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Abstract—This paper addresses the problem of survivability
of many-to-one flows in wireless networks, such as wireless
mesh networks (WMNs) and wireless sensor networks (WSNs).
Traditional protection schemes are either resource-hungry like
the (1+1) protection scheme, or introduce a delay and interrupt
the network operation like the (1 : N) protection scheme. In this
paper, we present a network coding-based protection technique
that overcomes the deficiencies of the traditional schemes. We
derive and prove the necessary and sufficient conditions for
our solution on a restricted network topology. Then we relax
these connectivity requirements and show how to generalize
the sufficient and necessary conditions to work with any other
topology. We also show how to perform deterministic coding
with {0,1} coefficients to achieve linear independence. Moreover,
we discuss some of the practical considerations related to our
approach. Specifically, we show how to adapt our solution when
the network has a limited min-cut; we therefore define a more
general problem that takes this constraint into account, which
prove to be NP-complete. Furthermore, we discuss the decoding
process at the sink, and show how to make use of our solution
in the upstream communication (from sink to sources). We also
study the effect of the proposed scheme on network performance.
Finally, we consider the implementation of our approach when all
network nodes have single transceivers, and we solve the problem
through a greedy algorithm that constructs a feasible schedule
for the transmissions from the sources.

I. INTRODUCTION

The many-to-one communication mode is used in a number
of networks including two of the newer types of networks.
The first is Wireless Mesh Networks (WMNs), which are
usually deployed to provide last-mile service to end users.
WMNs are composed of Wireless Mesh Routers that form
an infrastructure, which in turn is used to serve the Wireless
Mesh Clients. In a WMN a router is called a gateway if it
is connected to the wired network, where gateways provide
Internet access to other routers through wireless multihop
communication. The traffic in a WMN is either many-to-one
from the wireless mesh clients to the gateway, or one-to-many
from the gateway to the wireless mesh clients. Fig. 1 shows a
WMN with a single gateway.

The second is Wireless Sensor Networks (WSNs), which
are composed of a large number of sensing nodes that are
deployed in a specific area of interest to monitor a certain phe-
nomenon or to report the occurrence of certain events. Sensors
in WSN can work in two modes; 1) they can continuously

This work was supported in part by the National Science Foundation under
grants CNS-0626822, CNS-0626741, CNS-0721453 and ECS-0601570 and
by a gift from Cisco Systems

� � �� � � � �
�� � � �� �	
 � �� �� � �

�� �� ��

Fig. 1. Wireless Mesh Network

(e.g., periodically) acquire and send information from their
surrounding environment to the base station (BS), or 2) they
can be event-driven, where only upon detecting an event (e.g.,
an intruder) the sensing nodes in the surrounding region send
the acquired data to the BS. In the continuous mode all the
sensors send data to the BS, while in the event-driven mode
only the sensors in the vicinity of the event send data to the
BS.

Wireless mesh clients or sensor nodes are information
sources that need to send their data to the destination (the
gateway in a WMN or the BS in a WSN). However, the
wireless communication medium is prone to various types
of interference causing a wireless-link status to dynamically
change according to the channel conditions, hence resulting in
information loss. ARQ (Automatic Repeat reQuest) and FEC
(Forward Error Correction) may help in such scenarios, but
they will not be of any benefit if the channel was down perma-
nently (or for a considerable amount of time). If the channel’s
Bit Error Rate (BER) is high (due to interference), there will
be too many errors in the received packet for the FEC to
correct, and retransmission (by ARQ) will be only wasting
the energy of the transmitting node. To mitigate the effects of
such a problem, various schemes to enhance the survivability
of wireless networks against link failures were presented. Most
of the survivability schemes in literature address the unicast
[1] and multicast/broadcast [2] communication modes. In
general, survivability mechanisms are divided into three main
classes, 1) protection schemes [3][4][5][6][7][8]. 2) restoration
schemes [9][10], and 3) hybrid schemes [11][12].

The main difference between protection and restoration
schemes is that protection schemes reserve backup resources
in advance (as a precaution), before the occurrence of a failure.
In contrast, restoration schemes wait until a failure is detected,



and then they start discovering the available resources, which
introduces a delay in the recovery process. Hybrid schemes
resort to restoration when protection fails. We only focus on
protection since it is faster than restoration. The following
classification of protection mechanisms is borrowed from the
optical networks domain [13], where protection schemes are
divided into two main categories:

1) Proactive protection, viz., 1+1 protection. In this scheme
each source uses two edge-disjoint paths, each of which carries
a copy of the data unit to the sink. Thus, if a link on one of
the paths fail, the sink receives another copy on the other path.
This is a very resource demanding solution, because we need
at least twice as many resources, which makes this approach
hard to realize.

2)A less demanding solution is to use reactive protection,
viz., 1:N protection. In this scheme each source uses a primary
path to the sink that is edge-disjoint from the primary paths
used by other sources. In addition, an extra backup set of links
(backup circuit) is reserved to be used by any of the sources
if a failure occurs. Unlike proactive protection, where each
source has its own backup path, sources are allowed to share
the backup circuit, which makes better use of the network
resources and makes this scheme more efficient.

In this paper, we utilize network coding [14][15][16] to
provide protection in a proactive manner to many-to-one flows.
The main advantage of using network coding is in reducing
the needed resources to provide such protection. This is a new
application of network coding in wireless networks, and to the
best of our knowledge, using network coding in this direction
has not been explored. The main result in the paper (Theorem
1) is summarized as follows:
In a many-to-one flow network with n sources, the single
destination (sink) will be able to recover the n data units
(from the n sources) in the case of a single link failure, if and
only if, any subset of the n sources of size k can reach the
sink through a set of edge-disjoint paths of size at least k +1,
for all values of k such that 1 ≤ k ≤ n.

