorithm
to find a set of edge disjoint paths. Upon success, it runs
Greedy Steiner Tree algorithm on the residual graph after
removing all paths. This is to guarantee that the Steiner tree
is disjoint from connections paths. Only if both steps are



Algorithm 2 Greedy shortest paths algorithm.
Input: G: network graph, p: a partition
Output: R: set of edge disjoint routes forp

1: R← ∅
2: while p 6= ∅ do
3: min = argminci∈p {|ri|}

{ri is the shortest path route of connectionci in G}
4: if |rmin| =∞ then
5: return∅
6: else
7: R← R ∪ rmin

8: G← G\rmin

9: end if
10: end while
11: returnR

Algorithm 3 Greedy Steiner tree algorithm.
Input: G: network graph,Vp: set of end points of connections

in partition p

Output: T: Steiner tree
1: pick an arbitraryv ∈ Vp

2: T ← v

3: Vp ← Vp\v
4: while Vp 6= ∅ do
5: w = argminu∈Vp

{|ru|}
{ru is the shortest path route betweenu andT }

6: if |rw| =∞ then
7: return∅
8: else
9: T ← T ∪ rw

10: Vp ← Vp\w
11: end if
12: end while
13: returnT

successful, a finite cost value will be returned by the COST
function.

While the time complexity of the COST function depends
on the specific implementation of each of the heuristic al-
gorithms the worst case time complexity of Algorithm 1 is
O(|C|2.TCOST ) where TCOST represents time complexity
of the COST function. In our implementationTCOST is
O(|V |2.|C|2) therefore the total worst case time complexity
is O(|V |2.|C|4).

IV. SIMULATION RESULTS

Two real world networks 14-node NSFNET and 11-node
COST239 and one artificial 14-node complete graph network
are used in the simulations. The total cost of our heuristic
algorithm for provisioning and 1+N protection of a given
set of connections is compared to the same cost when 1+1
technique is used. Figure 2 compares the percentage of the
cost reduction in NSFNET, COST239, and complete graph
network. Percentage of the cost reduction represents relative
improvement in total cost when 1+N heuristic is compared to

1+1. One unit of cost is defined as one unit of capacity on an
edge. The horizontal axis represents the number of randomly
generated connections (between 1 and 65). The diagram shows
up to 55 connections for 11-node COST239 because that is
the maximum number of possible connections given 11 nodes.
Each point in the digram is the averaged value over 100
rounds of simulation. The following observations are made
from Figure 2:

• 1+N performs better as the number of connections in-
creases. Intuitively this increases the potential to protect
more connections together and reduce the total cost.

• 1+N performs better in networks with higher edge den-
sity. The graph densities are 19/14 in NSFNET, 26/11
in COST239 and 91/14 in complete graph; more “dis-
jointness” potential in the network makes larger partitions
possible. ����������	�
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Fig. 2. 1+N cost reduction over 1+1 in 3 different networks.

Table I summarizes the simulation results regarding the cost
efficiency of 1+N with respect to 1+1 in the three simulated
networks. The numbers are averaged over 100 rounds of sim-
ulation. For each network maximum and average percentage
of cost reduction is given. The performance of our heuristic

TABLE I
1+N COST REDUCTION OVER1+1 IN 3 DIFFERENT NETWORKS.

Cost reduction (%) NSFNET COST239 Complete
Max 21.5 34.5 60.2
Average 18.5 29.2 50.7

algorithm for 1+N is also compared to the optimal 1+N results
obtained from an ILP formulation of the problem (we use a
revised version of the ILP in [9] which runs faster). Since the
optimal solution requires exponential time in terms of number
of connections, the comparison can only be made for few
cases with limited number of connections. Table II presents
the results for two cases of 5 and 10 randomly generated con-
nections in NSFNET and COST239 as two practical networks.
The cost value reported for 5 connections is averaged over 10
instances while in the case of 10 connections we could only



run one instance.N is the number of connections. Degree of
suboptimality is the percentage of cost increase when heuristic
algorithm is compared to optimal solution.

