
Max-Flow Protection using Network Coding
Osameh M. Al-Kofahi

Department of Computer Engineering
Yarmouk University, Irbid, Jordan

Ahmed E. Kamal
Department of Electrical and Computer Engineering

Iowa State University, Ames, IA 50010

Abstract—In this paper we present a new way to enhance the
survivability of the information flow between two communicating
nodes S and T without compromising the maximum achievable
S-T information rate. To do this, bottleneck links should only
forward useful information, and not redundant data units. We
introduce the idea of extra source or destination connectivity
with respect to a certain S-T max-flow, and then we introduce
two problems: namely, pre-cut protection and post-cut protec-
tion. Because of space limitations we only focus on the pre-
cut protection problem. Specifically, we show that the pre-cut
protection problem is NP-hard, we propose a heuristic approach
to solve it, and we compare the performance of this heuristic to
an ILP. Simulations show that the performance of the heuristic
is acceptable even on relatively large networks.

I. INTRODUCTION

The survivability of an information flow between two
terminal nodes, S and T, can be enhanced by using part
of the available network resources (bandwidth) to forward
redundant information from S to T. Depending on the used
survivability mechanism, the redundant information can be
used to recover from data corruption or failures of network
components. Traditionally, to protect a data unit against q link
failures, q + 1 edge-disjoint S-T paths are used to forward
q + 1 copies of the data unit from S to T. This is usually
accomplished by means of a multipath routing protocol, such
as MDVA [1] or AOMDV [2]. Let h denote the value of the
S-T min-cut. Then, if we want to forward data units from S
to T and protect them against q failures, we cannot send more
than k = b h

q+1c data units since q+1 copies of each data unit
should be forwarded.

It is clear that traditional proactive protection approaches are
very demanding and waste a lot of resources. Even if q = 1 the
useful S-T information rate will be reduced by at least 50%.
Network coding [3] can be used to overcome this problem.
The basic idea of network coding is that it allows intermediate
network nodes to generate combinations from the original
data units, instead of just forwarding them as is. Therefore,
to forward data units from S to T and protect them against q
failures, we can send at most k = h−q data units. This is done
by designing a network code that creates k + q combinations
at intermediate network nodes such that any k of them are
solvable. That is, it is enough to receive only k combinations
to recover the k data units at T. This simple analysis shows that
the useful information rate of network coding-based protection
is better than that of traditional protection approaches as long

This work was supported in part by the National Science Foundation
under grants CNS-0626822, CNS-0626741, CNS-0721453, ECCS-0926029
and ECS-0601570 and by a gift from Cisco Systems.

as h > q +1, which is usually the case. Examples of network
coding-based protection can be found in [4], [5], [6], [7].

Network coding-based protection and traditional protection
schemes, provide end-to-end protection of the whole S-T paths
used to forward useful data from S to T. In these approaches,
the more we enhance the S-T flow survivability, the more
we reduce the useful S-T information rate. This is because
such approaches treat all network links equally, i.e., bottleneck
and non-bottleneck links are used to forward redundant data.
Usually, most of the links in a network are not bottleneck links,
which means that link failures are more likely to affect non-
bottleneck links than links in the min-cut. Therefore, we can
enhance the survivability of the S-T information flow without
reducing the useful S-T rate below the max-flow, if we provide
protection to the non-bottleneck links only. We call this kind
of protection Max-flow protection because the max-flow can
still be achieved under these conditions as long as no link in
the min-cut fails. To the best of our knowledge the problem
of max-flow protection has not been studied before.

The rest of this paper is organized as follows. Section II
presents the terminology and definitions that will be used
throughout the paper. The problems of pre-cut and post-cut
protection are presented in Section III. In Section IV we
study the pre-cut protection problem. A 3-phase heuristic
approach to solve the pre-cut protection problem is described
and evaluated in Section V. Section VI describes a simple
network code to combine the data units to be sent from S to
T. Finally, Section VII concludes the paper.

