
Data Delivery in Fragmented Wireless Sensor Networks
Using Mobile Agents

Hisham M. Almasaeid Ahmed E. Kamal
Electrical and Computer Engineering Department

Iowa State University, Ames, IA 50011
{hisham, kamal}@iastate.edu

ABSTRACT
Due to the wide range of applications in sensors and Wire-
less Sensor Networks (WSN), research in this area has re-
cently received increasing attention. WSNs rely on network
connectivity to deliver data to a base station through mul-
tihop communication. However, connectivity may not be
always achievable for a number of reasons. In this paper, we
study the problem of data delivery in disconnected WSNs.
A special class of disconnected sensor networks called ”Frag-
mented wireless sensor networks (FWSN)” is considered. A
FWSN consists of several groups of connected sensors that
we call ”fragments”. To achieve connectivity between these
fragments, mobile agents move in the network and act as
data relays between fragments, in order to eventually de-
liver data to the base station. The main contribution of this
paper is the modeling of the movement of these mobile relay
nodes as a closed queueing network to obtain steady state re-
sults of the distribution of the mobile relays in the network.
Building on these results, we derive the distributions of the
fragment-to-fragment, and fragment-to-sink delays. Com-
paring these analytical results to results from the TOSSIM
simulator, it is shown that this model accurately captures
the system behavior, and can be used to predict data deliv-
ery delays. The model is also used to study the effect of the
movement policy, number and speed of mobile relays, and
the service time at each fragment on the end-to-end delay.

1. INTRODUCTION
Recent advances in wireless communication technologies

have enabled the development of small, low-cost and low-
power multi-functional sensor nodes that are able to sense
the environment, process data and communicate with each
other in short range. A sensor network consists of a large
number of tiny sensors that communicate in a multihop fash-
ion in order to deliver the collected data to a central pro-
cessing unit, usually called the base station or the sink node.
Exploiting mobile agents to improve the performance of a
sensor network has recently become an important area of

.

research in sensor networks [1, 2]. “Mobile agents” is a very
broad term that includes any mobile entity, like vehicles,
humans, animals, and mobile robots, equipped with a radio
transceiver. Mobile agents are used in applications that uti-
lize mobility for communication-based operations, like data
relay and collection, as well as physical operations, like re-
placement of defective sensor nodes. Mobility has been ex-
ploited by many researchers for data gathering in sensor
networks. Some schemes rely on existing mobility in the en-
vironment, like vehicles or animals present in the network
field [3, 4], whereas some others suggest supporting the sys-
tem with mobile elements that have better buffer and energy
capabilities than ordinary static sensor nodes and are able
to communicate over longer distances [5, 6]. A mobile agent
that is used for data delivery can take one of three different
roles; data collector, data relay, or data sink.

The concept of mobile data collectors was first introduced
in [3] to connect sparse sensor networks, where mobile data
collectors, referred to as data MULEs, move randomly and
collect data from sensor nodes. Then, data MULEs unload
the carried data as they get close enough to a base sta-
tion. The idea of sink mobility [6, 7] has been proposed as
a method for data collection that prolongs the network life-
time by reducing the energy spent by static sensor nodes to
relay traffic. Mobility of the base station poses several chal-
lenges regarding how data should be routed [8] and what
the optimal movement strategy is [9].

The use of resource rich mobile nodes, referred to as mo-
bile relays (MR) or routers, that keep moving in a network,
in both sparse and dense deployments, to relay data be-
tween stationary sensor nodes has been recently utilized to
prolong the network lifetime [10, 11] and to enhance the data
delivery processMobile relays have been referred to as Mes-
sage Ferries (MF) by some researchers. In reference [12], a
single message ferry with deterministic movement has been
exploited to efficiently deliver data in sparse mobile ad hoc
networks.

Mobility has also been used to overcome network discon-
nection. Most of the current research attributes network
disconnection to the sparse nature of the network. Sparse-
ness has been assumed to be either due to the lack of sensors
at the deployment phase or due to node failures. In this pa-
per, we consider another form of network disconnection in
which the network is fragmented into several subnetworks
(fragments), where the fragment is a connected group of
sensor nodes. We call such network a fragmented wireless
sensor network (FWSN). Network fragmentation might be
due to a number of reasons, including:

(1) Node Failures: which might cause network fragmenta-
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tion in two different scenarios:

(i) In harsh and hostile environments nodes might
fail at a mass scale in certain regions causing
the network to be fragmented. For example, a
bomb or land mine detonation in a battle field
might break the deployed network into several
fragments. In another scenario, natural phenom-
ena like heavy rain or a mud slide can wash or
move the sensor nodes away, or even bury them
where they become useless.

(ii) Power depletion due to the unbalanced load dis-
tribution at individual sensors as a result of ran-
dom deployments, i.e., hot spots.

(2) Fragmented area of phenomenon : in some applications,
it might not be required to cover the whole field. In-
stead, specific regions in the field must be covered.

(3) Environmental conditions : the deployment of a con-
nected wireless sensor network might not be feasible
due to physical obstacles and restrictions.

Under the assumption that a FWSN faults, adding more
static sensors between fragments to connect them might
not be possible especially in hazardous scenarios, like battle
fields, disaster areas, or areas contaminated with chemical
materials. We propose a data-relay based scheme to deliver
data in FWSNs that uses mobile agents to act as relay nodes
between fragments. Agents move continuously in the net-
work according to a certain policy in order to act as relay
nodes between fragments. This way, the network will be
connected over a time period instead of continuous connec-
tivity. The major contribution of this paper is the modeling
of the movement of these relay nodes as a closed queueing
network to obtain steady state results of the distribution of
the mobile relays in the network. Building on these results,
we derive the distributions of the fragment-to-fragment and
fragment-to-sink delays. The effect of the number of mo-
bile relays and the underlying movement policy on the data
latency is also studied. Moreover, we study the problem
of engineering the service time, i.e., the time that a mobile
relay spends in relaying data at each fragment.