The rest of this paper is organized as follows. Section II,
describes the problem, and states the paper contributions. In
Section III, we discuss the sufficient and necessary conditions
for our solution to exist. Three generalizations of the original
problem are discussed in Section IV. In Section V we show
how to perform network coding using {0, 1} coefficients.
Section VI discusses some of the practical issues related to
our approach. The network performance is studied in Section
VII. In Section VIII we show how to schedule the sources
transmissions if all the network nodes have a single transceiver,
and we compare the performance of our approach with both
the 1:N and the 1+1 protection schemes in terms of the
required number of time slots. Finally, we conclude the paper
in Section IX.

II. PROBLEM DESCRIPTION

Link failures may occur due to severe channel fading,
high levels of interference caused by other devices using the
ISM band, or even physical damage to the network nodes or
their antennas caused by the harsh weather conditions. These
problems may last for a considerable amount of time and

they cannot be relieved using FEC or ARQ. Our objective
in this paper is to efficiently provide protection against such
link failures in a proactive manner, but at the cost of reactive
protection, i.e., using the minimum number of paths. We
accomplish this by using network coding.

Let us consider the following motivating example shown in
Figures 2(a), 2(b), 2(c) and 2(d). In this network there are two
sources, S1 and S2 that need to send two data units, b1 and b2,
respectively to a sink node T . To provide proactive protection
against a single link failure each source must use the network
in a different time slot to have two edge-disjoint paths to the
sink as shown in Fig. 2(b). This is because the minimum-
cut between the sources and the sink is 3. However, unlike
proactive protection, if we want to provide reactive protection
the two sources can use the network in the same time slot as
shown in Fig. 2(c). However, if a failure takes place on one
of the primary paths the affected source will have to detect
the failure first, and then reroute its data to use the backup
path through node A, which introduces delay and interrupts
network operation. Now suppose that we allow node A in the
network shown in Fig. 2(a) to combine b1 and b2 (bitwise
XOR), and send the resulting symbol to the sink on the link
(A, T ), as illustrated in Fig. 2(d). This way, the two sources
can use the network in the same time slot and still achieve
proactive protection. If any of the three symbols sent to the
sink is lost due to a link failure, the sink will still be able to
recover the original data units. For example, assume that link
(S2, C) fails, the sink will receive b1⊕ b2 on link (A, T ) and
b1 on link (D, T ), and it can recover b2 by performing the
bitwise XOR operation on the received symbols.

Although the main result in this paper is applicable to both
WMNs and WSNs (and any other network that supports the
many-to-one flow structure), we focus our discussion only on
WMNs. In addition, we focus our discussion on link failures
although the theorems and lemmas can be easily extended for
the node failure case.

We consider a WMN, in which there is only one gateway,
and in which the routers can be organized in t levels, where
the routers in level i are i hops away from the gateway (e.g.,
the network in Fig. 1 has 3 levels). In addition each level of
routers has a set of associated users that communicate with
each other through the routers only. From now on, we refer to
the routers and users in level i by Li and Ui respectively. We
assume that the router nodes work on two frequency channels,
one for the communication between the routers themselves to
construct and use the underlying infrastructure, and the other
to communicate with users so that users do not interfere with
routers. In addition, we assume that the t levels access the
wireless medium in a TDMA manner, where each level of
routers is assigned a different time slot, that is used to send
data units from those routers, i.e. we study one level at a time.
Actually, we assume that in each time slot the users transmit
first (according to a schedule that will be discussed in Section
VIII), and routers can start their transmissions afterwards.

In general, since each level of routers and their associated
users are active alone in their assigned time slot, we assume
that there are n source nodes in the network, which represent
the users in the active level. We assume that each user



generates a single data unit. Therefore, there are n data units
from the n users that should be forwarded to the gateway
router. Fig. 2(a) shows a network with two source nodes.

Our contribution in this paper lies in answering the follow-
ing questions:
• How can network coding be used to provide protection

against link (or path) failures in such many-to-one flow
networks, while using the minimum possible number of
paths?

• What are the necessary and sufficient conditions for such
a solution to exist?

• If such a solution exists, how does it affect the network
performance?

• How does this scheme perform compared to the 1+1 and
the 1:N schemes in practice?

III. PROPOSED APPROACH

In this section we start by developing our solution on a
restricted network topology, which assumes the satisfaction
of some connectivity and topology requirements (as will be
stated below). Then we show how to relax each of these
requirements, and provide an appropriate generalization in
Section IV.

A. Assumptions, Definitions and Notation

Since we are interested in the many-to-one flow from the
users in Ui to the gateway, we can adopt the directed graph
model in which a graph G(V, E) is used to represent the
network. The set of vertices V represents the network nodes
(users and routers), and the set of edges E represents the
available wireless links between network nodes, such that the
edges are always directed from levels with higher indices to
levels with lower indices and from users to routers in a certain
level. Taking that into account we define the following:

1) Let Us be the set of users in the level being considered,
where |Us| = n.

2) Let T be the only sink node in the network.
3) Let Ls be the set of routers in level s, where |Ls| ≥ n+1.

In practice, this assumption is not always true and the
reason to make such an assumption will become clear
shortly. We relax this assumption in Section VI.

4) All the links in the original graph G are of unit capacity,
and there are no parallel links.

5) The minimum link cut (or the minimum node cut, if we
are concerned with node failures) between the nodes in
Ls and the sink node T is ≥ n + 1. Networks that do
not have this property are discussed in Section VI.

