
Scalable Redundancy for Sensors-to-Sink

Communication
Osameh M. Al-Kofahi Ahmed E. Kamal

Department of Electrical and Computer Engineering, Iowa State University

e-mails:{osameh, kamal}@iastate.edu

Abstract—In this paper, we present a new technique that uses
deterministic binary network coding in a distributed manner
to enhance the resiliency of Sensor-to-Base information flow
against packet loss. First, we show how to use network coding
to tolerate a single packet loss by combining the data units from
k sensor nodes to produce k + 1 combinations such that any
k of them are solvable. After that, we extend the solution to
tolerate multiple losses. Moreover, we study the coding efficiency

issue and introduce the idea of relative indexing to reduce the
coding coefficients overhead. To tolerate node or link failures,
we introduce a simple routing protocol that can find maximally
disjoint paths from the k sensor nodes to the base station.
We study the relationship between the probability of successful
recovery of all data units at the BS, and the number of sources
protected together taking into consideration their hop distance
from the BS. From this study we can decide on the appropriate
number of sources to be protected together, so that the probability
of successful recovery is higher than a certain threshold. Finally,
we show through a simulation study that our approach is highly
scalable and performs better as the network size increases.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) [1] are composed of

a large number of sensing nodes, which are deployed in a

certain area to monitor a phenomenon of interest. WSNs are

usually deployed in harsh environments where packet loss

and node failure is common, which in turn degrades the

quality of the monitoring process. Survivability techniques

are proposed to mitigate the effect of these problems, where

in all these techniques the improved reliability comes at the

price of increased redundancy [2]. Usually this is done by

duplicating information on multiple paths, which either can be

totally disjoint or braided [3], [4], [5]. Sufficient connectivity

is a prerequisite for multipath routing, for example in [6],

[7] sensor deployment and topology control algorithms were

proposed to guarantee a k-connected network. In [8] the

authors studied conditions that will enable multipath or braided

routing in large wireless networks. They showed that if the

shortest path between two terminal nodes is n hops then there

exists (with high probability) C log n disjoint paths in a strip

of width a(C, p) log n hops, where C is a constant and p is

the availability of a wireless link.

In [4], information is sent on multiple paths to enhance the

network reliability. A forwarding mesh that is composed of a

set of interleaving paths was used in [3] to relay information

from a source node to the base station (BS), where each data

This work was supported in part by the National Science Foundation under
grants CNS-0626822, CNS-0626741, CNS-0721453 and ECS-0601570 and
by a gift from Cisco Systems.

unit is given a budget that controls the degree of redundancy

or the width of the mesh. On the other hand, in [5], the author

introduced an efficient algorithm to give each node a set of

node-disjoint paths to choose from in the case of a failure

on the primary path. The concept of event-to-sink reliability

in WSNs was introduced in [9], where a certain event is

considered reported if the number of reports reaches a certain

threshold. In [10] the authors proposed a recovery mechanism

for WSNs with lossy links based on caching packets at selected

nodes. The mechanism is called active caching because the

caching decision is made per hop according to the accumulated

success probability, which is piggybacked on every transmitted

packet. If a packet is lost, a NACK is sent upstream until it

reaches a node that has the lost packet in cache or until it

reaches the source.

It was shown that the overhead from duplicating the data

units can be reduced by using erasure codes in [11] and [12],

where a packet is encoded into n smaller sub-packets such

that only k of them, where k < n, are necessary to recover the

original data unit. These sub-packets can be sent on the same

path as in [11] or on node-disjoint paths as in [12]. In [13] rate-

less codes are used to reliably broadcast messages in a WSN.

The problem in using rateless codes in general (and especially

for broadcast) is that the sender cannot know when to stop

sending redundant messages, unless it receives feedback from

the receiver(s) to acknowledge that the message is received

correctly. The paper utilizes Extreme Value Theorem (EVT)

to estimate the largest number of required packets that enables

all nodes to successfully recover the broadcast message, and

thus, considerably reducing feedback from receivers.

In this paper, we introduce a new technique that will

dramatically reduce the redundancy overhead compared with

that in duplication-based multipath mechanisms, and yet still

achieves the same level of survivability. We accomplish this

by using network coding [14], [15]. In [16] we showed that

network coding can be used to tolerate e failures in many-

to-one flows, by having each set of n sources send at least

n + e combinations to the sink, such that any n of them

are linearly independent. The authors in [17] used a coding

scheme similar to that introduced by the author in [16] to

protect against relay node failures and evaluated some QoS

metrics for this protection scheme. It was shown that at high

data rates (> 512 kbps) the delay for the coding-based scheme

approaches the delay induced in the no protection case. The

authors introduced a survivability mechanism in [18] that

enables the max-flow between a pair of communicating nodes

to be achieved by only protecting non-cutting links, network



coding was utilized to maximize the number of protected non-

cutting links. The work in this paper considers the many-to-one

flow paradigm as in [16]. However, the scheme in [16] requires

global information (in the first run at least) and assumes a fixed

set of sources at a certain time. In contrast, in this work the

scheme is fully distributed (each node operates using its local

information), and there is no prior knowledge on the sources

participating in the coding process. We start by showing how

to use deterministic network coding in a distributed manner

to protect the data units from k sources against a single

packet loss, which is discussed in Section II. Our solution

is extended in Section III to tolerate multiple packet losses.

Moreover, we discuss some coding-related issues in Section

IV, where we introduce the ideas of relative indexing and best

effort decoding. A simple routing protocol is introduced in

Section V, which can be used with our scheme to enhance

the survivability of the information flow against node or link

failures. In Section VI we study the relationship between the

probability of successful recovery of all data units at the base

station and the number of sources taking into account their hop

distance from the base station. Simulation results are presented

in Section VII. Finally, we conclude the paper in Section VIII.

A preliminary version of this paper was published by the

authors in [19]. However, this paper makes two extensions to

this work, which are the contents of Sections V and VI.

A. Comparison with previous work

Our scheme aims to reduce the redundancy overhead pro-

duced in duplication-based multipath routing schemes like [3],

[4]. The simulations in Section VII show that our scheme

succeeds at reducing the duplication overhead by 70%. The

schemes in [11], [12], and [13] use erasure codes to send

data from a single source to single/multiple destination(s) in

Wireless Sensor Network (WSN). Our work differs in two

aspects: first we use network coding instead of erasure codes,

which should provide better performance even in a unicast

connection as shown in [2]. Moreover, our coding scheme

uses a binary field which simplifies the coding and decoding

process even in the case of tolerating multiple losses. Second,

unlike [11] and [12] that focus on unicast connections (or [13]

that focuses on broadcast), our scheme is tailored for a many-

to-one (convergcast) flow from a set of sensors to the base

station, which is the dominant type of flow in a WSN.