The rest of this paper is organized as follows. In Section
2, we introduce a formal definition of the “Data Delivery in
Fragmented Wireless Sensor Networks” problem and then
present a Closed Queuing Network model to evaluate the
performance of the system. Section 3 addresses the issue
of fragment-to-fragment data latency. The fragment-to-sink
data latency is studied in Section 4. Engineering the service
time at a service center, which is the time spent by a mo-
bile agent to relay data between two adjacent fragments, is
studied in Section 5. We discuss some analytical and sim-
ulation results in Section 6. Section 7 concludes the paper
and suggests some future research directions.

2. PROBLEM DEFINITION AND MODEL-
ING

In this section, we first define the problem of data de-
livery in FWSNs and make some operational assumptions.
Then, we model the problem as a Gordon-Newell queueing
network.

2.1 Problem Definition
The problem of “Data Delivery in Fragmented Wireless

Sensor Networks” is defined as follows:

Given an FWSN that consists of n fragments, let K∗ be the
minimum number of static relay nodes required to connect
the whole network1. We make the following assumptions:

- There are K mobile relays, 1 ≤ K < K∗.
- All mobile relays move at the same speed of L m/s.

- No more than one mobile relay is used to connect a
pair of adjacent fragments. An MR relays data be-
tween a pair of adjacent fragment through direct com-
munication if these fragments are close enough. If the
two fragments are far apart, then the MR should carry
the data from one fragment, move close enough to the
second fragment, and relay the data.

- The connection between any pair of fragments i and
j must persist for at least ts

ij time units. During this
period, data will be relayed from fragment i (source-
fragment) to fragment j (destination-fragment) through
the MR in between. This time period includes both
the direct communication time and the movement time
between the pair of fragments (if necessary). ts

ij will
be referred to as service time or sojourn time inter-
changeably. For the time being, ts

ij is assumed to be
long enough to relay all generated data, and we will
revisit this issue of in Section 5.

Our objective in this study is the following:

- Find the distribution of the waiting time for a fragment
before its data is relayed to the next fragment. We call
this waiting time the “idle time”.

- Find the distribution of the end-to-end delay, i.e., the
time to deliver data to the base station.

2.2 Problem Modeling
We model the movement of the mobile relays using a

closed queueing network, also known as Gordon-Newell net-
work. The locations between fragments where mobile re-
lays stop at in order to relay data are modeled as infinite-
buffer/infinite-server queues, and the mobile relays are mod-
eled as customers. Figure 1 shows a case-study FWSN that
will be used throughout this paper to illustrate our model-
ing approach. This network consists of six fragments labeled
(FRAG-1,. . . ,FRAG-6). A Hexagon between a pair of frag-
ments represent a potential location where an MR can stop
to relay data from one fragment to another. For example,
an MR at connection point 1 relays data from FRAG-1 to
FRAG-2, and an MR at connection point 3 relays data from
FRAG-3 to FRAG-6 and so on. From now on, connection
points will be referred to as Service Centers (s/c).

Let s/ck be the kth service center that connects fragments
i and j in a FWSN. Service center s/ck is modeled as an
infinite-buffer/infinite-server queue, which offers service ac-
cording to an exponentially distributed service time, that
corresponds to the sojourn time, with a rate µk = 1/ts

ij .
We call such a queue a relay queue. For the time being we
assume that the routing probabilities between service cen-
ters, i.e., the movement policy, are given. Table 1 shows
a sample set of routing probabilities that are used for our
case study, where qij represents the probability that a MR
leaving s/ci goes to s/cj . We refer to the movement policy
described in Table 1 as the baseline policy throughout this

1Note that there is always a way to connect the network
over a sufficiently long time period, t, with K mobile relays,
where 1 ≤ K < K∗. However, the fewer the number of
mobile relays, the higher the delay.
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Figure 1: A case-study FWSN with six fragments
and five service centers.

paper. To capture the trip time between service centers, we
do the following:

- For every pair of relay queues (i, j), for which qij>0, we
add an infinite-buffer/infinite-server queue, which we
call a movement queue, with a service rate µi=L/dij ,
where L is the MR speed and dij is the distance be-
tween s/ci and s/cj . This queue models the movement

time from s/ci to s/cj . We assume in the case-study in

Figure 1 that the route that an MR takes from s/ci to
s/cj is the one it takes from j to i, therefore dij=dji.

- The probability that a customer leaving queue i goes to
the new movement queue leading to s/cj is the same as

the probability that an MR leaving s/ci goes to s/cj ,
i.e., qij . Then, the probability that a customer leaving
the movement queue goes to queue j is 1.

In the remainder of this paper, we will use the word queue
to refer a queue of any type (i.e. movement or relay). To
reference a particular type we use “movement queue” or
“relay queue”. We model the number of mobile relays in the
network as the number of customers that circulate in the
closed queueing network. Tables 1 and 2 summarize all the
parameters associated with the case-study in Figure 1 and
they will be used in all analysis and simulations throughout
this work unless mentioned otherwise.

Using the parameters in Tables 1 and 2 and the mapping
procedure described above we construct the Gordon-Newell
network model shown in Figure 2 for the case study shown
in Figure 1. Gray nodes represent the relay queues while
clear nodes represent the movement queues. µi represents
the service rate of queue i. In Sections 3 and 4, we use
the queueing network in Figure 2 to obtain steady state
probabilities that we then use to evaluate the fragment-to-
fragment and fragment-to-sink delays.

Service center qi1 qi2 qi3 qi4 qi5

s/c1 0.0 0.0 0.0 0.4 0.6
s/c2 0.0 0.0 0.6 0.0 0.4
s/c3 0.0 0.2 0.0 0.8 0.0
s/c4 0.5 0.0 0.0 0.0 0.5
s/c5 0.35 0.25 0.2 0.2 0.0

Table 1: Sample routing probabilities between ser-
vice centers for the case-study FWSN in Figure 1.