II. PRELIMINARIES

We represent a network by a directed acyclic graph G=(V,E),
where V is the set of network nodes and E is the set of
available links, where each link is assumed to have unit
capacity. The network has a source node (S) that wants to send
data to a destination (T), where the S-T max-flow is assumed
to be h. We assume that a multipath routing protocol is used,
e.g., [1] or [2], and the source is fully utilizing the available
paths by sending h data units to the destination simultaneously.
To simplify the analysis, we assume that the network has a
single cut 1. In the rest of this section we define the meaning
of extra connectivity with respect to the S-T max-flow. After
that we discuss some of the properties of nodes with extra
connectivity.

1In a future study, we plan to extend this work to the more general case of
multiple min-cuts, which is a much harder case.

2

A. Terminology
Let f (A)(B) denote the max-flow from the nodes in set A to

the nodes in set B on a directed graph, which can be calculated
by computing the max-flow between a virtual source/sink pair,
such that the virtual source is connected to the nodes in A with
infinite capacity edges and the virtual sink is connected to the
nodes in B with infinite capacity edges. Using this notation,
the max-flow h = fS(T). We also define the following:

1) A node with Extra Source Connectivity (wESC) is a
node, u, such that, fS(u, T) > h, and f (S,u)(T) = h.

2) A node with Extra Destination Connectivity (wEDC) is
a node, v, such that, fS(v, T) = h, and f (S,v)(T) > h.

3) A node with No Extra Connectivity (wNEC) has
fS(v, T) = f (S,v)(T) = h.

Of course, a node with both extra source and extra desti-
nation connectivity cannot exist, because this contradicts the
assumption that the max-flow equals h. Consider the graph
G in Figure 2. The S-T max-flow in G is 4, which implies
that four data units can be forwarded from S to T on four
link-disjoint paths. Assume we found the following paths,
P1 = {S → A → E → J → T} that forwards data unit
w, P2 = {S → B → F → G → T} that forwards data
unit x, P3 = {S → F → H → T} that forwards data
unit y, and P4 = {S → D → I → T} that forwards data
unit z. Each path Pi contains a cutting edge Ci, which , if
deleted, will result in reducing the max-flow by exactly 1
unit of flow because path Pi will be disconnected and cannot
be reestablished in any way. In our example, P1 contains
C1 = {(J, T)}, P2 contains C2 = {(G,T)}, P3 contains
C3 = {(F, H)}, and P4 contains C4 = {(I, T)}. Note that
the min-cut may not always be unique, but in this paper we
assume that the graph under consideration has only one cut.

B. Properties of nodes wESC/wEDC
In general, removing the min-cut edges (i.e., the edges in

∪h
i=1Ci) partitions the network into two partitions A and A′,

such that S ∈ A and T ∈ A′. Note that, after deleting the
min-cut edges, each of the partitions A and A′ is a connected
component (at least weakly), and that partition A contains
nodes wESC, but partition A′ contains nodes wEDC.

Lemma 1. Any node u ∈ A, u 6= S is a node wESC.

Proof: We prove this by contradiction. Let u ∈ A, u 6= S,
but u is not a node wESC. Then, fS(u, T) = h, which means
that node u cannot receive additional flow from S if the S-
T max-flow is established. This implies that either node u is
behind the min-cut (i.e., u ∈ A′), which contradicts the starting
assumptions, or that there is another min-cut between S and
u, which contradicts the single min-cut assumption.

In a similar fashion, we can prove the following for any
node v ∈ A′, v 6= T .

Lemma 2. Any node v ∈ A′, v 6= T is a node wEDC.