In [16] we proposed a coding scheme for many-to-one flows

in Wireless Mesh Networks (WMNs), where the network is

structured and the nodes are less constrained. The scheme in

[16] is centralized as mentioned above. This scheme was used

and applied in [17] to tolerate relay node failures. The work

in this paper is different in its nature since it targets a WSN,

which is composed of highly constrained nodes that cannot

waste energy to collect global information about the network.

Therefore, the scheme in this paper is fully distributed, where

each node can operate using its local information only.

II. OPERATION

We consider a dense and uniformly distributed WSN, in

which packetes loss may occur. Assuming that at most one

packet can be lost, our objective is to practically provide proac-

tive protection to the information flow from the sensors to the

BS using as few resources as possible. Before discussing the

details of node operation, we need to clarify our assumptions

and notations. Specifically, we assume the following:

1) We assume a wireless sensor network in which the

sensor nodes can be organized into levels or rings around

the base station, such that, the minimum hop count

between the sensor nodes in ring i and the BS is i hops.

An example is shown in Figure 1, where nodes d, e and f

are in the first ring, nodes c and b are in the second ring

and finally node a is in the third ring around the BS. We

use the terms ring and level interchangeably throughout

the paper.

2) We assume that there are R levels in the sensor network,

and we denote the level of node u by lu.

3) Routing a packet ensures its progress towards the sink

in each transmission, i.e. a packet gets closer to the sink

by one hop after each transmission.

4) Sensors generate data periodically and at the same rate.

5) The data units for all sensor nodes are equal in size, and

the data unit for sensor node u is denoted by du.

6) Throughout the paper we use p to denote a certain

packet, and we reserve dp to only represent the infor-

mation symbol carried in packet p.

Note that the first three assumptions are made to help in

streamlining the discussion.

Assume that sensor node u has a data unit du that must be

forwarded to the BS. Node u can send two copies of du to the

sink to tolerate a single packet loss as a proactive alternative

to retransmission. However, if there is a large number of

sensor nodes that need to forward information to the sink,

this solution is not efficient anymore. This is because 50%

of the forwarded information is redundant, and thus, at least

50% of the network resources (bandwidth and energy) will be

wasted to provide this redundancy.

Assume that node u has sent two copies of du to the sink.

Naturally, this is done through multi-hop communication for

each of these packets. Suppose that as the two packets are

forwarded, k − 1 of the forwarding nodes had data units of

their own that also need to be sent to the BS. We show how to

protect du and the k − 1 other data units by forwarding only

k + 1 packets, through the use of network coding. In general,

the nodes in a wireless sensor network can be divided into the

following three types:

1) Type 1. A source with no data to relay.

2) Type 2. A source with data to relay.

3) Type 3. Just a relay with no data of its own.

To tolerate a single loss using network coding in a dis-

tributed manner, we need to specify the way a node operates

given its local information. We define the following operation

for each class of nodes:

1) Type 1. Assume node u only has its own data unit du,

and has no packets from other sensors to relay. Then

node u just sends two copies of du to be able to tolerate

a single loss e.g, node a in Figure 1.

2) Type 2. Assume node u has its own data unit du, and in



addition has received another packet, say p, which needs

to be relayed (e.g., node b in Figure 1). Then node u
produces the following two packets:

a) Packet 1. Contains the bitwise XOR of du and dp.

b) Packet 2. Contains only du.

3) Type 3. Assume node u has no data of its own, and has

received a packet p that it needs to relay. Then it just

forwards p as is, e.g., nodes c, d, e and f in Figure 1.

a

bc

aa

a a+bb

d e f

BS

Fig. 1. Protecting data from two sources against a single packet loss

The type of a node changes according to its status, i.e., if

node u is of Type 3 at a certain time instant ti, it might become

a Type 1 or Type 2 node at ti+1 if a data unit is generated

locally. Now recall the scenario of node u and the k−1 other

sources that forward the data units of u. In this scenario node

u is the only node of Type 1, and the k − 1 sources are of

Type 2. Note also, that each of the k − 1 sources increases

the number of total packets by 1, which means that the total

number of generated packets is k+1. Let us call this operation

a forwarding process initiated by node u, or for short, an F-

process initiated by a Type 1 node, u.

We now prove that by following the rules of operation, if

k sources are involved in a certain F-process then they will

produce k+1 packets such that any k of them carry a solvable

set of combinations.

Claim 1. If s is the kth source to participate in an F-process

initiated by node u, in which the number of involved sources
until now is k − 1 (including u), then by following the rules
of operation described above, s will increase the number of
packets to k + 1, such that any k packets from them carry a
solvable set of combinations.

Proof. We prove this claim by induction. We need to show

that if any k − 1 from the current k combinations (produced

by the k − 1 sources) are solvable, then the participation of

the kth source will produce k + 1 combinations such that any

k of them are solvable.

The basis step is when the F-process is first initiated at

node u. By following the rules of operation, node u will send

two copies of du. Thus we have k = 1 source, and k + 1 =
2 combinations (trivial combinations in this case), such that

any one (k) of them is solvable, which is obvious since each

combination contains only one data unit, so if one packet is

lost the other is sufficient to recover du.

To prove the inductive step, assume that k−1 sources have

transmitted and any k−1 from the current k combinations are

solvable. Node s can participate only if it is of Type 2, i.e.,

it received one packet (say p) from the current k packets and

it has its own data unit ds that must be sent to the BS. By

following the rules, s will produce two packets: 1) a packet

containing the XOR of ds with dp (note that the number of

total packets is still k since p and du are merged into one

packet), and 2) a packet containing ds (i.e., the number of

packets is increased by 1). We now need to show that losing

either one of the newly created packets will leave us with

k solvable combinations. If we lose the first packet, then

the second packet will be sufficient to recover ds, and from

our assumptions the remaining k − 1 combinations will be

sufficient to recover the remaining k − 1 data units. If we

lose the second packet, then from our assumptions we can

recover all the data units in dp (and thus dp itself) using the

k − 1 combinations other than ds ⊕ dp, and then recover ds

by dp ⊕ (ds ⊕ dp). Finally, if we lose a packet other than

those produced by s, we can recover ds from the second

packet produced by s, which leaves us with k − 1 solvable

combinations in k − 1 unknowns. �

A node of Type 1, will initiate a process that will involve a

large number of nodes of the other two types. To distinguish

the packets belonging to the process initiated by a node of

Type 1, we add a new field in all the packets generated by

this process. Let us call this field the ”initiator ID” or IID for

short. A node of Type 1 will put its ID and a timestamp in

this field, and a node of Type 2 (say u) that XORs dp with its

data unit will copy the IID from p and put it in both generated

packets. If a Type 2 node receives 2 or more packets with the

same IID it must not combine its data with more than one of

them, since this may produce dependent combinations.

Let P j
i be the set of packets leaving level i (i.e., generated

by level i, or just forwarded by it) that belong to the process

initiated by node j, then |P j
i | is equal to:

|P j
i | = 1 +

lj∑

k=i

Sj
k = 1 + N

lj
i (1)

where Sj
k is the number of source nodes (Type 2) in level k

that are involved in the process initiated by j, and N
lj
i is the

number of source nodes in the levels from i to lj that are

involved in the process initiated by node j. Of course, there

is only one node of Type 1 in the process initiated by node j,

and that is j itself.