Parameter Value Parameter Value

Num. of MRs 2 d25 401.6m
Num. of s/c’s 5 d23 680.34m

Speed (L) 1.2m/s d34 463.1m
ts
ij 60sec d35 321.74m

d14 391.76m d45 357.94m
d15 368.76m

Table 2: System parameters of the case-study
FWSN shown in Figure 1.
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Figure 2: Gordon-Newell Network model for the
case-study FWSN shown in Figure 1

3. IDLE TIME DISTRIBUTION
In this section we derive the idle time distribution at any

queue. The idle time at a service center is the idle time at
the relay queue that models this service center. We derive
two forms of the idle time distribution:

(1) Joint distribution: in which the probability that queue
i is idle for time t ≤ τ is taken jointly with the proba-
bility that queue i has been idle at t=0.

(2) Conditional distribution: in which the probability that
queue i is idle for time (t ≤ τ) is conditioned on the
fact that queue i was idle at t=0.

As will be seen in Section 4, the idle time distribution in
these two different forms is required for the evaluation of
the end-to-end delay. We start by computing the end-to-
end delay along a certain path from the point where the
first service center on that path becomes idle. Therefore, we
use the Conditional distribution for the first service center,
while the Joint distribution is used for the remaining service
centers on the path.

3.1 Definitions

- M is the number of queues in the network (this in-
cludes both relay and movement queues).

- K is the number of customers (i.e., mobile relays).

-
−→
N = {n1(

−→
N ), . . . , nM (

−→
N )} is the state of the system,

i.e., queueing network, in which the K customers are
distributed over the M queues such that queue i has
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ni(
−→
N ) customers in this state. Note that

∑M
i=1 ni(

−→
N ) =

K for any state
−→
N .

- Ω is the set of all possible system states, |Ω| =
(

M+K−1

K

)
.

- µj is the state-independent service rate of queue j.
- qij is the probability that a customer leaving queue i

will move to queue j (we assume that there is one class
of customers in the system). In our queueing model,
qii = 0.

- π(
−→
N ) is the steady-state probability of state

−→
N , such

that
∑
−→
N∈Ω

π(
−→
N ) = 1.

- ni is used to refer to the number of customers at queue
i regardless of the system state.

- Ei is the number of system states in which ni=0.

- pi
idle(t,

−→
N ) is the probability that at time t, queue i is in

state
−→
N in which ni(

−→
N )=0, and ni became zero at time

t=0 and remained so in [0, t] (i.e., joint probability). In
other words, this is the probability that queue i is idle

for a time that is greater than t. Note that, pi
idle(t,

−→
N )

is defined only over network states in which ni=0.

- −→p i
idle(t)=[pi

idle(t,
−→
N 1), . . . , pi

idle(t,
−→
N Ei)]

T .
- Ui is a row vector of ones such that |Ui|=Ei.
- Ti is a random variable that represents the idle time

at queue i.
- FTi(t) = probability (Ti ≤ t), is the joint cumulative

distribution function (CDF) of Ti (i.e., the joint dis-
tribution that queue i starts and idle period at the
reference time (t∗=0) and stays idle for time Ti ≤ t).

- fTi(t) = d
dt

FTi(t), this is the joint pdf of Ti.
- FTi|I(t) = probability{ Ti ≤ t | ni = 0 at t = 0}, i.e.,

the conditional distribution that queue i stays idle for
time Ti ≤ t given that it starts an idle period at the
reference time t∗=0.

- fTi|I(t) = d
dt

FTi | I(t)

3.2 The Joint Distribution
In an infinite-server exponential service time queue i, the

probability of serving a customer within a very small time
interval ∆t → 0, given that there are ni customers in the
queue, is given by:

niµi∆t + o(∆t) (1)

where o(∆t) is a function that approaches zero faster than
∆t. Therefore, the following forward Chapman-Kolmogorov
equation holds;

pi
idle(t+∆t,

−→
N ) = pi

idle(t,
−→
N ) · prob(

−→
N at t+∆t|−→N at t)

+
∑
−→
N∗∈Ω

pi
idle(t,

−→
N ∗) · prob(

−→
N at t+∆t|−→N ∗ at t)

(2)
In this Markovian system only one event (i.e., transition)
is possible in a very short time period ∆t. Therefore, the

probability that the system will evolve from state
−→
N∗ at t

to state
−→
N at t + ∆t is given by:

prob(
−→
N at t + ∆t|−→N ∗ at t) =





nj(
−→
N ∗)µjqjk∆t + o(∆t) if

−→
N =

−→
N ∗ +

−→
1 j −−→1 k ∀

j, k ∈ {1, 2, . . . , M}, j, k 6= i

0 otherwise
(3)

Note that this probability is zero when the difference be-
tween the two states is more than one customer, because it
means that a single transition cannot move the system to

state
−→
N . On the other hand, the probability of no transition

in the time period [t, t + ∆t] is given by:

prob(
−→
N at t+∆t|−→N at t) = 1−

M∑
j=1
j 6=i

nj(
−→
N )µj∆t+o(∆t) (4)

Using equations (3) and (4) in equation (2) we get,

pi
idle(t + ∆t,

−→
N ) =

M∑
j=1
j 6=i

M∑

k=1
k 6=i

nk(
−→
N )>0

nj(
−→
N+

−→
1 j−−→1 k)µj∆t · pi

idle(t,
−→
N+

−→
1 j−−→1 k)qjk

+


1−

M∑
j=1
j 6=i

nj(
−→
N )µj∆t


 · pi

idle(t,
−→
N ) + o(∆t)

Rearranging the terms and then taking the limit as ∆t → 0,
we obtain

d

dt
−→p i

idle(t) = Ai
−→p i

idle(t) (5)