In our following discussion we refer to A as the pre-cut
portion of the network, and to A′ as the post-cut portion of
the network. Figure 1 summarizes the previous discussion.

h

A A’

Nodes wESC Nodes wEDC

Min−cut

Fig. 1. Nodes wESC, wNEC and wEDC with respect to min-cuts

III. PROBLEM DESCRIPTION

The cutting-edges, cannot be protected unless we trade
bandwidth for survivability (i.e., unless we use an S-T path to
carry redundant information to the destination), which reduces
the useful S-T information rate. This tradeoff not only protects
the cutting-edges, but also protects any edge carrying data in
the network. However, the non-cutting-edges (or a subset of
them) can be protected without reducing the S-T information
rate, if the graph contains nodes wESC and/or wEDC. For
example, nodes E, F, I and J in Figure 2 are nodes wESC,
and node H is a node wEDC. There are four possible ways
to utilize the extra source connectivity in Figure 2; 1) protect
data units x and y by sending x+y to F through C, 2) protect
w by sending a duplicate to E through C and F, 3) protect w
by sending a duplicate to J through C, F, E and G 4) protect z
by sending a duplicate to I through C and F. The first option
is better than the other three since sending x+y to F enhances
the chances of two data units (x and y) to reach T, compared
to duplicating w or z alone, which protects a single data unit
only. Figure 3 shows the first option, and it also shows how to
utilize the extra destination connectivity from node H, where
H sends a duplicate of y to T through node K.

Fig. 2. Graph G with
S-T max-flow = 4

Fig. 3. Utilizing extra
connectivity

In this work, we propose a different way to handle the
”survivability vs. bandwidth” trade-off. We propose a new
approach to provide protection to the S-T information flow
without reducing the useful S-T data rate. Basically, we avoid
protecting the bottlenecks in the network (the min-cut links),
and we try to efficiently utilize (by using network coding if
possible) the available network connectivity before and/or after
the bottleneck to provide protection to the non-min-cut links
in the graph. We divide the problem into two sub-problems as
follows:

1) Pre-cut protection: Our objective is to maximize the
number of pre-cut-protected S-T paths. We show that
this problem is NP-hard, and we provide a heuristic
to solve it. To evaluate our heuristic we compare its
performance to an ILP.

2) Post-cut protection: We aim to maximize the number
of post-cut-protected S-T paths. Let ei be the closest
cutting edge to the destination T on path Pi. We show

3

in [8] that all the paths that do not have T as the head
node of ei , where 1 ≤ i ≤ h, can be post-cut-protected
together against at least one failure. Because of space
limitations, we do not provide any further discussion of
this problem in this paper.

In this paper we discuss the pre-cut protection problem, and
provide a general description of the used heuristic. A detailed
discussion of the heuristic and the ILP can be found in [8].

IV. PRE-CUT: NODES WITH EXTRA SOURCE
CONNECTIVITY

As discussed in Section II, all nodes wESC are located in the
pre-cut portion of the network. Assume that the set X contains
all the nodes wESC, X = A\S = {u1, u2, . . . , u|X |}. Then,
the following is true:

(
|X |∑

i=1

fS(ui, T))− |X |fS(T) ≥ fS(X , T)− fS(T) (1)

This is because the extra source connectivity may be shared
between the nodes in X . Therefore, the right hand side of the
inequality is what really determines the available extra source
connectivity (ESC). This implies that not all nodes wESC in X
can receive redundant flows from S to be used to protect the S-
T max-flow, and thus, a subset X ⊆ X should be intelligently
selected to receive the available extra source flow and utilize
it in the best way possible. Note that the number of nodes in
X cannot exceed the extra available connectivity, i.e.:

ESC = fS(u1, u2, . . . , u|X |, T)− fS(T) ≥ |X| (2)

The selection of X depends on how the S-T max-flow is
routed on the graph. Consider the graph in Figures 4(a) and
4(b), the S-T max-flow in this network is 2, and there is only
one S-T min-cut in the graph, which contains the edges (A,T)
and (C,T). Nodes A, B and C are nodes wESC, and the total
available extra source connectivity equals fS(A,B,C, T) −
fS(T) = 4 − 2 = 2. Assume that the max-flow is routed as
shown in Figure 4(a) (the dashed lines), in this case X1 =
{B, C} since the extra source connectivity is consumed by B
and C. Moreover, note that only the path forwarding b can be
pre-cut-protected by sending copies of b on (S, B) and (S, C).
Now consider the routing shown in Figure 4(b), in this case
X2 = {A,C}. Unlike the previous case, both paths can be
pre-cut-protected by sending a second copy of a to A, and
a second copy of b to C through B. Obviously, the second
routing option is better since it allows the protection of both
paths (equivalently both data units), in this sense we say X2

is better than X1.
It was shown in the previous example that routing the

max-flow and selecting X are inseparable problems, and that
routing the S-T max-flow corresponds to selecting X . Let us
define the extra source connectivity to a node u with respect
to the routing of the S-T max-flow in the network as:

EC(u) = fS(u, T)− fS(T)
We say that an S-T path is pre-cut-protected if a segment of
this path in the pre-cut portion of the network is protected.
That is, a path is pre-cut-protected if it contains a node wESC

(a) (b)

Fig. 4. Routing the max-flow is what determines X . In (a) X = {B, C},
and one path is protected. In (b) X = {A, C}, and both paths are protected.

with respect to the routing of the S-T max-flow. Therefore,
maximizing the number of pre-cut-protected paths means max-
imizing the number of paths containing nodes wESC.

For large networks, trying-out all possible routing choices
to find the best one that will maximize the number of paths
containing nodes wESC is computationally expensive. The
following theorem proves that this problem is in fact an NP-
hard problem. The full-proof can be found in [8], it is omitted
here due to space limitations.

Theorem 1. Routing the S-T max-flow to maximize the number
of S-T paths containing nodes wESC is NP-hard.

Note that if network coding was not allowed, then from
equation (2) we cannot protect more than ESC data units.
Therefore, to utilize the extra source connectivity in a more
efficient manner we should apply network coding whenever
possible. Network coding can be used if a node wESC, say
u, lies on more than one S-T path, and has EC(u) ≥ 1. For
example, let u be a node wESC that lies on two S-T paths,
and that has EC(u) = 1. A network code can be designed
to deliver three combinations in two data units to u, such
that any two combinations are solvable, i.e., two data units
are protected from S to u against a single link failure. Note
that the number of failures that can be tolerated is at most
EC(u). Therefore, the nodes in X should have the following
properties:

1) Each node ui ∈ X must have fS(ui) > fui(T).
2) The combinations received by a node ui ∈ X must

be solvable if at most e = fS(ui) − fui(T) failures
occurred on the fS(ui) paths from S to ui.

The first condition requires the flow from the source to
each node ui ∈ X to be larger than the flow from that node
to the destination. This condition is necessary to introduce
redundancy in the forwarding process from S to the nodes
in X . The second condition can be satisfied by designing a
network code that delivers, for each node ui, a set of fS(ui)
combinations, such that any fui(T) combinations of them are
solvable. These two conditions allow a node ui to act as pre-
cut decoding node, which can recover the data units sent from
S to T through ui, if at most e = fS(ui) − fui(T) failures
occurred on the S-ui link-disjoint paths, and then send these
native data units to T.

In the next section we describe a heuristic approach to solve
the pre-cut protection problem.

4

V. HEURISTIC APPROACH

Our heuristic works in three phases; the first one greedily
selects an initial set X ′; the second one modifies the flow
on the graph (if needed) to guarantee that the S-T max-
flow is achieved, and the third one utilizes any remaining
connectivity and produces the final set X . The first phase
works in iterations, where a single node is added to X ′ in
each iteration. Each time we add the node that can send the
most flow to the destination, while being able to receive more
flow from the source, to satisfy the two conditions stated at the
end of Section IV. If no more nodes satisfy this criteria and
the S-T flow is still less than h, the second phase is entered.
The second phase finds as much augmenting paths as possible
from S to T so that the S-T max-flow is maximized. Finally,
the third phase checks the nodes in the pre-cut portion of the
graph to see if there are any remaining nodes wESC, and
makes use of this extra connectivity. A detailed discussion of
the three phases of the heuristic can be found in [8].