There should be a limit on the number of combinations that

can be produced by an F-process. Let h denote this limit.

For now we choose h to be the min-node cut in the network

under consideration, and we elaborate more on the selection

of h later. In a sufficiently dense and uniformly distributed

WSN, the minimum node cut is usually the number of one

hop neighbors of the BS. Therefore, no more than h − 1
sources can be involved in any process. To insure this, we

add a new field in the packet format; Let us call it ”Number

of Remaining Combinations” or ”NRC” for short. We now

redefine the operation of Type 1 and Type 2 nodes as follows

(the operation of Type 3 nodes do not change):

1) Type 1. Assume node u only has its own data unit du,

and has no data units from other sensors to relay. Then

node u just sends two copies of du, such that in both



packets the values of IID = u and NRC = ⌊h/2⌋.

2) Type 2. Assume node u has its own data unit du, and in

addition has received another packet, say p, that it needs

to relay. The operation of u depends on the NRC value

of p as follows:

a) If NRC(p) ≥ 2 node u produces the following two

packets, such that, in both packets IID = IID(p)
and NRC = ⌊NRC(p)/2⌋.

i) Packet 1. Contains du ⊕ dp.

ii) Packet 2. Contains only du.

b) However, if NRC(p) = 1, node u acts as a node

of Type 3, i.e., just a relay.

Note that by taking the floor when updating theNRC value,
h is made equivalent to the largest power of 2 that is less than
or equal to h. Note also how the resulting tree resembles a

binary tree, where each leaf is a combination in our case.

However, our tree is restricted in depth, where it can have at

most d = log2 h levels. Therefore, the maximum number of

combinations (or leaves) is 2d = 2log
2

h = h, which is the case

only when we have a complete binary tree of d levels. By this

we insure that the maximum number of combinations is less

than or equal to h and the maximum number of participating

sources in less than or equal to h − 1. For example, consider

the network in Figure 2 where h = 7. Node a is the initiator

node (Type 1 node), by following the rules of operation a
will send two packets carrying da to b and c with IID = a
and NRC = ⌊ 7

2⌋ = 3. Node c is a Type 3 node, i.e., it

will relay only and will not change the value of the IID or

the NRC. Node b is a Type 2 and according to the rules

of operation it will produce two packets with IID = a and

NRC = ⌊ 3
2⌋ = 1. It is obvious that starting with h = 7

we can have at most 4 packets produced, which is equivalent

to starting with h = 4 (i.e., the closest power of 2 less than

7). Therefore, in the remainder of this paper we will always

assume that h is a power of 2.

It is worth mentioning that assigning the NRC value as

described in the rules of operation is not optimal in terms of

maximizing the number of participating sources in a certain

F-process. For example in Figure 2, assume that similar to

node c node d is also a Type 3 node and the packet forwarded

from d will reach the BS on a path composed only of Type

3 nodes. However, assume that node f has a data unit of its

own that it wants to combine with the packet received from b.

It will not be able to participate since the NRC value in the

received packet is 1. Therefore, if node a knew beforehand the

source nodes that will relay its packets, it can set the NRC
to 1 in the packet sent to c, and to 6 (which is equivalent

to 4) in the packet sent to b. Nevertheless, since we assume

that a node operates using only its local information, and

the deployed network is dense and uniformly distributed, a

realistic assumption that an initiator node can make is that

both packets will pass through the same number of sources

approximately, and thus divide h by 2. Using simulation, in

Section VII we verify that using this assumption results in a

performance that is not much worse than the optimal.

a

d
a

d
a

d
a

+ d
b

d
b

b

NRC = 3

fe

c

NRC = 3

NRC = 1NRC = 1NRC = 3

d

d
a

h=7

Fig. 2. NRC update for h=7

III. TOLERATING MULTIPLE LOSSES

The operation described in Section II proactively protects

each generated data unit against a single loss. Suppose we

want to protect each data unit against e losses. We can do this

using the same operation described in Section II by allowing

a Type 1 (Type 2) node, say u, to initiate (participate in)

multiple F-processes for the same data unit. Assuming that

at most e packets (i.e., combinations) can be lost, du must be

inserted by u in at least e+1 combinations. Since each time u
participates in a process two combinations are produced, node

u must participate in (or initiate) e+1
2 F-processes. Therefore,

if e is even (i.e., e + 1 is odd) either u participates in ⌈ e+1
2 ⌉

F-processes, or in ⌊ e+1
2 ⌋ processes and produces a packet

containing du only with NRC = 1 to complete the e + 1
insertions (NRC = 1 to prevent other sources from combining

their data with this combination).

Specifically, we assume that each node of Type 1 or Type

2 keeps a set of counters that are initialized to e + 1, each of

which is associated with a certain data unit that is generated

by the sensor node itself. Each counter keeps track of the re-

maining number of participations needed to provide protection

against e failures for a certain data unit. A counter is decreased

by 2 each time the node participates in (or initiates) a certain

F-process until it reaches 0, where no further participations

are needed. An example is shown in Fig.3, where we want to

tolerate 3 packet losses for each of the data units, i.e., e = 3.

There are three Type 1 nodes (A, B and C), and three Type

2 nodes (D, E and F), each of which has a single data unit

to be sent. We only focus on the packets going through nodes

D, E and F, where each of these nodes forward traffic from

more than one F-process, and we assume that the paths for

the remaining packets do no not intersect. For every data unit

a counter is initialized to 4, i.e., each Type 1 node can initiate

2 F-processes and each Type 2 node can participate in 2 F-

processes. For example consider node A, the two packets sent

from A to nodes D and E represent one process initiated by

A, and the remaining two packets represent the other process

initiated by A after which the counter will be 0 for da. Nodes

D and E receive packets from all the three Type 1 nodes, but

since they can only participate in 2 processes, they choose

to participate in the processes initiated by nodes A and B.

Therefore, when nodes D and E receive the packet from C

they act as Type 3 nodes and just forwards the packet as is.

It should be pointed out that a node participating in a process

refers to coding its own data with data from another node. Type

3 nodes are just relays, and they do not participate or change

anything in the packets they receive. As shown in Figure 3,



this operation results in a total of 18 packets to protect the

data units from 6 sources against 3 losses.

A BC

d
A
+d

D
d

D

d
A

ED F

A TOTAL OF 18 PACKETS

d
A

d
C

d
B

d
B
+d

D
d

D

d
A
+d

E
d

E

d
B
+d

E
d

E

d
B
+d

F
d

F

d
C
+d

F
d

F

d
C

d
C

Fig. 3. Protecting against 3 losses

IV. CODING/DECODING ISSUES

The efficiency of network coding is an important issue

that arises in most network coding-based applications. In this

section we show that the overhead, which results from the need

to send the coding vectors along with the combinations to the

BS, can be significantly reduced by using relative indexing.