6) The sub-graph induced by the nodes in Us and Ls is
bipartite. We will consider general cases later in this
paper. In reality, this assumption is half true since users
in a WMN communicate only through routers, i.e., in
terms of edges on graphs, no two user nodes have an
edge in between. However, routers in the same level may
communicate with each other, and the graph therefore
may have edges between router nodes; we call such a
graph a semi-bipartite graph. We show in the appendix a
simple procedure to find an equivalent bipartite graph for

any semi-bipartite graph that has edges between router
nodes.

7) Only one link fails at a time.
8) A node (either a user or a router) can receive from,

or transmit to, multiple nodes simultaneously. This can
be done by using multiple transceivers at each node. In
Section VIII we show how to handle nodes with single
transceivers.

9) All packets have the same length.
10) GT is the graph formed by: the nodes in Us and Ls and

all the links between them, a hypothetical sink node T ′

and hypothetical links from all the nodes in Ls to T ′.
11) GST is the graph formed by: the nodes in Us and Ls, and

all the links between them, with a capacity of n assigned
to each of these links, a hypothetical sink node T ′,
hypothetical links with capacity of n from all nodes in
Ls to T ′, a hypothetical source node S′ and hypothetical
links with capacity of n+1 from S′ to the nodes in Us.

As an illustration of points 10 and 11 above, a simple graph
is shown in Fig. 3, and its corresponding GT and GST are
given in Fig. 4 and Fig. 5 respectively. In these figures S1, S2

and S3 are the nodes in Us, and A, B, C and D are the nodes
in Ls.

B. Sufficient and necessary conditions
Suppose we can deliver to the sink n+1 linear combinations

(or equations) of the original n data units on n+1 edge-disjoint
paths, such that, any n combinations are linearly independent
(solvable). The sink can recover the original n data units by
solving any n from the n + 1 linear combinations. Since
the n + 1 paths are edge-disjoint, a single-link failure will
affect at most one path. That is, the sink will still receive n
linearly independent combinations and will be able to recover
the original n data units. As in the 1+1 protection scheme the
recovery can be done without the need to detect the failure,
and compared to the 1 : N protection scheme, this approach
requires the same number of paths (n+1), but does not impose
a delay or interrupt the network operation. This clarifies the
basic idea of our approach. An example is shown in Fig. 2(d).

We divide the problem into two sub-problems. The first
deals with the needed information content in the linear com-
binations, i.e., how should the data units be incorporated in
the combinations to guarantee the successful recovery of the
original n data units in the case of a failure. The second is the
coding problem to guarantee the linear independence of any
n combinations from the n + 1 linear combinations. In this
section we focus on the former and leave the latter to Section
V. Thus, we always assume that the created combinations are
linearly independent in this section.

As mentioned earlier, only one level of users, Us, is active
at a certain time, and our goal is to use deterministic network
coding to provide proactive protection for the n users in that
level. Under assumption 6, coding cannot begin in sources,
since each of which only knows its own data unit and does
not have any knowledge about the other data units in other
sources. Therefore, creating the n + 1 combinations is the
responsibility of the intermediate network nodes that connect
the sources to the sink.
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It is better to do the coding as close as possible to the
sources, since this will reduce the used network resources as
we will show in Section VI. Thus, we consider the closest
nodes in the intermediate network to Us that can perform
coding on the data units, i.e., the nodes of Ls. We assume
the case when |Ls| = n + 1, i.e., each one of the nodes in Ls

is responsible for producing one combination and forwarding
it to the sink. From assumption 5, each of the nodes in Ls has
its own path to the sink that is edge-disjoint from the paths
used by other nodes. Therefore, for simplicity, our original
graph G can be replaced with GT , where a path from a node
in Ls to the sink is represented by a direct link. Taking this
into account, the condition that will enable the Ls nodes to
construct the n+1 combinations that can tolerate a single link
failure is:

Condition: Any k nodes in Us, must be connected to at least
k + 1 nodes in Ls: Consider the network in Fig. 6, if either
of the links AT or BT fails, the sink will not be able to
recover all three data units, because the other link that did
not fail will be carrying the only combination of the two data
units b1 and b2, while the sink needs at least two. Consider
the linear combination created in a node v in Ls. There are n
possible participants that can contribute to creating this linear
combination. Let us assume that the combination consisted of
two data units (i.e. v is connected to two source nodes in Us).
Then the sink can recover the two data units upon the failure
of the path from node v if these two symbols were present in
at least two other equations such that there are n independent
equations in n unknowns. That is, if node v is connected to
k nodes in Us, then for the sink to be able to recover all the
original data units if the combination created in v is lost, the
neighboring set in Ls which encode data units from the k
nodes in Us must be of size at least k, or k + 1 if we include

v. In general we can say: Any group of nodes in Us of size k
must be connected to at least k + 1 nodes in Ls.

Using the concept of matching in graph theory, an equiv-
alent statement would be: n + 1 perfect matchings between
the nodes in Us and those in Ls must exist, such that each
matching, Mi, corresponds to the case when one of the nodes
in Ls, vi, is removed, where 1 ≤ i ≤ n + 1. This guarantees
the existence of a dedicated alternate path from every source
node to the sink upon a single link failure. This condition
implies that the Max-flow is greater than or equal to 2 from
every source to the sink.

We now continue with proving that this condition is neces-
sary and sufficient for the nodes in Ls to be able to construct
the n+1 combinations that can tolerate a single link (or path)
failure.

Lemma 1. The sink will recover the n data units even if one
of the n + 1 combinations is lost, if and only if, any subset of
nodes in Us of size k is connected to a subset in Ls of size
at least k + 1, for all values of k, where 1 ≤ k ≤ n.