Recall that if all the min-cut edges are deleted, then the
graph will be divided into two partitions A (pre-cut), and A′

(post-cut). Note that the routing of the S-T flow in the post-cut
portion of the network is independent from the routing of the
S-T flow in the pre-cut portion of the network. Therefore,
we use a simplified version of the original graph in our
heuristic, which is described in Algorithm 1. We simplify the
graph under consideration and just focus on the sub-graph,
H , induced by the nodes in A with a little modification.
Specifically, given a directed graph G(VG, EG), let FS be the
set of tail nodes on the min-cut edges. We transform graph G
to H(VH , EH) as follows:

1) Delete the nodes in {VG\A}
2) VH = {A, T ′}, where T ′ is a dummy destination node.
3) EH = {(u, v)|(u, v) ∈ EG}

⋃{(u, T ′)|∀u ∈ FS}. Note
that {S, FS} ⊂ A.

A. Evaluation

In this section we compare the results from our heuristic to
the results from the ILP presented in [8]. The heuristic was
compared to the ILP in five different cases. Each case repre-
sents a different network size, where the number of network
nodes V was changed to take the values {5, 10, 15, 20, 25}. In
each case eighty random network instances were generated,
and fed to the heuristic and the ILP.

To gain a better insight on the operation of the heuristic
compared to the ILP we measured the S-T max-flow, counted
the number of pre-cut-protected paths from the heuristic, and
the number of pre-cut-protected paths resulting from the ILP
in each time the heuristic and the ILP were executed (on the
same network instance).

The histograms for the cases of V = 10, 15, 20, and 25
are shown in Figures 5(a), 5(b), 5(c), and 5(d) respectively. In
general, the results from the heuristic are close to those from
the ILP. Note that in some cases, the number of times the
heuristic is able to protect X1 paths may be larger than the
number of times the ILP is able to protect the same number
of paths X1. However, this does not invalidate the heuristic

Algorithm 1 Selecting set X
Input: Graph H(VH , EH), h = S-T max-flow
Output: Set X containing nodes wESC
1: X′ = φ, ST flow = 0, P hase done = 0
2: Create matrices F lowS [VH], F lowT [VH] //One dimensional matrices initialized to all zeros, to store the

final flow from S to each node in X , and from each node in X to T ′ . This information will be used for coding later
3: //Phase 1
4: Create graphs HS and HT , where V

HS = V
HT = VH and E

HS = E
HT = EH .

5: while (P hase done == 0) do
6: Compute fS(u) on graph HS , ∀u ∈ V

HS

7: Compute fu(T ′) on graph HT , ∀u ∈ V
HT

8: Select node x, where fx(T ′) ≥ fu(T ′), ∀u ∈ VH , and fS(x) > fx(T ′)
9: if (No such node exists) then
10: P hase done = 1
11: else
12: Find fx(T ′) + 1 augmenting paths from S to x on HS

13: Delete all forward edges in HT if they are reversed in HS //due to augmentation
14: Find fx(T ′) augmenting paths from x to T ′
15: Delete all forward edges in HS if the are reversed in HT

16: X′ = X′ ∪ {x}
17: ST flow = ST flow + fx(T ′)
18: F lowS [x] = fx(T ′) + 1
19: F lowT [x] = fx(T ′)
20: end if
21: end while
22: for all ((u, v) ∈ EH) do
23: if ((v, u) ∈ E

HS ||(v, u) ∈ E
HT) then

24: Reverse (u, v) in H

25: end if
26: end for
27: P hase done = 0 //End of Phase 1, and beginning of Phase 2
28: while (P hase done == 0) do
29: if (ST flow = h) then
30: P hase done = 1
31: else
32: Find an S-T ′ augmenting path in H

33: ST flow + +
34: end if
35: end while
36: P hase done = 0 //End of Phase 2, and beginning of Phase 3
37: for all (u ∈ VH) do
38: Compute p = fS(u) on the current residual graph of H

39: if (fS(u) > 0) then
40: Find p augmenting paths from S to u on H

41: F lowS [u] = F lowS [u] + p

42: end if
43: if (u /∈ X′) then
44: Compute q = fT ′ (u) on HT

45: F lowT [u] = F lowT [u] + q

46: X′ = X′ ∪ {u}
47: end if
48: end for
49: return X′

because it comes at the price of protecting a larger number
of paths X2 > X1 a fewer number of times. For example, in
Figure 5(c), the heuristic was able to protect X1 = 2 paths
more than the ILP, but the ILP was able to protect X2 = 4
paths more than the heuristic.