Moreover, we introduce the idea of best effort decoding, which

allows us to make use of the combinations received at the BS

even if more than one packet was lost.

A. Relative Indexing for Efficient Encoding

For the sink to be able to decode the linear combinations,

it needs to have the chosen coefficients or the coding vectors

for each one of the combinations. In binary network coding

for multicast connections, the length of the coding vector is

determined by the minimum max-flow h between the single

source and any of the terminals [14], where position i in the

vector is reserved for di, i.e., if index i = 1 then di is present

in the combination, and if index i = 0 then di is not. This

is possible in multicast connections because all the data units

originate from the same source, which means that this single

source can assign for each data unit a unique index to identify

it with. However, in our case the coding process is distributed,

and thus the coding vector should be of size N , where N is

the total number of nodes in the network, where each node is

a possible source at some time. In a sensor network N can be

very large, where it can be in the hundreds or even thousands

of nodes. It is obvious that this is a waste of bandwidth since

at most h − 1 sources can participate in a certain F-process.

We now show how to enable the source nodes in an F-

process to use an (h − 1)-bit coding vector by relatively

indexing the sources in that process. To do this, we use the

NRC value in addition to a new control bit that we will add to

the packet header, which we refer to as I . Assume that both

packets generated by an initiator node A will be combined

with data units from two other sources B and C. The question

is if A is given index 1 in the (h − 1)-bit coding vector, how

can B and C (and any other Type 2 node in the process) choose

distinct indices using the values of NRC and control bit I?

In an F-process there is only one node of Type 1, which

will be always assigned index 1 (index 0 will not be used).

This leaves us with (h-2) indices, which will be recursively

divided into halves. Let us consider the pair of Type 2 nodes

in the first coding level after A (i.e., B and C), where each

of them receives a packet with NRC = h
2 , but B receives

a packet in which I = 0 and C receives a packet in which

I = 1. We give B the first index in the first half, and C the

first index in the second half of the remaining h-2 indices. Half

of h-2 is NRC − 1 (since h = 2 ∗ NRC), which means that

relative to index 1 the first half begins at the next position after

position 1 (i.e., 1+(1)), and the second half begins after the

next NRC−1 positions after position 1 (i.e., 1+(NRC−1)+1).

This is shown in Figure 4, where h is 8, the data unit from node

B will be given index 1+(1) = 2, and the data unit from node

C will be given the index 1+(NRC−1+1) = 1+NRC = 5.

In the second iteration the process continues but with reference

to position 1 + (1) for the nodes descending from B, and

with reference to position 1 + (NRC − 1) + 1 for the nodes

descending from C.

To generalize for other levels, let X(p) be the coding vector

of the combination carried in p, and let Xi be an (h − 1)-
bit vector with 1 in the ith position and zeros otherwise.

In addition, let I(p) and NRC(p) denote the value of bit

I and the NRC field in p respectively. If a node u decides to

participate in the F-process of some packet p, it calculates its

index according to the following equation:

Index(u) = max
i:Xi∧X(p)=Xi

i + I(p) ∗ (NRC(p) − 1) + 1 (2)

where the values for I(p) and NRC(p) are set according to

following operation (we only redefine the operation for Type

1 and Type 2 nodes):

1) Type 1. Assume node u has its own data unit du, and

has no data units from other sensors to relay. Then node

u sends two packets carrying du, such that IID = u
and NRC = ⌊h/2⌋ in both packets. In addition to the

following settings:

• Packet 1. I(Packet1) = 0, X(Packet1) = X1.

• Packet 2. I(Packet2) = 1, X(Packet2) = X1.

2) Type 2. Assume node u has its own data unit du and has

received another packet p. The operation of u depends

on the NRC value of p as follows:

a) If NRC(p) ≥ 2 node u calculates its index using

equation 2. Then it produces the following two

packets, such that, in both packets IID = IID(p)
and NRC = ⌊NRC(p)/2⌋.

i) Packet 1. Contains du ⊕ dp, and has

I(Packet1) = 0, and X(Packet1) = X(p) ⊕
XIndex(u).

ii) Packet 2. Contains only du, and has

I(Packet2) = 1, and X(Packet2) =
XIndex(u).

b) However, if NRC(p) < 2 node u acts as a node

of type 3, i.e., just a relay.

For the sake of illustration, we went through one more

iteration for the descendents of B, where the NRC is set

to 2 in the packets received by nodes F and G, resulting in



A

BC

H L MJI

GD E F

Level 2

Level 3

Level 1

NRC = 4

NRC = 2

NRC = 1

h = 8

I = 0I = 1

I = 0I = 1I = 1 I = 0

Index(B)=1+1=2

Index(A) = 1

Index(C)=1+4=5

Index(G)=2+1=3

K

Index(F)=2+2=4

7 6 5 4 3 2 1 Index

--- --- dc df dg db da Symbol

Fig. 4. Relative indexing, for h = 8

a

cb

da + dc + dg + dm

h l mkj

gd e f

dcdd da + db dg

i

dd+db

n o

dm

dada

da + dcdc

da + dc + dgdg

da + dbdd

p

di

q

dd+db+di

Subtree 1 Subtree 2

Fig. 5. Best Effort Decoding

G taking index 2+(1)=3 and F taking index 2+(2-1 + 1)=4.

Lastly, we want to emphasize that relative indexing is valid

only for a set of combinations having the same IID.

B. Best Effort Decoding

For the operation described in Section II, if e combinations

were lost from the resulting 1 + N j
1 combinations in a

certain F-process, the sink should not discard the remaining

combinations because it may still be able to recover a subset

of the encoded symbols. Actually, the remaining combinations

received at the BS will still be solvable, if the lost combi-

nations remove e − 1 data units, i.e., 1 + N j
1 − e equations

remain in N j
1 − (e − 1) = 1 + N j

1 − e unknowns. From the

operation described in Section II this condition is satisfied

for any subtree rooted at a Type 2 node u that combines its

data unit with a trivial combination (i.e., a single data unit

combination).

Consider a subtree rooted at a Type 2 node u, which

encodes its data unit with a single data unit combination

containing only dv . The number of combinations this subtree

will produce is equal to the NRC value in the packet carrying

dv . In addition, the number of new data units that will be

added in these combinations by the sources in the subtree

(including the root node u) is NRC − 1. Thus we will

have NRC combinations in NRC unknowns, which can be

solved. However, if the Type 2 node u combined its data unit

with a non-trivial combination, the number of unknowns will

be larger than the number of combinations. An example is

shown in Figure 5, where Type 2 nodes that receive trivial

combinations are the heads of all solid links, and Type 2

nodes that receive non-trivial combinations are the heads of

all dashed links. For instance the combinations from Subtree 1

are solvable since node d combines its data unit with a trivial

combination, while those from Subtree 2 are not.