Proof. In the previous scenario we view the data units from
sources as variables, and the n+1 nodes in Ls as combinations
(or equations), and a variable is present in an equation if the
corresponding source is connected to the node representing
that equation.

We prove the implication by contradiction. Assume that the
sink is able to recover the n data units, even if one of the n+1
combinations is lost. But let there be a subset of Us nodes of
size k, that is connected to a subset of Ls nodes of the same
size k. Then, the sink cannot randomly choose n combinations
from the n+1, because it MUST pick all the k combinations
that were formed by the subset of Ls nodes mentioned above;
otherwise, the k variables from the corresponding k nodes in



Us will only be present in k−1 equations, i.e., they cannot be
recovered. This contradicts the assumption that the sink is able
to recover the original n data units if ANY of the combinations
was lost, which concludes the proof of the implication.

To prove the converse, we also use contradiction. Assume
that any subset of nodes in Us of size k is connected to another
subset of nodes in Ls that is of size at least k + 1. But, there
is a mandatory combination, which cannot be lost for the sink
to be able to recover the original n data units. A combination
is essential and can not be lost, if it leaves a set of equations
of size say l with l + 1 unknowns, which are impossible to
solve without that combination. But for this case to happen,
there must have been some l + 1 nodes in Us that are only
connected to l+1 nodes in Ls, which contradicts our original
assumption, of having any k nodes in Us connected to at least
k + 1 nodes in Ls, for all values of k, where 1 ≤ k ≤ n.¥

It can be seen that a naive check for the above condition
takes time of order O(2n) since we must consider all values
of k. We will now show how to check the condition above in
polynomial-time with respect to the number of sources using
a max-flow algorithm. The graph GST is used in the next
Lemma. (see Section III-A, bullet 11 for definition).

Lemma 2. An S-T maximum-flow of at least n(n + 1) is
achievable in GST , if and only if, any subset of Us of size
k is connected to a subset in Ls of size at least k + 1, for all
values of k, where 1 ≤ k ≤ n.

Proof. We prove the implication by contradiction. Assume
the max-flow value is indeed n(n+1), then all the links from
S to the n original sources are saturated (i.e., each one carries
a flow equal to n + 1). And assume that there are some k
nodes in Us that are only connected to some k other nodes in
Ls. The incoming flow to this component equals k(n + 1) =
kn + k while the outgoing capacity equals kn, which means
that there are k units of flow that will be blocked from the
sink, that is the max-flow = n(n + 1) − k which contradicts
the original assumption of the max-flow.

We prove the converse by contradiction. Suppose that any k
nodes in Us are connected to at least k+1 nodes in Ls, but the
maximum achievable flow was less than n(n + 1), then there
are some of the links from S to the nodes in Us that could not
be saturated. Assume only one of those links carried n units
of flow to a node in Us say node u. Then node u either has
a single outgoing link, or is one of k nodes in Us, that are
connected to another set of k nodes in Ls (otherwise, it would
have been able to forward this remaining unit of flow to the
sink through an augmenting path on the residual network [17]).
In both cases node u will violate the connectivity assumptions.
Therefore, the max-flow must be n(n+1). This concludes the
proof. ¥

IV. GENERALIZATIONS

In this section we introduce three generalizations. First we
discuss the case when |Ls| is larger then n+1, and introduce a
mixed integer linear program (MILP) to compute the minimum
number of Ls that can be used to tolerate a single failure. Then
we generalize the sufficient and necessary conditions presented

in the previous section to be suitable for any network topology
(not necessarily bipartite), and any number of failures.

A. The case of |Ls| > n + 1

Until now, we have assumed that the number of nodes in
Ls is exactly n + 1. The number of Ls nodes could be larger
than n + 1. This however, does not invalidate our conditions
and the above requirements will still apply.

The only difference is that the minimum number of combi-
nations may be more than n + 1, depending on the topology.
One extreme case, is when each of the n sources is connected
to exactly two nodes in Ls, and each of the Ls nodes has
exactly one neighbor in Us, i.e., |Ls| = 2n. Assuming that
the max-flow from Ls to the sink is 2n, the minimum number
of combinations that tolerate a single link failure in this case
is 2n, which is equivalent to 1+1 protection, where coding is
not needed and routing can be used.

Another issue that arises in this general case is selecting
the appropriate linear combinations that will enable the sink
to recover all the original data units. The network shown in
Fig. 7 gives a good example, where the minimum number
of combinations is n + 2. In this network, selecting four
combinations randomly may not cover all the data units. For
example, if the combinations created in nodes C, D, E and
F were chosen by the sink to calculate the original four data
units, b1 cannot be recovered. However, if any of the above
mentioned four combinations was replaced by either of the
combinations from A or B, the sink will be able to recover
all the original data units. We conjecture that the problem of
finding the minimum number of Ls nodes that satisfies the
connectivity conditions, and hence, the problem of finding the
minimum number of linear combinations that can tolerate a
single link failure is NP-Complete. We therefore formulate a
solution to this problem as a mixed integer linear program.

We use the graph GST to formulate an MILP to calculate
the minimum number of paths that are needed from nodes in
Ls to the sink, in order to forward n(n+1) units of flow. Each
node in Ls is traversed by a single path to the sink, and thus
calculating the minimum number of paths will result in the
minimum number of nodes in Ls that satisfies the connectivity
conditions.

1) Notations:
• Let m be the number of nodes in Ls.
• N b

a(u) is the set of neighbors in a of node u, such that
u is in b, where b and a ∈ {Us, Ls} and if b ∈ Us, then
a ∈ Ls and vice versa.