TABLE II
COST OF1+N : HEURISTIC VS. ILP.

Network N Heuristic ILP Degree of suboptimality (%)
NSFNET 5 27 26 3.8

10 52 46 13
COST239 5 14.8 14 5.7

10 26 25 4

V. A SYMPTOTIC ANALYSIS

Based on two observations made earlier on 1+N perfor-
mance, we consider an asymptotic analysis. The best scenario,
which we expect to give the best 1+N cost efficiency compared
to 1+1, would then be to consider a complete graph (densest
graph) with maximum number of connections possible. If
we let the number of nodes go to infinity, asymptotic cost
efficiency of 1+N versus 1+1 would be achieved.

A complete graphG(V, E) with |V | = n nodes has(
n
2

)
= n(n−1)

2 edges which is equally the maximum number
of possible distinct connections. Provisioning each connec-
tion takes only one unit of cost. Total cost of provisioning
all connections, therefore, isn(n−1)

2 . We consider this cost
as the fixed minimum provisioning cost independent of the
protection scheme used. In 1+1 protection, each connection
will be protected by a shortest disjoint path of length 2, hence
protection cost of 1+1 isn(n−1) and total cost of provisioning
and protection using 1+1 scheme is3

2n(n− 1).
In the case of 1+N protection (provisioning cost the same

(n(n−1)
2 )), a Steiner minimal tree that connects all end points

in this case is a simple path of lengthn−1. Using such a path
all the remaining connections (edges) can be protected using
1+N technique. In other words the cost of protecting the first
partition which consists ofn(n−1)

2 −(n−1) connections is just
n−1. While we may try to figure out what is the minimum cost
partitioning to protect the remainingn−1 connections, there is
a more important observation to make: even if 1+1 is used to
protect the remaining connections (as a special case of 1+N),
the total 1+N protection cost would still be linear in terms of
n. In fact the total cost in this case isn−1+2(n−1) = 3n−3.

Therefore in a complete with maximum number of con-
nections possible, the protection cost of 1+1 is in the order
of number of edges (n2) while protection cost using 1+N is
in the order of number of nodes (n). Asymptotic total cost
(provisioning and protection) ratio of 1+N to 1+1 is as follows:

lim
n→∞

n(n−1)
2 + (3n− 3)

3
2n(n− 1)

=
1

3

In terms of percentage of cost reduction, this means that
1+N asymptotically needs 66.6% less resources compared to
1+1. This result is in compliance with the simulation results
on the complete graph which showed maximum 60.2% of
cost reduction. It also proves the efficiency of our heuristic

algorithm on complete graphs which is capable of achieving
a performance very close to the asymptotic bound.

VI. CONCLUSIONS

A heuristic algorithm for minimum cost provisioning and
1+N protecting of a given set of connections is presented. The
core idea is to greedily partition the given set of connections
such that total cost is minimized. The subset of connections
in each partition are independently provisioned and protected
using Greedy Shortest Paths and Greedy Steiner Tree heuristic
algorithms. Performance of the algorithm is evaluated both
experimentally by simulating different network scenariosand
analytically by finding an asymptotic bound. The simulation
results show that cost efficiency of our heuristic 1+N algorithm
with respect to 1+1 increases when the number of connections
or graph density is increased. Given the fact that the com-
parison was made between a suboptimal algorithm for 1+N
scheme and an optimal algorithm for 1+1 scheme, our results
show maximum cost savings of 21.5%, 34.5%, and 60.2% in
14-node NSFNET, 11-node COST239, and 14-node complete
graph networks. Moreover the suboptimal cost found by the
heuristic algorithm shows at most 5.7% and 13% increase
of cost in the case of 5 and 10 connections (respectivley)
compared to the optimal 1+N resluts from ILP formulation
of the problem. The final contribution of this paper is an
asymptotic bound which shows 1+N can achieve 66.6% cost
reduction compared to 1+1 in complete graphs.
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