VI. CODING

The resulting S-T ′ flow from the heuristic can be decom-
posed into two parts; the first, a one-to-many flow from S to
the nodes in X , and the second is a many-to-one flow from S
and the nodes in X to T ′. The many-to-one flow is not and
cannot be coded, since it is composed from the h native data
units that are forwarded from S and the nodes in X (possibly
after decoding) to T ′, on h disjoint paths. However, the one-to-
many flow from S to the nodes in X can, and should be coded
to utilize the extra source connectivity in the most efficient
manner. Note that this one-to-many flow is different from
normal multicast flow since different data is sent to different
nodes. Therefore, a standard multicast network code cannot
be used. In fact, the coding in our case is simpler, and needs
to be done at a limited number of network nodes as we will
show in the following discussion.

After the heuristic is done and the flow is constructed in
the pre-cut portion of the graph. A node u ∈ X can receive
k + e = FlowS [u] units of flow from S and can send k =

5

10

20

30

40

50

60

O
c
c
u
re
n
c
e
s

Max-flow

Hrstc

Opt

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7

O
c
c
u
re
n
c
e
s

Max-flow OR #protected paths

Max-flow

Hrstc

Opt

(a)

10

20

30

40

50

60

O
c
c
u
re
n
c
e
s

Max-flow

Hrstc

Opt

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7

O
c
c
u
re
n
c
e
s

Max-flow OR #protected paths

Max-flow

Hrstc

Opt

(b)

10

20

30

40

O
c
c
u
re
n
c
e
s

Max-flow

Hrstc

Opt

0

10

20

30

40

0 1 2 3 4 5 6 7 8

O
c
c
u
re
n
c
e
s

Max-flow OR #protected paths

Max-flow

Hrstc

Opt

(c)

10

20

30

40

O
c
c
u
re
n
c
e
s

Max-flow

Hrstc

Opt

0

10

20

30

40

0 1 2 3 4 5 6 7 8 9

O
c
c
u
re
n
c
e
s

Max-flow OR #protected paths

Max-flow

Hrstc

Opt

(d)

Fig. 5. All figures are histograms, which count three different frequencies: the max-flow, the number of protected paths from the heuristic and the number
of protected paths from the ILP. (a) has V = 10, (b) has V = 15, (c) has V = 20 and (d) has V = 25. The x axis is the number paths either protected or
counted in the max-flow, and the y axis is the number of times each number of paths occurred as a max-flow or protected by the ILP or the Heuristic

FlowT [u] units of flow to T ′ (these values were computed in
the heuristic). This implies that there are k + e edge-disjoint
paths from S to u, and k edge disjoint paths from u to T ′

(or equivalently to T). Note that k represents the number of
S-T paths (or data units) going through node u, and that e
represents the paths used to carry redundant information to u.

Let Nxi be the set of 1-hop neighbors of the source on all
the k + e paths from S to xi. Assume that all the nodes in
Nxi have received the same set of k data units from the source
(the k data units on the k S-T paths). To construct a network
code that delivers k + e combinations to xi such that any k
of them are solvable using the received data units, we need
to assign the proper coding vectors to the nodes in Nxi . The
coding vectors can be assigned from an k×(k+e) matrix that
has no singular k×k submatrices, i.e., any k×k submatrix is
invertible. A class of matrices that satisfies this requirement is
the Cauchy matrices [10]. Therefore, we can simply assign to
each node in Nxi a column from a k×(k+e) Cauchy matrix,
such that no two nodes are assigned the same column.