• fuv and cuv corresponds to the flow and capacity of edge
(u, v) respectively, where 0 ≤ fuv ≤ cuv .

• cS′u = n + 1, ∀u where S′ is the hypothetical source
and u ∈ Us. The capacity of all other edges is n.

• yv is defined for every node v in Ls and it equals the
sum of all flows going into that node.

• zv is a binary variable that is defined for every node v
in Ls, which is equal to 1 if the outgoing link from v to
the sink carries at least one unit of flow.

2) MILP: We begin with the assumption that the maximum
achievable flow from S′ to T ′ is n(n + 1). All the nodes in



Ls that participate in forwarding the flow are selected to be
the coding nodes. We calculate the minimum number of Ls

nodes that satisfies the connectivity conditions by calculating
the minimum number of used paths. The objective function is:

Minimize

m∑
v=1

zv (1)

Subject to:
zv − yv

n
≥ 0, ∀v ∈ Ls (2)

This constraint is defined for every node v in Ls, and it sets
the binary variable zv to 1 if there is an outgoing flow from
node v to the sink T ′, i.e., the path from v is used.

∑

∀v:vεNUs
Ls

(u)

fuv = n + 1,∀u ∈ Us (3)

yv −
∑

∀u:vεNUs
Ls

(u)

fuv = 0, ∀v ∈ Ls (4)

These two constraints represent the conservation of flow
constraints, where the constraint in equation 3 beside con-
serving the flow assures that the links from the hypothetical
source to all the nodes in Us are saturated to guarantee a max-
flow of n(n+1). And, the constraint in equation 4 (combined
with the bounds on yv below) restricts the sum of all incoming
flows to a certain node v in Ls not to exceed the capacity of
the single outgoing link to the sink. Finally the following two
bounds are needed:

0 ≤ fuv ≤ cuv, ∀(u, v) (5)

0 ≤ yv ≤ n,∀v (6)

For u ε Us and v ∈ Ls.

B. General Network Topology

Assumption 6 in Section III-A states that the graph induced
by the nodes in Us and Ls is bipartite. This is a restricted
topology that may not be present in a real network. There-
fore, we address the problem of adapting to other network
topologies in this subsection.

By carefully inspecting the condition of Lemma 1, one can
see that the essence of the solution lies in the number of edge-
disjoint paths (or node-disjoint paths if we are concerned with
node-failures) from a group of sources to the sink. In the spe-
cial case considered previously, each node in Ls represented
one such path. Hence, Lemma 1 can be generalized in the
following Theorem.

Theorem 1. The sink will be able to recover the n data units
even if ANY one from the n + 1 combinations is lost, if and
only if, any subset of nodes in Us of size k is connected to the
sink through a set of edge-disjoint paths of size at least k +1,
for all values of k, where 1 ≤ k ≤ n.

Proof. The proof follows directly the same reasoning used
in proving Lemma 1. ¥

As an example to illustrate Theorem 1, consider a less
restricted network topology, where we allow links between

sources, as shown in Fig. 8. Table I lists a collection of edge-
disjoint paths between every possible combination of sources
and the sink. It can be easily verified that the network in
Fig. 8 satisfies the condition in Theorem 1. Moreover, this
condition can be checked using the same idea in Lemma 2.
Specifically, by assuming 1) that each source node is connected
to a hypothetical source S′ through a link with a capacity of
n+1, and 2) that all other links have a capacity of n. Then,
checking if the max-flow to the sink is at least n(n + 1).

TABLE I
EDGE-DISJOINT PATHS FROM COMBINATIONS OF SOURCES TO SINK IN

FIG. 8

Sources Paths
S1 {S1-A-T},{S1-S3-B-T}
S2 {S2-D-T},{S2-S3-C-T}
S3 {S3-B-T},{S3-C-T}
{S1, S2} {S1-A-T},{S1-S3-B-T},{S2-D-T}
{S1, S3} {S1-A-T},{S1-S3-B-T},{S3-C-T}
{S2, S3} {S2-D-T},{S2-S3-C-T},{S3-B-T}
{S1, S2, S3} {S1-A-T},{S2-D-T},{S3-B-T},{S3-C-T}

C. Multiple Failures

The necessary and sufficient conditions for the case of
multiple failures can be derived from our previous discussion,
and are summarized in the following theorem:

Theorem 2. The sink will be able to recover the n data units
even if e link failures occur (i.e., at most e combinations are
lost), if and only if, any subset of Us of size k is connected
to the sink through a set of edge-disjoint paths of size at least
k + e, for all values of k, where 1 ≤ k ≤ n.

Proof. The proof follows directly the same reasoning used
in proving Lemma 1. ¥

Although we have discussed three generalizations in the
previous subsections, in the rest of the paper we continue our
analysis of the baseline case that satisfies the assumptions in
Section III-A.

V. CODING

In the previous sections, we assumed linear independence
between linearly combined data units. In this section, we will
show how to achieve this independence between combinations
through using {0, 1} coefficients. This reduces all operations
to bit-wise XOR operations, and simplifies the coding and
decoding processes.

A linear combination is a summation of data symbols (bi’s)
each of which is multiplied by a coefficient (αi) from a finite
field GF (q), as follows: C =

∑
i αi.bi, where bi, αi ∈ GF (q).