Where Ai = [ai
xy] is an Ei × Ei matrix such that:

ai
xy =





−
M∑

j=1
j 6=i

nj(
−→
N x)µj if x = y

nj(
−→
N y)µjqjk if

−→
N y =

−→
N x +

−→
1 j −−→1 k

0 otherwise

(6)

The solution of the differential equation in (5) is,

−→p i
idle(t) = eAit−→p i

idle(0). (7)

pi
idle(0,

−→
N ) can be found using the steady state probabilities

as well as the routing probabilities between service centers.
Let ξik

j be the transition of a customer from queue i to queue
k (for k 6= i) that will make the system evolve from state−→
N j +

−→
1 i − −→

1 k to state
−→
N j such that ni(

−→
N j) = 0 and

nk(
−→
N j) > 0, i.e., ni(

−→
N j+

−→
1 i−−→1 k)=1. In other words, ξik

j

is the transition that will initiate an idle period at queue i.
Let prob(ξik

j ) be the probability that this transition takes
place before any other transition. Then,

pi
idle(0,

−→
N j) =

M∑

k=1
k 6=i,nk(

−→
N )>0

π(
−→
N j +

−→
1 i−−→1 k) ·prob(ξik

j ) (8)

It has been shown in [13] that the steady state (equilibrium)
distribution of the network state is given by,

π(
−→
N ) =

1

G(M, K)

M∏
i=1

(
λi

µi

)ni(
−→
N )

(9)

where λi is the effective arrival rate at queue i, which can be
obtained by solving the following set of dependent equations:

λi =

M∑
j=1

λjqji, 1 ≤ i ≤ M. (10)
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There is no unique solution for equation (10). However, the
normalization constant G(M, K) is used to make

∑
−→
N∈Ω

π(
−→
N ) = 1.

This normalization constant can be obtained using the con-
volution algorithm [14].

Given π(
−→
N j +

−→
1 i−−→1 k), and based of the Markovian prop-

erty of the system, prob(ξik
j ) can be computed as:

prob(ξik
j ) =

ni(
−→
N j +

−→
1 i −−→1 k)µi

M∑

l=1

µlnl(
−→
N j +

−→
1 i −−→1 k)

qik

=
µi

M∑

l=1

µlnl(
−→
N j +

−→
1 i −−→1 k)

qik

(11)

Using equations (8) and (11) we can write pi
idle(0,

−→
N j) as,

pi
idle(0,

−→
N j) =

M∑

k=1
k 6=i

nk(
−→
N j)>0

µiqikπ(
−→
N j +

−→
1 i −−→1 k)

M∑

l=1

µlnl(
−→
N j +

−→
1 i −−→1 k)

(12)

Using equation (7), FTi(t) can be written as,

FTi(t) = 1− Uie
Ait−→p i

idle(0) (13)

where −→p i
idle(0) is given by,

−→p i
idle(0) = [pi

idle(0,
−→
N 1), . . . , p

i
idle(0,

−→
N Ei)]

T

and we obtain the elements of −→p i
idle(0) using equation (12).

3.3 Conditional Distribution
The next step is to evaluate FTi|I . Let pi

idle(t,
−→
N |ni =

0 at t = 0) be the probability that queue i is idle for more
than t given that it was idle at time t = 0. Therefore,

pi
idle(t,

−→
N |ni = 0 at t = 0) = eAitpi

idle(0,
−→
N |ni = 0 at t = 0)

(14)
such that,

pi
idle(0,

−→
N |ni = 0 at t = 0) =

pi
idle(0,

−→
N )∑

−→
N∗∈Ω

ni(
−→
N∗)=0

pi
idle(0,

−→
N ∗)

(15)

Substituting equation (12) in (15) we get,

pi
idle(0,

−→
N |ni = 0 at t = 0) =

M∑

k=1
k 6=i

nk(
−→
N )>0




µiqikπ(
−→
N +

−→
1 i −−→1 k)

M∑

l=1

µlnl(
−→
N +

−→
1 i −−→1 k)




∑
−→
N∗∈Ω

ni(
−→
N∗)=0

M∑

k=1
k 6=i

nk(
−→
N∗)>0




µiqikπ(
−→
N ∗ +

−→
1 i −−→1k)

M∑

l=1

µlnl(
−→
N ∗ +

−→
1 i −−→1 k)




(16)

Finally, the conditional distribution FTi|I(τ) is given by,

FTi|I(τ) = 1− Uie
Aiτ−→p i

idle(0|ni=0 at t=0), (17)

where −→p i
idle(0|ni=0 at t=0) is given by,

−→p i
idle(0|ni=0 at t=0) =

[pi
idle(0,

−→
N 1|ni=0 at t=0), . . . , pi

idle(0,
−→
N Ei |ni=0 at t=0)]T

(18)

3.4 Average Idle Time
The average idle time for service center i, denoted by

E[Ti|I], is given by:

E[Ti|I] =

∫ ∞

t=0

(
1− FTi|I(t)

)
dt

=

∫ ∞

t=0

Uie
Aiτ−→p i(0|ni=0 at t=0)dt

(19)

Evaluating equation (19) involves the integration of a matrix
exponential (eAit) which can be very complicated depending
on the size of the matrix Ai. Therefore, we evaluate this
expression numerically by dividing t into a lesser number of
small time steps, each of which is equal to ∆, as follows:

E[Ti|I] =

∞∑

k=0

(
1− FTi|I(k∆)

)
∆ (20)

By keeping ∆ small, we can obtain very accurate results.
For the rest of this paper, we will use this discrete method
for evaluating average values and distributions.