In reality the BS does not need to search for solvable

subtrees to decode them. Rather, it can use the decoding

method in algorithm 1 for a set of combinations having

the same IID, where RCV is the set that will contain the

recovered data units, and Z is a set for temporary use in

decoding. This way the BS will recover data units as much as

it can, and will stop when no new single data units are found,

hence the name best effort decoding.

Algorithm 1 Best Effort Decoding

1: RCV = φ
2: Z= All single data unit combinations.
3: while Z 6= φ do
4: For each element in Z remove it from all combinations

containing it, using bitwise XOR.
5: RCV = RCV ∪ Z
6: Z= All new single data unit combinations.
7: end while

V. ROUTING FOR MAXIMALLY DISJOINT PATHS

In all of our examples in the previous sections, we assumed

that the data units or combinations will select routes to the BS

in a way that constructs a binary tree. If we are considering

packet loss only, then we do not need to restrict the routing

of the combinations to the BS to be a tree. However, if we

want to use our coding scheme to tolerate actual node or link

failures, then we need a routing protocol that selects for each

combination a path that is maximally disjoint from the paths

of all other data units or combinations. Note that if all the

paths are totally disjoint, then the routes from the sources

in the different coding levels will form a tree. Therefore, to

be able to tolerate node or link failures, we present a simple

routing protocol that guarantees maximally disjoint paths in

this section.

What we mean by maximally disjoint here is that the used

paths from the sources in an F-process should be node-disjoint

when possible (and thus, edge-disjoint too). But sometimes

achieving node-disjointedness may not be possible, e.g., when

two nodes that are forwarding packets with same IID have

one downstream neighbor, say node X. In this case we should

try to achieve edge-disjointedness if possible. The paths will

be edge-disjoint if node X forwards the two packets with

the same IID (i.e., from the same F-process) to two different

downstream neighbors (if available). However, it may happen

that even edge-disjoint paths cannot be established if the

number of downstream neighbors to node X is not enough.

For example, if node X has a single downstream neighbor then

it will forward the two packets to the same downstream node,

and in this case the paths will not even be edge-disjoint. The

proposed routing protocol aims for node-disjoint paths first,

then if not possible, it tries to achieve edge-disjoint paths, and

it will not create overlapping paths unless it is forced to do so

when the number of nodes is not enough to guarantee node



or edge-disjointedness.

For our routing protocol to work we need the underlying

WSN to be organized into levels or rings around the BS,

as assumed at the beginning of the paper. Initially, a node

(say v) has its level lv set to a very large value. Arranging

the network into levels can be done through a simple process

initiated by the BS. The BS starts by broadcasting a control

packet containing a field called hop count, which is initialized

to 1. After that, if a node v receives this control packet

with hop count ≥ lv, it discards the packet. Otherwise, it

makes lv = hop count, increases the hop count by 1 and

rebroadcasts the control packet.

WSNs are usually densely deployed. Therefore, during the

process of organizing the network into levels, a node, v,

will most likely receive more than one packet with the same

minimum hop count from nodes in lv − 1. Each node stores

the IDs of these neighbors in a list called next hop list. If

a node needs to forward a data packet to the BS, it needs to

only send it to one of the nodes stored in the next hop list
as we will clarify now. In a network where the nodes are

organized into levels as we have shown, a very simple routing

protocol can be used, in which a node just picks one of

its neighbors in the next hop list and broadcasts its data

packet. When a node receives a packet it just checks the

level of the source, if the source is farther from the BS (in

a higher level), then it rebroadcasts the packet. Otherwise, if

the source is closer to the BS, the heard packet is discarded.

This protocol would suffice if we are concerned with packet

loss only: a Type 1 node can include in the packet two nodes

from its next hop list to generate the needed redundancy; a

Type 2 node includes the id of a different neighbor for each

packet; and a Type 3 node just picks one neighbor from the

next hop list. However, to tolerate node failures we need a

way to limit each forwarding node (in the lower levels closer

to the BS) to forward only one packet at most from each

F-process (if possible, i.e., there are enough nodes in lower

levels), so that the failure of a node can reduce the number of

packets in any F-process by at most one. To eliminate extra

routing overhead, we proposed to exploit the protocol used

in MAC layer. So the proposed routing protocol does not

deal with channel access, we only assume that there is some

CSMA/CA MAC layer protocol that does this for us, and we

are just tweaking it to eliminate any extra routing overhead.

We now define the operation for Type 3 nodes to produce

maximally disjoint paths (the operation for Type 2 nodes is

similar, but takes into account two packets instead of one).

To establish maximally node-disjoint paths from the multiple

sources in the same F-process, a Type 3 node must not forward

more than one packet from the same F-process (i.e., with the

same IID). Note that to establish maximally edge-disjoint

paths, a Type 3 node can forward multiple packets with the

same IID, but not to the same next hop (unless it is forced

to do so). To do this, each node needs to know for which

F-processes it had forwarded packets before. Therefore, each

node stores the IID of each packet it forwards in a list called

the IID list. If node v is forwarding a packet p with IID(p),
it must select a neighbor in the next hop list that does not

have IID(p) in its IID list. This can be accomplished during

the RTS/CTS negotiation, where the IID (say IID(p)) of

packet p (which needs to be transmitted) is piggybacked in

the RTS message, and a next-hop node in lv − 1 can reply

with a CTS if it does not have IID(p) in its IID list. Node

v may not be able to find a neighboring node in lv−1 that does

not have IID(p) in its list. Therefore, to solve this problem,

we add a new field to the RTS message, which is basically a

flag (bit) called ”Force forward” or simply FF . A node can

force forward a packet, if it did not receive a CTS, by setting

FF = 1 in the RTS and sending it again. Note that force

forwarding does not force a node to forward data if it did not

receive a CTS. Since a node does not send a packet unless it

hears a CTS, then to force nodes in lower levels to send CTS

messages (when they have already forwarded a packet from the

F-process of the packet requesting to be sent) the FF flag can

be used. If a neighboring node in lv − 1 hears an RTS with

FF = 1 it replies with a CTS regardless if it has IID(p)
or not. The operation of a node upon receiving a packet is

described in Algorithm 2, and its operation when sending a

packet is described in Algorithm 3. Although Algorithms 2 and

3 do not show it, but we assume that some back off mechanism

is used before a packet is sent.