However, such a coding scheme requires decoding at the
nodes in X in each transmission round. An alternative way
that will require a fewer number of decoding operations would
be to use a systematic code. In a systematic code, k out of the
k + e combinations will be trivial combinations, where each
of which carries one of the k native data units. In this case,
decoding is necessary at a node xi ∈ X , only if one of the
native data units was lost due to a failure on one of the k
S-T paths going through node xi. A simple way to do this
is presented in [11]. Basically, let Mi denote a k × (k + e)
Cauchy matrix with columns representing the coding vectors
of the nodes in Nxi . We can view Mi as two side-by-side
matrices Mi = (Mki |Mei), where Mki is a k × k matrix ,
and Mei is a k× e matrix. Let M′

i be the k× (k + e) matrix
resulting from multiplying M−1

ki
by Mi:

M′
i = M−1

ki
×Mi = (Ik|M−1

ki
×Mei) = (Ik|M′

ei
)

Since the original matrix Mi has no singular submatrices,
then the resulting matrix M′

i has no singular submatrices also.
Note that although the non-singularity property is preserved,
the matrix is no longer a Cauchy matrix. Therefore, given
that the source has already transmitted the k data units to the
nodes in Nxi , assigning the columns of M′

i to the nodes in

Nxi
will create k + e combinations such that any k of them

are solvable. Moreover, the code is systematic, where out of
the k + e combinations there are k trivial combinations (from
Ik), each of which is composed of a single native data unit.

A special case is when e = 1. In this case, after the source
finishes transmitting the k data units to the nodes in Nxi

(where |Nxi | = k + 1), one of the nodes in Nxi can sum
all the received data units and send this sum along with the k
native data units on k + 1 paths to xi.

VII. CONCLUSIONS
We presented a new protection approach, called max-flow

protection, which can enhance the survivability of the S-T
information flow without compromising the maximum achiev-
able information rate (the S-T max-flow). The basic idea is not
to protect links in the min-cut, but try to protect all other links
if possible. We divided the problem into two problems; pre-
cut protection and post-cut protection. Pre-cut protection is
NP-hard. Therefore, we proposed a heuristic to solve it and
we compared the performance of the heuristic to the optimal
performance of an ILP. Finally, a simple network code is
proposed to maximize the number of pre-cut protected paths.

REFERENCES

[1] S. Vutukury and J.J. Garcia Luna-Aceves. Mdva: A distance-vector
multipath routing protocol. In Proceedings of the INFOCOM, 2001.

[2] M. K. Marina and S. R. Das. On-demand multipath distance vector
routing in ad hoc networks. In Proceedings of ICNP 2001.

[3] R. Ahlswede, N. Cai, S. R. Li, and R. Yeung. Network information
flow. IEEE Trans on. Info. Thry. Vol 46, No. 4, July 2000.

[4] A. E. Kamal. 1+n network protection for mesh networks: Network
coding-based protection using p-cycles. To appear in IEEE/ACM Trans
on. Net.

[5] O. M. Al-Kofahi and A. E. Kamal. Network coding-based protection of
many-to-one wireless flows. IEEE JSAC, VOL. 27, NO. 5, JUNE 2009.

[6] O. Al-Kofahi and A. Kamal. Scalable redundancy for sensors-to-sink
communication. In the Proceeding of Globecom 2008.

[7] A. Sprintson, S.Y.E. Rouayheb, and C.N Georghiades. Robust network
coding for bidirected networks. Info. Thry. and Apps. Workshop, 2007.

[8] O. M. Al-Kofahi and A. E. Kamal. Max-flow protection using network
coding. http://arxiv.org/abs/0908.0722v1.

[9] C. Chekuri and A. Kumar. Maximum coverage problem with group
budget constraints and applications. In proceedings of APPROX 2004,
Lecture Notes in Computer Science 3122, 7283.

[10] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting
codes. North Holland, 1977.

[11] J. Lacan and J. Fimes. A construction of matrices with no singular
square submatrices. In proceedings of the 7th International Conference
on Finite Fields and Applications, May 2003.