The independence of combinations relies on the bi’s and the
choice of the αi’s. Therefore, achieving independence using
{0, 1} coefficients depends solely on how we compose each
combination from only the data units, i.e., a data unit is present
in a combination if its coefficient is 1, and a data unit is not
present if its coefficient is 0. For instance, in Fig. 2(d), the
three combinations that were sent to the sink are, C1 = b1,
C2 = b2 and C3 = b1 + b2, each of which is composed only
from data units and no coefficients (other than 1 and 0) were
used.
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Fig. 8. Non-bipartite topology

In the following subsections we assume 1) that the connec-
tivity condition of Lemma 1 is satisfied; 2) if the graph induced
by the nodes in Us and Ls is not bipartite the transformation
in the appendix is used. We now show how to decide on the
data units composing each of the linear combinations, through
finding simple paths and trees.

A. The benefits of paths and trees

Consider a path in the bipartite graph that has both ends in
Ls and in the middle it alternates between Us and Ls until it
includes all the nodes in Us. It is clear that any k nodes from
Us on that path have at least k + 1 neighboring nodes from
Ls also on that path. Also, note that the number of Ls nodes
on such a path is the minimum number of nodes that satisfies
the connectivity conditions, because each source has only two
neighboring nodes in Ls.

Such a path not only finds a set of nodes in Ls that satisfy
the connectivity conditions, but also helps in the assignment
of the coding coefficients to create the needed linearly in-
dependent combinations. To illustrate the benefits of coding
according to the connectivity on a path, consider the example
in Fig.9, where we have 4 source nodes in Us, and 5 nodes in
Ls. If we let all the sources use all their outgoing links to Ls as
shown in the example, we will have dependent combinations
like {b4 + b3} and {b4 + b3} (or {b1 + b2} and {b1 + b2}),
thus invalidating the linear independence requirements.
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Fig. 9. Bad coding: linear Independence of any n combinations is not
satisfied

However, consider the simple path {A, S1, B, S2, C, S3,
D, S4, E} that is represented by the solid edges in Fig.10.
If we compose the combinations at the Ls nodes according
to their connectivity with the nodes in Us on the path, i.e., a
solid line correspond to a coefficient of 1 and a dashed line
correspond to a coefficient of 0, then linear independence will
be guaranteed, since any two combinations cannot have more
than one element (i.e., data unit) in common.

Of course, we may not always find such a simple path.
However, since a path is a special case of a tree with two
leaves, then if we can find a tree that covers all the nodes in Us,
with all of its leaf nodes in Ls, we can construct independent
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Fig. 10. Path coding: linear independence is satisfied in any n combinations

linear combinations according to the connectivity on the tree.
This is shown in Fig.11(a), for the network presented in Fig.9,
Fig.11(b) clarifies the underlying tree structure.
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Fig. 11. (a) Tree coding: linear independence is satisfied in any n linear
combinations, (b) Underlying tree

We now prove that constructing the linear combinations at
the nodes in Ls according to their connectivity with the source
nodes in Us on the coding tree results in a set of n + 1 linear
combinations such that any n of them are linearly independent.

Theorem 3. If the linear combinations at the nodes in Ls are
created according to their connectivity with the source nodes
in Us on the coding tree, i.e., a link on the tree is assigned
a coefficient of 1 and a link not on the tree is assigned a
coefficient of 0, then any n combinations from the resulting
n + 1 linear combinations are linearly independent.

Proof. A direct proof is used to prove this implication. We
prove that any n combinations from the n + 1 are linearly
independent by proving that they are solvable by constructing
an algorithm to solve for the n data units. In the algorithm the



term ”leaf combination” refers to a combination created at a
leaf node in the tree, which will be a trivial combination that
consists of a single data unit. The algorithm works as follows:

1) Put all the data units from the leaf combinations in a
set; let us call it the Recovered Data Units Set, or the
RDU set for short.

2) Remove all data units in the RDU set from the remaining
combinations. This is done through XORing a data unit
with all the combinations that it participates in.

3) After the previous step, a new set of data units will be
recovered. We make these compose the new RDU set.
The data units in the old RDU set will not be used further
since they are removed from all combinations.

4) Repeat Steps 2 and 3 until all the data units are recov-
ered.

To see how any n combinations are solvable, remove one
of the combinations created at the nodes in Ls. There are two
possibilities for this combination:

1) It is a leaf combination: in this case we are guaranteed
to have at least one other leaf combination (when it is
a path), and the algorithm can start from it.

2) It is a non-leaf combination: in this case the coding tree
is divided into two smaller trees, each of which will have
at least one leaf combination (when it is a path).

Note that the running time for this algorithm is O(n), since
in each step at least one data unit is recovered. The worst
case occurs when the coding tree is a path and one of the leaf
combinations is lost.¥

B. Constructing a coding tree

We can construct a coding tree using the following three
steps: first we begin by constructing a tree rooted at a node in
Ls, then we modify its structure to guarantee that there are no
leaves in Us. Finally we trim the extra Ls leaves if any (when
|Ls| > n + 1).

A tree can be constructed in time of order O(|E|), e.g., a
depth-first search (DFS) tree or a breadth-first search (BFS)
tree, and the trimming can be done in time of order O(|V |).
The non-trivial part is modifying the structure of the tree to
guarantee that there are no Us leaves. Algorithms 1 and 2
describes a procedure to do the modification.