Algorithm 2 Operation of node v: Receiving packet p

1: if (p is a control packet) then
2: if (hop count > lv) then
3: Discard p
4: else if (hop count < lv) then
5: lv = hop count
6: Clear next hop list
7: Rebroadcast p
8: else
9: //hop count = lv

10: Add sender of p to next hop list
11: Rebroadcast p
12: end if
13: else if (p is RTS received from level lv + 1) then
14: if (if IID(p) /∈ IID list) then
15: Send CTS
16: else if (FF (RTS) == 1) then
17: Send CTS
18: end if
19: else
20: //p is a data packet
21: Store IID(p) in IID list
22: Send p downstream
23: end if

Algorithm 3 Operation of node v: Sending packet p

1: if (p is a control packet) then
2: Broadcast p
3: else
4: //p is a data packet
5: Piggyback IID(p) on RTS
6: if (CTS is received from node u before timeout) then
7: Send p to node u
8: else
9: FF (RTS) = 1

10: Wait for CTS
11: Upon receiving CTS from node u, send p to u
12: end if
13: end if



It is easy to see that by using the described routing protocol,

all paths from all sources will be node-disjoint unless some

node force forwards a packet. Also, the paths will be link-

disjoint unless a node forwards two packet to the same next

hop (one packet is normally forwarded, but the other is force

forwarded to the same next hop). By using such a simple

routing protocol, we can say that the F-process can tolerate at

most one node (or link) failure if the paths from all sources

are node (or link) disjoint. An example is shown in Figure

6, where an F-process is initiated by node A, and node B

is the only downstream Type 2 node. In the example, node

C force forwards the packet carrying data unit a because

there are only two nodes in lC − 1. After that, no force

forwarding occurs, which produces edge-disjoint paths. Note

that if another neighbor to node C is found in lC − 1, then

the paths would be node-disjoint. However, note that if there

were only two nodes in lE − 1, then E will force forward

one of the data units a or b, and the resulting paths will not

even be edge-disjoint. It should be noted that if the paths are

totally disjoint, then the failure of a node can cause at most

one combination to be lost even if it is a Type 2 node. Let v
be a Type 2 node that receives packet p from some F-process,

then if v fails before sending its two packets containing dv⊕dp

and dv , the failure of v will only cause dp to be lost.

Fig. 6. The figure shows how the combinations created in an F-process
initiated by node A are forwarded. Node C cannot find a downstream neighbor
that did not forward a packet with IID = A. Therefore, it force forwards data
unit a to node E, which results in paths that are not node-disjoint. Note that
if another neighbor to node C is found the paths would be node-disjoint. Note
also that if there were only two nodes in lE − 1, then E will force forward
one of the data units (either a or b), and the resulting paths will be neither
link nor node-disjoint

At the beginning we assumed a dense WSN, as it is usually

the case in most WSNs, and we therefore do not deal with

sparse networks. However, in a worst case scenario where

there is only one path from a node to the BS and all the

nodes on the path are Type 2 nodes, then all the packets in

the F-process will be sent (force forwarded) on the same path.

VI. SELECTING PARAMETER h

The min-cut is not the only factor that limits the number of

combinations h. Any network link may be operational with

a certain probability. As the value of h gets larger more

sources will be able to participate in an F-process, which in

turn increases the number of used network links, and thus

increases the chance of having multiple link failures that

can affect the ability of the sink to successfully decode the

received combinations in a certain F-process. In this section

we study the relationship between h and the probability of

successful recovery P (rcv). We assume that all network links

have the same success probability, which we denote by q. In

the following discussion, we focus on a single F-process and

we show how P (rcv) changes with respect to the value of h.

Since we need sources to participate in an F-process to

further reduce the redundancy overhead, we need to know

how the participation of these sources will affect P (rcv). The

probability of successful recovery depends on the number of

used links, which in turn depends on three factors: 1) L, the

level of the initiator node, 2) h − 1, the number of sources

that will participate in the F-process, and 3) the way the

sources are distributed in the levels below the initiator node, or

equivalently the resulting topology of the tree. The probability

of successful recovery given some known topology, Tp1, with

k1 links, is equal to the probability that at most one loss occurs

in Tp1, i.e.,:

P (rcv|Tp1) = P (no loss in Tp1) + P (1 loss in Tp1)

= qk1 + k1(1 − q)qk1−1

Therefore, we can compute P (rcv) as follows:

P (rcv) =
∑

∀Tpi

P (rcv|Tpi)P (Tpi)

Since we assume that all network nodes generate data units

at the same rate, i.e., the probability of being a source is the

same for all nodes, then all possible topologies can occur with

the same probability. Therefore, we can write the probability

of successful recovery as a function of L and h−1 as follows:

P (rcv) = Prcv(L, h − 1) =

∑
∀Tpi

P (rcv|Tpi)

#possible topologies

=

∑
∀Tpi

(P (no loss in Tpi) + P (1 loss in Tpi))

#possible topologies

=
P0(L, h − 1) + P1(L, h − 1)

#possible topologies

P0(L, h−1) is the sum of probabilities of no loss in all the

possible topologies starting at level L with h− 1 sources, and

P1(L, h−1) is the sum of probabilities of exactly 1 loss in all

the possible topologies starting at level L with h− 1 sources.

P0(., .) and P1(., .) are evaluated for trees starting at nodes of

Types 1 or 2.

Following the rules of operation, the initiator node will send

two packets containing copies of its data unit to the BS. As

these packets are forwarded, a Type 2 node may participate

and code its data with the data unit received from one of

these packets, which also produces two packets according to



the rules of operation that may also trigger other downstream

Type 2 nodes to participate. For the purpose of computing

P (rcv), we can ignore the contents of the packets forwarded

from Type 1 or Type 2 nodes, and just focus on the number

of transmissions or packets produced, we can view an F-

process (initiated by a Type 1 node) as a recursive process that

repeats itself (in some lower level, and with a fewer number

of sources) on every downstream source (Type 2 node). This

allows us to calculate P0(L, h − 1) and P1(L, h − 1) using

recursive formulas, but first we need the following definitions:

• let π(λ, α) be the probability that there is no loss in the

branch starting at level λ, with α sources downstream.

• let π̄(λ, α) be the probability that there is a loss in the

branch starting at level λ, with α sources downstream.

• let µ(λ, α) be the probability that a loss will occur

downstream, given that we are starting at level λ with

α sources and no loss has occurred yet.

• let ν(λ, α) be the probability that no loss will occur

downstream, given that we are starting at level λ with

α sources and a loss has already occurred.

• let ρ(λ, α) be the probability that no loss will occur

downstream, and the root is not necessarily a source. This

is similar to P0(λ, α), but branching may not happen at

level λ.

Notice that π(., .) and π̄(., .) are evaluated at nodes of Type

3, since they start with branches, or links. Also note that µ(., .)
and ν(., .) start at nodes on the tree which may be of any type,

i.e., they have degrees 1 or 2.

Using these definitions we can write P0 and P1 as follows:

P0(L, h − 1) =

⌊ h−1

2
⌋∑

α1=0

∑

∀{α2:α1+α2=h−2, 0≤α2≤⌊h−1

2
⌋}

π(L, α1)π(L, α2) (3)

P1(L, h − 1) =

⌊h−1

2
⌋∑

α1=0

∑

∀{α2:α1+α2=h−2, 0≤α2≤⌊ h−1

2
⌋}

π(L, α1)π̄(L, α2)

(4)

+

⌊h−1

2
⌋∑

α1=0

∑

∀{α2:α1+α2=h−2, 0≤α2≤⌊ h−1

2
⌋}

π̄(L, α1)π(L, α2)

where,

π(L, α) = q.ρ(L − 1, α) (5)

with π(1, 0) = q, and π(1, α ≥ 1) = 0 because there are no

sources below level 1.