4. END-TO-END DELAY DISTRIBUTION
Evaluating the distribution of the end-to-end delay pos-

sesses a trade-off between the accuracy of the solution and
its complexity. To evaluate the exact end-to-end delay dis-
tribution along a path, we need to consider the dependency
between the idle periods at all service centers that form the
path. In the worst case, we need to consider the state of
the whole path, and that gets worse as the length of the
path gets longer since we might have to consider the state
of the whole queuing system. This might make the evalu-
ation intractable. Therefore, we propose two approximate
approaches, namely, the Convolution approach (CONV) and
the Dynamic Programming-Like Approach (DPA), to eval-
uate the end-to-end delay distribution based on the level
of dependence to assume between service centers along the
path. It is to be noted that we evaluate the end-to-end de-
lay distribution as a probability mass function over a small
time interval ∆ which reduces the computational complexity
while assuming that the time t consists of d t

∆
e such inter-

vals. It is also worth pointing out that our analysis only
applies to the case of one data path from a fragment to base
station. The case of multiple data paths from a fragment to
the base station is beyond the scope of this paper.

4.1 Convolution Approach
The convolution approach is based on the assumption that

the distributions of the idle periods at different service cen-
ters along the path are independent. As the end-to-end de-
lay is the sum of all the independent idle times along the
path, then the distribution of the end-to-end delay is the
convolution of all idle time distributions. Let z be a path
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of |z| service centers, and ψ(t,z) be the probability mass
function that the end-to-end delay along the path z is t.
Then, the end-to-end delay is given as,

ψ(z, t) = FT1|I � FT2 · · ·� FTn(t) (21)

This approximation significantly reduces the complexity by
ignoring the dependence between the idle periods. However,
assuming independence underestimates the end-to-end delay
since the presence of an MR at previous service centers is
ignored, i.e., the probability of being idle/busy at any ser-
vice center is evaluated without considering the status of
previous service centers along the path.

4.2 Dynamic Programming Like Approach
We propose a dynamic programming-like approach (DPA)

as a compromise between the computational complexity and
solution accuracy. This compromise is based on the relax-
ation of the level of dependency between idle periods, i.e.,
by only considering the dependency between every pair of
successive service centers. Since any service center will be
in one of two different states (i.e., busy or idle) at any point
in time, we have four different situations:

(1) s/ci is idle for time t given that s/cj was also idle;
let the probability density function of this event be
pI|I(i, j, t),

(2) The current service center (s/ci) is idle for time t
given that the previous service center (s/cj) was busy ;
let the probability density function of this event be
pI|B(i, j, t),

(3) s/ci is busy given that s/cj was idle; let the probability

of this event be pB|I(i, j), and

(4) s/ci is busy given that s/cj was busy ; let the probabil-

ity of this event be pB|B(i, j).

Next we derive the formulas for all the four conditional prob-
abilities listed above.

4.2.1 Conditional Probabilities

pI|I(i, j, t). Let us start with the probability pI|I(i, j, t). Note
that for the first service center on the path, pI|I(i, j, t) =
fTi|I(t). For other service centers, it is the same as fTi|I(t)
except for the initial condition −→p i

idle(0) where we have a
different condition to be satisfied which is: s/cj has just
ended its idle period, i.e., nj changed from 0 to 1 and hence
nj = 1 at the beginning of ti. We refer to the proba-

bility of this condition for a certain network state
−→
N as

hi
idle(0,

−→
N |nj=1 at t=0). This probability is given by:

hi
idle(0,

−→
N |nj=1 at t=0) =





prob(
−→
N, nj(

−→
N )=1 at t=0)

prob(nj=1 at t=0)
if nj(

−→
N )=1, ni(

−→
N )=0

0 otherwise
(22)

where prob(
−→
N, nj(

−→
N )=1 at t=0) is given by,

prob(
−→
N, nj(

−→
N )=1, at t=0) =

M∑

k=1
k 6=j

nk(
−→
N+

−→
1 k−−→1 j)µk

M∑

l=1

µlnl(
−→
N+

−→
1 k−−→1 j)

qkjπ(
−→
N+

−→
1 k−−→1 j) (23)

We derived equation (23) following the same approach we
used to derive equation (12). We used the probability that
the transition from queue k to queue j, that will lead to state−→
N , takes place before any other transition. The probability
prob(nj=1, at t=0) is given as,

prob(nj=1, at t=0) =
∑
−→
N∗∈Ω

nj(
−→
N∗)=1

prob(
−→
N ∗, nj(

−→
N ∗)=1 at t=0)

(24)
Let,

−→
h i

idle(0|nj=1) =

[
−→
h i

idle(0,
−→
N 1|nj=1 at t=0), . . . ,

−→
h i

idle(0,
−→
N Ei |nj=1 at t=0)]T

(25)
Then, using equations (7) and (25) we get,

pI|I(i, j, t) =
−→
U i(−Ai)e

Ait−→h i
idle(0|nj=1) (26)

pI|B(i, j, t). For pI|B(i, j, t), we do not know where the last
transition was because we consider the dependency between
consecutive queues only. But, we know that the initial state
must have s/cj busy, i.e., nj>0, and ni=0. Therefore, we ap-
proximate the probability of the initial state, which we refer

to it as hi
idle(0,

−→
N |nj > 0 at t=0), using steady state prob-

abilities. Equation (27) defines hi
idle(t,

−→
N |nj > 0 at t=0).

hi
idle(0,

−→
N |nj > 0 at t=0) =





π(
−→
N )∑

−→
N∗∈Ω

nj(
−→
N∗)>0

π(
−→
N ∗)

if nj(
−→
N ) > 0, ni(

−→
N ) = 0

0 otherwise

(27)