Algorithm 1 Construct a coding tree
1: while there are leaves from Us do
2: Pick a leaf node from Us in the tree, say u
3: Find one of u’s neighbors in Ls say x {other than u’s parent}
4: Call ModTree(u, x)
5: end while

In Algorithm 1, we search the tree for a leaf node that falls
in Us. Upon finding such a leaf node u, we look for a neighbor
x in Ls for node u that is different from the parent of u. We
are guaranteed to find such a neighbor x, because each single
node in Us is connected to at least 2 nodes in Ls (Lemma 1).
After finding u and x, the procedure ModTree adds the link
between them to the tree creating a cycle C. Then, it traverses
the nodes on C to find a node v in Us that has a neighbor w
in Ls not on C. Again, we are guaranteed to find such a node

Algorithm 2 ModTree(u,x)
1: Connect u to x, this will create a cycle, say C
2: Traverse the nodes on C, until we reach a node in Us, say node

v, that has a neighbor w not on the cycle.
3: if w is already connected to v then
4: Cut the cycle directly before or after v
5: return
6: else
7: Cut the cycle before or after v
8: Call ModTree(v, w)
9: end if

v that has such a neighbor w, because any k nodes in Us are
connected to at least k +1 nodes in Ls, and since the cycle is
composed of equal numbers of nodes from both Us and Ls,
then there must be a Us node on this cycle that has a neighbor
in Ls not on the cycle. If v was connected to w on the tree,
we cut the cycle before or after v, to make the graph a tree
again. On the other hand, if v and w are not connected on the
tree, we recursively call ModTree. As an illustration consider
the network in Fig.12, the resulting DFS-Tree (Depth First
Tree) rooted at node C is shown in Fig.13(a). The nodes that
will be found when running Algorithm 1 and two iterations
of ModTree are shown in Fig.13(b), the cycles and the edges
that are marked to be cut are shown in Fig.13(c), and the
final result after trimming the extra leaf nodes is shown in
Fig.13(d).

There can be at most n − 1 leaf nodes in Us, and the
recursive call to ModTree can be done at most n times.
Hence, the running time of Algorithm 1 is of order O(n2).
Note that trimming extra leaf neighbors does not guarantee
the minimum number of nodes in Ls. Therefore, to see how
well this algorithm performs, in terms of needed number of
Ls nodes, we compared it to the MILP presented in Section
IV-A, the results are shown in Fig. 14. Each point on the graph
corresponds to the average number of needed Ls nodes over
100 random topologies with the same number of nodes in Us

and Ls, where we varied the number of Us nodes from 2 to
10 while keeping the number of Ls nodes twice as many.
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Fig. 14. Tree VS MILP

VI. PRACTICAL CONSIDERATIONS

In this section we start by considering networks with limited
minimum cuts, where we show how to modify our solution to
work even if the minimum cut between the sources and sink
was less than n + 1, and we formulate an MILP to solve
this problem. In addition, we show that this problem is NP-
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complete by a simple reduction from the K-set cover problem.
After that, we discuss the decoding process at the sink and we
show that designing the combinations in a optimal manner that
allows their fast recovery (according to the decoding process
discussed in Section V-A) is an NP-complete problem also.
Finally, we show how to make use of our solution in upstream
data transmission (from sink to sources).

A. Networks with limited minimum cuts

In our previous discussion, we always assumed that the min-
cut between Ls and the sink is greater than or equal to n+1.
However in practice this may not be the case, since in reality
the network gets narrower as we approach the sink. Thus, in
this section we study networks with limited min-cuts.

From Menger’s theorem [17], the maximum number of
edge-disjoint paths between the nodes in Ls and the sink is
equal to the minimum edge cut. Let the number of these edge-
disjoint paths be h. If h is greater than or equal to n+1, then
our approach can be applied directly, and the combinations
formed in Ls can be forwarded to the sink. On the other hand,
if h is less than n + 1, then the formed combinations cannot
be forwarded as is, and must be modified.

Let us assume that h < n + 1, then the sink cannot receive
more than h combinations at a time. That is, there is no point in
allowing more than h−1 sources to transmit at the same time
if we want to achieve protection using our scheme. Therefore,
we propose to divide the n sources into groups of size h− 1
sources each, and then choose a set of feasible groups that
covers all the sources. We assume that the groups are time
multiplexed, and we define a group of sources to be feasible
if it satisfies the condition in Theorem 1. We say a set of
groups covers all the sources, if each source is present in at
least one of the groups in the chosen set.

The way we choose the covering set of feasible groups must
take the following into consideration:

1) The degree of disjointedness between groups, which
affects the fairness and the rate at which the sources
transmit, as we will see in Section VII.

2) The used network resources.
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As an illustration consider the network in Fig. 15, which
contains four sources. The maximum number of edge-disjoint
paths (h), from Ls to the sink in this network is equal to 3.
Therefor, the largest possible group of sources, that can be
protected together, will be of size at most 2. In this example
all the groups of size two are feasible according to Theorem
1. Let us now compare the following three sets of groups:

1) Set1={{S1S2}, {S1S3}, {S1S4}}: In this set S1 is
common in all the groups, which is not a fair solution.
This is because, if S1 was allowed to transmit in all the
three time slots, it will be transmitting at a rate of 1
symbol/time slot, while each of the remaining sources is
allowed to transmit only in one of the three time slots,
i.e, transmitting at a rate of 1

3 symbol/time slot.
2) Set2={{S1S3}, {S2S4}}: this choice of groups achieves

better fairness, where the bandwidth is equally divided
and all the sources transmit at a rate of 1

2 symbol/time
slot.

3) Set3={{S1S2}, {S3S4}}: this is the best solution, be-
cause not only we achieves better fairness than Set1,
but also we use less network resources than Set2, since
each of the groups uses only three links to forward data
to the minimum cut edges, compared to four links in the
groups of Set2.

The problem of choosing the smallest set of feasible groups
to cover all sources can be proved to be NP-complete through
a reduction from the K-Set Cover problem as will be shown
in the next subsection.