π̄(L, α) = q.µ(L − 1, α) + (1 − q).ν(L − 1, α) (6)

with π̄(1, 0) = 1 − q, and π̄(1, α ≥ 1) = 0.

µ(L, α) =q.µ(L − 1, α) + (1 − q).ν(L − 1, α) + P1(L, α)
(7)

with µ(1, 0) = 1−q, µ(1, 1) = 2q(1−q), and µ(1, α > 1) = 0.

ν(L, α) = ν(L − 1, α) + P0(L, α) (8)

with ν(1, 0) = q, ν(1, 1) = q2, and ν(1, α > 1) = 0.

ρ(L, α) = P0(L, α) + q.ρ(L − 1, α) (9)

with ρ(1, 0) = q, ρ(1, 1) = q2, and ρ(1, α > 1) = 0.

Finally, we need to compute the total possible number of

topologies to be able to calculate Prcv(L, h − 1). To do this

we can use P0(L, h − 1). Since P0 computes the sum of the

probability of no loss in all possible topologies setting q = 1
will make the probability of no loss equals 1 for each topology,

and P0 will result in counting the total number of possible

topologies. That is, Prcv(L, h−1) can be calculated as follows:

Prcv(L, h − 1) =
P0(L, h − 1) + P1(L, h − 1)

P0(L, h − 1)|q=1
(10)

The probability of successful recovery is evaluated in the

next section.

VII. PERFORMANCE EVALUATION

In this section we evaluate the probability of successful

recovery, P (rcv), based on the formula derived in the pre-

vious section. We also present simulation results from our

implementation in TOSSIM, to illustrate the benefits of our

scheme in reducing the protection overhead.

A. Evaluating P (rcv)

We plotted P (rcv) against the total number of sources

in an F-process starting at different levels, for q = 0.99,

q = 0.999, and q = 0.9999. The results are shown in

Figure 7. As expected, for some level L, increasing the

number of participating sources in an F-process will reduce

P (rcv) because this increases the total number of used links.

Therefore, depending on the desired probability of successful

recovery, nodes in levels that are farther from the BS may want

to just use duplication, or equivalently let h = 2 to prevent

downstream Type 2 nodes from participating. Also, for a fixed

number of sources, the figure shows that the probability of

successful recovery increases as the initiator node gets closer

to the BS (i.e., as L decreases).

Note that the total number of combinations, h, produced

by an F-process that has L levels is limited by 2L, and

that the total number of source nodes is limited by 2L − 1.

We will see from the simulation results in the next section

that we do not actually need a large number of Type 2

nodes to participate in an F-process to significantly reduce the

duplication overhead. This is due to the fact that the reduction



���

����

���

����

���

����

���

����

���

����

���

����

��	

��	�



����������	
��
�
������
�
�������	
���
�
�
����

���� ����


����
 ����


�
��
�
�
�

�

����

��


��
�

���

����

���

����

���

����

���

����

���

����

���

����

���

����

��	

��	�





 � 	 
� 
� �
 �� �	 ��

����������	
��
�
������
�
�������	
���
�
�
����

���� ����


����
 ����


����
 ����


���
 ���


���
 ���


�
����
��
��
����


�
��
�
�
�

(a) q = 0.99

����

���

����

����

����

����

���	

���


����

����

����

�
����������	
��
�
������
�
�������	
���
�
�
�����

���� ����


����
 ����


�
��
�
�
�

���	

���


����

����

����

���

����

����

����

����

���	

���


����

����

����

�

� 	 � �� �� �� �	 �� ��

����������	
��
�
������
�
�������	
���
�
�
�����

���� ����


����
 ����


����
 ����


���
 ���


���
 ���


�
����
��
��
����


�
��
�
�
�

(b) q = 0.999

������

�����

������

������

������

������

�����

������

������

������

������

	
����������	
��
�
������
�
�������	
���
�
�
������

���� ����


����
 ����


�
��
�
�



�����

������

������

������

������

�����

������

������

������

������

�����

������

������

������

������

	

	 � � 	� 	� �	 �� �� ��

����������	
��
�
������
�
�������	
���
�
�
������

���� ����


����
 ����


����
 ����


���
 ���


���
 ���


�
����
��
��
����


�
��
�
�



(c) q = 0.9999

Fig. 7. Effect of the initiator node level (L) and the number of participating
sources on the probability of recovery P (rcv).

in the duplication overhead becomes negligible after the first

few sources participate. Finally, it should be noted that all

these calculations for P (rcv) represent lower bounds, and

are only valid if we are considering the recovery of the data

units from all the sources participating in an F-process. This

is because (as we have shown in Section IV-B) our coding

scheme allows the partial recovery of a subset of the coded

data units if they are from a subtree rooted at a Type 2 node

that receives a native data unit. Therefore, the chances for

recovery are better than what Figure 7 implies.

B. Evaluating the produced overhead

We evaluated the performance of our scheme in terms

of produced overhead, using simulation on TOSSIM. The

effects of the following three parameters were studied in our

experiments: 1) S, which represents the number of packets

generated by each sensor node, 2) the number of nodes in

the network, denoted by N , and 3) h, the maximum number

of produced combinations in an F-process, which controls the

degree of coding. As a reference, we compared our results to

a theoretical lower bound, which represents the best way in

which packets can be combined. The best case occurs when

every h − 1 nodes belong to a certain F-process in which all

of them are either Type 1 or Type 2 nodes. That is, we will

have N
h−1 groups of nodes each of which produces a total of

hS packets. This gives the following lower bound on the total

number of packets produced:

(
h

h − 1
)N ∗ S

We experimented with three scenarios, where in all of these

scenarios h took the values {2, 4, 8, 16}. Note that when

h = 2 no coding will take place and our scheme will be

equivalent to traditional duplication based redundancy. The

first scenario is a 7x7 grid network (i.e., N = 49) where each

node produced 20 packets, the result is shown in Figure 8,

where at h = 16 the duplication overhead is reduced by 42%.

The second is also a 7x7 grid, but each node produced 50

packets to see how increasing the number of produced packets

affects the performance. Figure 9 shows that by increasing the

number generated packets our approach performs better and

decreases the duplication overhead by 50% at h = 16. Finally,

we increased the size to a 10x10 grid network (i.e., N = 100)

and fixed the number of produced packets to 50, to see how

the performance is affected by increasing the network size in

addition to the number of packets. Again, the results assure

that the performance gets better with increasing the network

size and generated packets, where at h = 16 the duplication

overhead is reduced by 72%. It is clear that the third scenario

is the closest to the lower bound, since the chances for

combining packets are enhanced as the network and/or number

of generated packets grows larger. Although these scenarios

are relatively small in size, they clearly illustrate that our

coding-based approach is scalable and performs better as the

network size increases.