Let,

−→
h i

idle(0|nj>0) =

[
−→
h i

idle(0,
−→
N 1|nj>0 at t=0), . . . ,

−→
h i

idle(0,
−→
N Ei |nj>0 at t=0)]T

(28)
Then, using equations (7) and (28) we get,

pI|B(i, j, t) =
−→
U i(−Ai)e

Ait−→h i
idle(0|nj > 0) (29)

pB|I(i, j). The third conditional probability is pB|I(i, j). The
condition that must be satisfied at the initial state for pB|I(i, j)
is the same as that for pI|I(i, j, t), which is that s/cj has just

ended its idle period. However, when this happens, s/ci is

busy, i.e., nj=1 and ni>0. We define hi
busy(0,

−→
N |nj=1 at t=0)

as the probability of having the initial (at time 0) state
−→
N in

which ni > 0 given that s/cj has just ended its idle period,
i.e., nj=1, and ni>0. Therefore,

hi
busy(0,

−→
N |nj=1 at t=0) =





prob(
−→
N, nj(

−→
N )=1 at t=0)

prob(nj=1 at t=0)
if nj(

−→
N ) = 1, ni(

−→
N ) > 0

0 otherwise
(30)

prob(
−→
N, nj(

−→
N )=1 at t=0) and prob(nj=1 at t=0) are as

given in equations (23) and (24) respectively. Equation (31)
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gives the final expression for pB|I(i, j).

pB|I(i, j) =
∑
−→
N∈Ω

ni(
−→
N )>0

hi
busy(0,

−→
N |nj=1 at t=0) (31)

pB|B(i, j). The last conditional probability to find is pB|B(i, j).

Let hi
busy(0,

−→
N |nj>0 at t=0) be the probability of having the

initial (at time 0) state
−→
N in which ni>0 given that s/cj is

busy (i.e., nj>0). Then, using the same approximation we
made to derive equation (27) we get,

hi
busy(0,

−→
N |nj>0 at t=0) =





π(
−→
N )∑

−→
N∗∈Ω

nj(
−→
N∗)>0

π(
−→
N ∗)

if nj(
−→
N ) > 0, ni(

−→
N ) > 0

0 otherwise

(32)

Equation (33) gives the final expression for pB|B(i, j).

pB|B(i, j) =
∑
−→
N∈Ω

ni(
−→
N )>0

hi
busy(0,

−→
N |nj>0 at t=0) (33)

4.2.2 Recursive approach for calculating the end-to-
end delay distribution

Before we get into the details of our dynamic program, we
start with some definitions.

- The time t is divided into an integer multiple of a small
time step ∆. This is done to simplify computations.
Therefore, once the probability density functions in
(26) and (29) are multiplied by ∆, they becomes prob-
ability mass functions.

- As defined before, z is a path of service centers.

- υ is used to index the service center over the path, i.e.,
z(υ) is the υth service center along the path.

- ϕ is the status of a service center: ϕ=I+ means that
the service center has just ended its idle period, ϕ=B
means a busy service center, and ϕ=X means un-
known status and it is used for the first service center
along the path as there is no previous service center
for this one.

- α(t,z, υ, ϕ) is the probability that the υth service cen-
ter along z is idle for time t given that its predecessor
(i.e. (υ−1)th service center) was in a status ϕ.

- β(z, υ, ϕ) is the probability that the υth service center
along the path z is busy given that its predecessor (i.e.
(υ − 1)th service center) was in a status ϕ.

- γ(t,z, υ, ϕ) is the probability mass distribution func-
tion of the end-to-end delay along the path z condi-
tioned on the fact that service center s/cυ was in a
status ϕ. Therefore, ψ(z, t) = γ(t,z,z(1), X).

Using the conditional probabilities we obtained earlier (viz.,
equations (26), (29), (31), and (33)) we express α(t,z, υ, ϕ)
and β(z, υ, ϕ) as follows:

α(t,z, υ, ϕ) =





pI|I(z(υ),z(υ − 1), t) if ϕ=I+, υ>1
pI|B(z(υ),z(υ − 1), t) if ϕ=B, υ>1
fTz(υ)|I(t) if ϕ=X, υ=1

(34)

β(z, υ, ϕ) =





pB|I(z(υ),z(υ − 1)) if ϕ = I+, υ > 1
pB|B(z(υ),z(υ − 1)) if ϕ = B, υ > 1
0 if υ = 1

(35)
The basic idea of the dynamic programming-like approach
is that each service center has two possible states, either it is
busy (i.e., has at least one MR) or idle. The recursive step of
the dynamic programming-like approach for the evaluation
of γ(t,z, ϕ, υ) is given by equation (36).

γ(t,z, ϕ, υ) = β(z, υ, ϕ)γ(t,z, B, υ+1)

+

t/∆∑

k=1

α(k∆,z, υ, ϕ)γ(t−k∆,z, I+, υ+1)∆

(36)
The term, β(z, υ, ϕ)γ(t,z, B, υ +1), is the probability that
the current service center, viz.,s/cυ, is busy and the rest of
the path is idle for time t, and this is why the entire idle
time t should be incurred over all downstream service cen-
ters. Moreover, we pass ϕ = B in the recursion so that
in the following step in the recursion, the previous service
center will be known as a busy center. The second term,∑t/∆

k=1 α(k∆,z, υ, ϕ)γ(t − k∆,z, I, υ + 1), is the probabil-
ity that the current service center, viz., υ, is idle for time
k∆ and an idle time of t − k∆ is incurred over the rest of
the path, summed over all possible values of K. Equation
(37) shows the boundary conditions for the recursive formula
above. For the case of υ = |z|, the equation returns one of
two different values, depending on the remaining time.

γ(t,z, ϕ, υ) =





β(z, υ, ϕ) if υ = |z| and t = 0

α(t,z, υ, ϕ) if υ = |z| and t > 0
(37)

5. ENGINEERING THE SERVICE TIME
The assumption that ts

ij is the same for all service centers
is not a practical one, since different fragments with different
sizes and different locations in the network require different
service times. This time depends on three parameters; the
number of sensors within the fragment, the average data
generation rate at each fragment, and the average amount
of data relayed through the fragment. Before we get into
details, we first introduce some definitions. For a fragment
i, let:

- Si be the number of sensor nodes in fragment i.

- ρi be the data generation rate in bits/sec of a sensor
in fragment i.

- R be the sensor’s data transmission rate in bits/sec.

- ςi be the average amount of relayed data, in bits, that
will be temporarily buffered in fragment i.

- σi be the average total amount of data (generated and
relayed) that is temporarily buffered in fragment i.

- Hi is a set of all fragments that FRAG−i lies on their
data paths toward the sink. For example, in our case
study in Figure 1, H6={1, 2, 3, 4, 5}, H3={1, 2, 4, 5},
H2={1, 4, 5}, and H1=H4=H5={}.

For a service center s/ck, let:

- s(k) be the source fragment that an MR at s/ck relays
data from. For example, in Figure 1, s(1) = 1, s(2) =
5, s(3) = 3, s(4) = 4, and s(5) = 2.

- d(k) be the destination fragment that an MR at s/ck

relays data to. For example, in Figure 1, d(1) =
2, d(2) = 2, d(3) = 6, d(4) = 2, and d(5) = 3.
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By considering the idle time and the following sojourn time
at s/ck to form an alternating renewal process, equation (38)
evaluates the average of the total amount of data relayed into
fragment s(k) by summing the data generation rates at all
the fragments whose data is relayed through our s(k) during
the average idle time at s/ck as well as the sojourn time.

ςs(k) =





(
ts
s(k),d(k) + E[Tk|I]

) ∑
i∈Hs(k)

Siρi if |Hs(k)| > 0

0 otherwise
(38)

Then, equation (39) is used to estimate the average amount
of data that might be buffered at a fragment, relayed into
and generated within the fragment.

σs(k) =
(
ts
s(k),d(k) + E[Tk|I]

)
Ss(k)ρs(k) + ςs(k) (39)

We propose an algorithm that rely on this approximation to
calculate ts

ij . Algorithm 1 first initializes ts
ij , and then solves

the closed queueing network and calculates the average idle
time at all service centers using the equation (20). The next
step is to calculate new ts

ij ’s based on the average amount of
buffered data evaluated using equation (39). This process is
repeated until all the differences between the new values of
ts
ij and the old ones are less than a predetermined threshold.

Algorithm 1: Calculate ts
ij

1: Initialize ts
ij ∀ i, j

2: repeat
3: Solve the queueing network to find the average idle

time E[Tk|I] for every service center s/ck.
4: for all service center s/ck do
5: Set i = s(k) and j = d(k)
6: Evaluate σi using Equation (39)
7: εk = |ts

ij − 2σi
R
|

8: ts
ij = 2σi

R
9: end for

10: until εk < threshold ∀k

Algorithm 1 does not consider the time that an MR might
need to move between two fragments to relay data. For a
fixed MR speed and movement route, this movement time
is fixed and cannot be engineered. Therefore, we just en-
gineer the communication time and then, the total sojourn
time will be the sum of the engineered communication time
and the fixed movement time. For the case-study of this
paper, we assume that all pairs of adjacent fragments are
close enough so that MRs can deliver data through direct
communication without any movement.

6. RESULTS AND DISCUSSIONS
In this section, we present some analytical and simula-

tion results that validate the accuracy of our modeling ap-
proach and provide some conclusions about the performance
of the system versus several parameters including, number
and speed of MRs, movement policy, and sojourn time.
We applied the expressions in equations (13) and (17) to
evaluate FTi|I(t) and FTi(t) for all the service centers in our
case study (Figure 1 and Tables 1 and 2). The results are
shown in Figure 3. Notice that FTi|I(0)=0 because at t=0
s/ci has just become idle and it will stay idle for non-zero

Policy s/c qi1 qi2 qi3 qi4 qi5

Uniform

s/c1 0.0 0.0 0.0 0.5 0.5
s/c2 0.0 0.0 0.5 0.0 0.5
s/c3 0.0 0.5 0.0 0.5 0.0
s/c4 0.5 0.0 0.0 0.0 0.5
s/c5 0.25 0.25 0.25 0.25 0.0

Distance-Based

s/c1 0.0 0.0 0.0 0.43 0.57
s/c2 0.0 0.0 0.69 0.0 0.31
s/c3 0.0 0.39 0.0 0.61 0.0
s/c4 0.46 0.0 0.0 0.0 0.54
s/c5 0.28 0.20 0.27 0.25 0.0

Deterministic

s/c1 0.0 0.0 0.0 0.0 1.0
s/c2 0.0 0.0 1.0 0.0 0.0
s/c3 0.0 0.0 0.0 1.0 0.0
s/c4 1.0 0.0 0.0 0.0 0.0
s/c5 0.0 1.0 0.0 0.0 0.0

Table 3: Three policies for case-study in Figure 1.

time. However, FTi(0) can be non-zero, which is the proba-
bility that s/ci is idle at time t=0.

To validate the accuracy of our analysis and to understand
the effect of the movement policy, we evaluated, through
analysis and simulation, the average idle time at all service
centers in the case study shown in Figure 1 using the pa-
rameters shown in Table 2 under four different movement
policies. In addition to the baseline policy in Table 1, we
propose three different movement policies: uniform, distance
based, and deterministic. In a uniform policy, an MR leav-
ing a certain service center goes to any of the reachable
neighboring service centers with the same probability. The
distance based policy suggests that an MR goes to closer
reachable neighboring service centers with higher probabil-
ity than farther ones. The third policy assumes that an MR
follows a deterministic route (i.e., a cycle) through all the
service centers. Table 3 shows all the three policies.

For our simulation model, we used the TOSSIM simulator
[15]. TOSSIM simulates TinyOs sensor networks at the bit
level which guarantees a high level of fidelity. We also used
Tython scripting language [16] to implement mobility.