To see how the probability of successful recovery (P (rcv))
affects the overhead, we modified the results in Figure 10



0

0.5

1

1.5

2

2.5

1 2 4 8 16 32

N
u

m
b

e
r
 o

f 
P

a
c
k

e
t
s
 i

n
 T

h
o

u
s
a

n
d

s

h

Theoritical Lower Bound Sim1: N=49, S=20

Fig. 8. Simulation results for N=49 and S=20

0

1

2

3

4

5

6

1 2 4 8 16 32

N
u

m
b

e
r
 o

f 
P

a
c
k

e
t
s
 i

n
 T

h
o

u
s
a

n
d

s

h

Theoritical Lower Bound Sim2: N=49, S=50

Fig. 9. Simulation results for N=49 and S=50

to reflect the change in P (rcv). We divided the number of

packets for each point in Figure 10 by the corresponding

P (rcv) (at h − 1) from Figure 7(a). The result is shown in

Figure 11. It is clear from the figure that network coding might

not always be better than duplication especially if an F-process

is initiated at a level that is far from the BS. The figure also

shows that a good reduction in the overhead can be achieved

by just letting a small number of sources participate in an

F-process, e.g., 3 (at h = 4).

VIII. SUMMARY

Deterministic binary network coding was utilized in a

distributed manner to add lightweight redundancy to the infor-

mation flow from the sensor nodes to the base station. Relative

indexing was introduced to enable the use of an (h − 1)-bit

coding vector instead of an N -bit coding vector, where N
is the number of sensor node (which can be in thousands),

and h << N . In addition, we presented best effort decoding

that allows us to make use of the combinations received at

the BS even if more than one packet was lost. We enabled

our scheme to tolerate link and node failures by presenting

a simple routing protocol that guarantees maximally disjoint

paths for the produced combinations in an F-process. We also

studied the relationship between the probability of successful

recovery, P (rcv), and the number of sources participating in

a certain F-process that is initiated from some level L. Finally,

simulation results confirmed our theory and proved that our

0

2

4

6

8

10

12

1 2 4 8 16 32

N
u

m
b

e
r
 o

f 
P

a
c
k

e
t
s
 i

n
 T

h
o

u
s
a

n
d

s

h

Theoritical Lower Bound Sim3: N=100, S=50

Fig. 10. Simulation results for N=100 and S=50

�����

�����

�����

�����

�����

�
�
�
�
�
��
�	


��
�


�
�
�


�
�

�����������������

����		
����� ����		
����


����		
����� ����		
�����

����		
����� ����		
�����

����		
���
 ����		
����

����		
����

�

����

�����

�����

�����

�����

�����

� � � � 
 �� �� �� �� �


�
�
�
�
�
��
�	


��
�


�
�
�


�
�

�

�����������������

����		
����� ����		
����


����		
����� ����		
�����

����		
����� ����		
�����

����		
���
 ����		
����

����		
����

Fig. 11. The figure shows how the produced overhead changes with respect
to the initiator node level (L), and the number of participating sources.

scheme is highly scalable, where it performs better as the

network size and/or the number of sources increases.

REFERENCES

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless
sensor networks: a survey. Computer Networks 38 (2002) 393422.

[2] O. Al-Kofahi and A. Kamal. Survivability strategies in multihop wireless
networks. Wireless Communications, IEEE. Vol. 17, Issue: 5, Oct 2010,
pp. 71-80.

[3] F. Ye, G. Zhong, S. Lu, and L. Zhang. Gradient broadcast: A robust
data delivery protocol for large scale sensor networks. ACM Wireless
Networks (WINET), vol. 11, no. 2, March 2005.

[4] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin. Highly-resilient,
energy-efficient multipath routing in wireless sensor networks. ACM
SIGMOBILE Mobile Computing and Communications Review archive
Volume 5 , Issue 4 (October 2001).

[5] W. Lou. An efficient n-to-1 multipath routing protocol in wireless sensor
networks. In Proc. 2nd IEEE International Conference on Mobile Ad-
hoc and Sensor Systems (MASS 2005).

[6] N. Li and J.C. Hou. Flss: A fault-tolerant topology control algorithm
for wireless networks. In Proc. 5th ACM International Symposium on
Mobile Ad Hoc Networking and Computing (Mobihoc 2004).

[7] J.L. Bredin, E.D. Demaine, M. Hajiaghayi, and D. Rus. Deploying
sensor networks with guaranteed capacity and fault tolerance. In Proc.
6th ACM International Symposium on Mobile Ad Hoc Networking and
Computing (Mobihoc 2005).

[8] C. Chau, R. Gibbens, R. Hancock, and D. Towsley. Robust multipath
routing in large wireless networks. In Proc. 30th IEEE International
Conference on Computer Communications (IEEE INFOCOM 2011).

[9] Y. Sankarasubramaniam O.B. Akan I.F. Akyildiz. Esrt: Event-to-sink
reliable transport in wireless sensor networks. In Proc. 4th ACM In-
ternational Symposium on Mobile Ad Hoc Networking and Computing
(Mobihoc 2003).



[10] Dae-Young Kim and Jinsung Cho. Active caching: A transmission
method to guarantee desired communication reliability in wireless sensor
networks. volume 13. IEEE COMMUNICATIONS LETTERS, 2009.

[11] S. Kim, R. Fonseca, and D. Culler. Reliable transfer on wireless sensor
networks. In Proc. SECON 2004.

[12] S. Dulman, T. Nieberg, J. Wu, and P. Havinga. Trade-off between
traffic overhead and reliability in multipath routing for wireless sensor
networks. In Proc. WCNC 2003.

[13] W. Xiao, S. Agarwal, D. Starobinski, and A. Trachtenberg. Reliable
wireless broadcasting with near-zero feedback. In Proc. 29th IEEE Inter-
national Conference on Computer Communications (IEEE INFOCOM
2010).

[14] R. Ahlswede, N. Cai, S. R. Li, and R. Yeung. Network information
flow. IEEE TRANSACTIONS ON INFORMATION THEORY, VOL.
46, NO. 4, JULY 2000.

[15] R. W. Yeung, S. R. Li, N. Cai, and Z. Zhang. Network Coding Theory.
now Publishers Inc, 2006.

[16] O. Al-Kofahi and A. Kamal. Network coding-based protection of many-
to-one wireless flows. IEEE Journal on Selected Areas in Communi-
cations special issue on Network Coding in Wireless Communications,
Vol. 27, No. 5, June 2009,pp. 797–813.

[17] B. Saeed, P. Rengaraju, C. Lung, T. Kunz, and A. Srinivasan. Qos and
protection of wireless relay nodes failure using network coding. In Proc.
Network Coding (NetCod), 2011 International Symposium on.

[18] O. Al-Kofahi and A. Kamal. Max-flow protection using network coding.
In Proc. IEEE International Conference on Communications 2011 (ICC
2011).

[19] O. Al-Kofahi and A. Kamal. Scalable redundancy for sensors-to-sink
communication. In in the proceedings of the IEEE Globecom 2008.