Figure 4 shows the average idle time at all service centers
using all four policies obtained by simulation using a speed
of 1.2m/s and ∆=0.01min. Note that s/c2 and s/c3 suffer
more than others in all policies, except under the determin-
istic policy, and that s/c3 lies on the data paths of FRAG−1
though FRAG−5. Therefore, the end-to-end delay of the
data generated at those fragments will be negatively affected
at s/c3. On the other hand, s/c3 receives good service un-
der the deterministic policy compared to other policies. It
is evident that the deterministic policy is the fairest among
all policies. Every service center is idle for the time required
to travel over the cycle. In our particular case study, a de-
terministic policy is optimal in terms of fairness because all
sojourn times (i.e. ts

ij) are equal. The average idle times
obtained using our queueing model are shown in Figure 5.
It is evident that our analysis is very accurate as it shows
an average error of about 5%.

As a matter of fact, it turns out that enhancing the move-
ment policy might be better than increasing the number
of mobile relays to minimize the maximum idle time in a
FWSN. To verify this, we simulated our case study with dif-
ferent numbers of mobile relays ranging from 1 to 4 under
the baseline and the deterministic policies. For the same
speed, as shown in Figure 6, the maximum idle time under
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Conditional Joint

(a) FT1|I(t) and FT1(t)
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Conditional Joint

(b) FT2|I(t) and FT2(t)

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Time (min)

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n

 

 

Conditional Joint

(c) FT3|I(t) and FT3(t)
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Conditional Joint

(d) FT4|I(t) and FT4(t)
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(e) FT5|I(t) and FT5(t)

Figure 3: The conditional, FTi|I(t), and joint, FTi(t), distributions at all service centers at a speed of 1.2m/s.
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0

5

10

15

20

25

30

35

Baseline Uniform Distance-
Based

Deterministic

Movement Policy

A
ve

ra
g

e 
Id

le
 T

im
e 

(m
in

)

s/c1

s/c2

s/c3

s/c4

s/c5

Figure 5: Average idle time at a
speeds of 1.2m/s (Analysis).

0

10

20

30

40

50

60

1 2 3 4

Number of Mobile Relays

 Id
le

 T
im

e 
(m

in
)

Baseline-1.2m/s Baseline-3.89m/s

Deterministic-1.2m/s Deterministic-3.89m/s

Figure 6: Maximum idle time
among all service centers.

the deterministic policy with two and three MRs is bet-
ter than that under the baseline policy with three and four
MRs respectively. Moreover, the maximum idle time under
the deterministic policy with two MRs is very close to that
under the baseline policy with four MRs. It can be there-
fore concluded that the movement policy plays an important
role in influencing the performance of the system. Another
thing that we conclude from Figure 6 is that the effect of
movement policy and the speed of movement degrades as
the number of MRs increases.

We evaluated the end-to-end delay using the two approx-
imations proposed in Section 4, namely, CONV and DPA.
Figure 7 shows, as we expected in Section 4, that the CONV
approach overestimates the probability distribution function
and therefore underestimates the average end-to-end delay.
Figure 8 show the average end-to-end delay along all the
data paths in our case-study (Figure 1, Table 1, and Table
2) obtained using DPA, CONV, and simulation at a speed
of 1.2m/s. The results shown in Figure 8 indicate that the
DPA approach accurately predicts the end-to-end delay, but
the CONV approach underestimates the average end-to-end
delay by up to 66%.

Figure 9 shows σi for fragments 1 through 5 obtained
using equation (39) as well as simulation for our case study
in Figure 1, using the parameters in Table 1, the distances
in Table 2, and the following additional parameters:

- ρi = 1pkt/min = 4.8bit/sec ∀ i, i.e., based on a packet
size of 36 bytes.

- R = 38.4kbps.

- Two MRs that move at a speed of 3.89m/s.

- Si’s are as shown in Figure 1.

Figure 9 proves the accuracy of the proposed algorithm as
it shows a maximum error of only 10%, compared to sim-
ulation, in estimating the average amount of buffered data
in a fragment (the average load). Figure 10 shows the new
calculated average sojourns times. Note that the 1min that
was assumed turns our to be much longer than the required
time. We evaluated the end-to-end delay using the new so-
journ times shown in Figure 10. Therefore, by properly
engineering the sojourn time, the average end-to-end delay
was reduced, as shown in Figure 11, by about 28%.

7. CONCLUSIONS
A new form of network disconnection called Fragmented

Wireless Sensor Network (FWSN ) was addressed in this
paper. We proposed the use of resource rich mobile agents
that move in the field and operate as data relays between
fragments to eventually deliver data to the base station. A
mathematical model based on modeling the network and the
mobility of mobile relays as a closed queueing network was
presented and used to evaluate the performance of a FWSN.
The closed queueing network model was developed to cap-
ture a number of parameters including number and speed
of MRs as well as the movement policy. Using steady state
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(a) Path {1,5,3} at 1.2m/s
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(c) Path {4,5,3} at 1.2m/s
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(d) Path {5,3} at 1.2m/s

Figure 7: End-to-end delay distribution for all paths in the case-study of Figure 1 and Tables 1 and 2.
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Figure 9: Average buffered data
at fragments 1− 5.
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Figure 10: New calculated so-
journ times.

probabilities from the model, we then evaluated the distri-
bution of the delay to deliver data between two fragments
as well as the end-to-end delay. Moreover, we studied the is-
sue of engineering the sojourn time, i.e., the amount of time
that an MR needs to spend at a service center to relay data.
The results show that our model accurately evaluates the
fragment-to-fragment and fragment-to-sink delays. It also
suggests that enhancing the movement policy might lead to
a better performance than just adding more MRs, which
implies that the movement policy has a significant influence
on the system performance. We can also conclude from the
results that engineering the sojourn times is so important as
it significantly affects the end-to-end delay.
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Figure 11: End-to-End delay before and after engi-
neering the sojourn times.
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