B. Problem Complexity

In this section we show that the problem of dividing the
sources into feasible groups, and choosing a covering set from
the groups to cover all the source nodes is NP-complete. First,
we start by presenting the decision version of the source
grouping problem. We will call this problem the Source-
Grouping problem, then we will consider a simplified version
of Source-Grouping and prove that it is NP-complete by a
reduction from the K-Set Cover problem.
Source-Grouping
Given: A graph G(V,E), the set of source nodes Us, the sink
node T , and an integer h, which is equal to the number of
edges whose removal disconnects the network, and leaves it
divided into two partitions, one containing the sink node T ,
and the other containing the set of sources Us.
Question: Is there a collection of at most C groups, where
each of the groups is of size h− 1, such that:

1) All the groups are feasible, i.e. for each group any k
sources in this group reaches the sink through a set of
k + 1 edge-disjoint paths, for 1 ≤ k ≤ h− 1.

2) The groups cover all the source nodes.

Theorem 4. The Source-Grouping problem is NP-complete.

Proof.This problem belongs to the NP class, since if we
are given a collection of groups, we can check the covering
condition in polynomial-time, by calculating the union of all
groups and checking if it is equal to Us. We can also check
the feasibility condition for each group in polynomial-time by
assuming that each source node has a supply of h units of
flow, that needs to be forwarded to the sink node T on the
graph edges, where each edge has a capacity equal to h − 1
(from Lemma 2). This can be accomplished using a max-flow
algorithm which has an O(n3) time complexity (if we use the
pre-flow push algorithm [18]), and since there can be at most
n−h+2 groups the total time will be of order O(n3.(n−h+2))
which is dominated by O(n4).

To prove the NP-completeness of Source-Grouping it is
enough to show that part of it is NP-complete. Hence, we
will ignore the feasibility condition and we will assume that
we are given the set of feasible groups, and our problem is
confined to finding a collection of feasible groups that covers
Us. Thus, the new version of Source-Grouping which we will
call Source-Covering can be defined as follows:
Source-Covering
Given: The set of sources Us, the collection of all the groups
in Us that are feasible, F = {G1, G2, . . . }, where |Gi| =
h− 1,∀i, and a positive integer C.
Question: Can we choose at most C groups from F whose
union gives Ls?

To prove that Source-Covering is NP-complete, we will
show that any instance of the K-Set Cover problem can
be mapped directly to an instance of Source-Covering. For
completeness we state the K-Set Cover problem:
K-Set Cover
Given: A set of elements E = {e1, e2, . . . , en}, a collection
of subsets of E , B = {B1, B2, . . . }, where |Bi| = K, ∀i, and
a budget D.

Question: Can we find at most D subsets from B whose union
gives E?

Obviously, the set E in the K-Set Cover problems maps
directly to the set Us in Source-Covering. Also B maps to F ,
K maps to h−1 and D maps to C. Therefore, any instance of
the K-Set Cover problem can be transformed into an instance
of the Source-Covering in time of order O(1), and finding
a solution to any of them solves the other, which means that
Source-Covering, and hence Source-Grouping are both NP-
Complete. ¥

C. MILP Formulation

In this subsection we formulate the problem of source
grouping as a mixed integer linear program. For convenience,
we define the following:

1) s(k) source number k, where 1 ≤ k ≤ n.
2) M the maximum number of groups which equals n −

h + 2.
3) fkc

ij the flow of source k in group c on edge (i, j).
4) zc

ij a binary variable which is equal to 1 if the edge (i, j)
carried flow for group c and 0 otherwise.

5) gk
c a binary variable which is equal to 1 only if source

k was in group c and 0 otherwise.
Assuming that the capacity of all edges is h − 1, the linear
integer program is:

Minimize

M∑
c=1

∑

∀(i,j)∈E

zc
ij (7)

Subject to:
∑

∀j:(s(k),j)∈E

fkc
s(k)j = gk

c .h , ∀k, c (8)

zc
ij −

∑n
k=1 fkc

ij

h− 1
≥ 0 , ∀c, (i, j) ∈ E. (9)

∑

∀i:(i,j)∈E

n∑

k=1

fkc
ij =

∑

∀i:(j,i)∈E

n∑

k=1

fkc
ji (10)

∀c, j 6= x ∈ {T, s(1), . . . , s(n)}

0 ≤
n∑

k=1

fkc
ij ≤ h− 1 , ∀c, (i, j) ∈ E (11)

M∑
c=1

gk
c = 1 , ∀k (12)

n∑

k=1

gk
c ≤ h− 1 , ∀c (13)

The objective in (7) is to minimize the number of used
links for each group. Constraint (8) says that if source k was
participating in group c the outgoing flow from it must be
equal to h in the time slot for that group. Constraint (9) forces
zc
ij to be equal to 1 if the flow on edge (i, j) was not 0.

Constraint (10) says that in a certain group (i.e. at a certain
time slot) the amount of flow (of all sources) entering a node



equals the amount of flow leaving that node. Constraint (11)
says that the sum of flow of all sources in a certain group
cannot exceed the capacity of any link which is equal to h−1.
Constraint (12) ensures that each source participates in one
group only, and (13) guarantees that a group contains no more
than h− 1 sources.

This MILP guarantees fair bandwidth sharing, i.e., a source
cannot transmit again unless all other sources have transmitted.
This is ensured by constraint (12) the forces each source to
participate in one group only. As we will show later in Section
VII, a source might have the opportunity to transmit more than
once without affecting the throughput of other sources; we call
this opportunistic transmission. The MILP can be modified for
opportunistic transmissions as follows:

The objective function should be:

Minimize

M∑
c=1

(
n∑

k=1

gk
c +

∑

∀(i,j)∈E

zc
ij) (14)

with the following modifications on constraints 12 and 13:

M∑
c=1

gk
c ≥ 1 , ∀k (15)

n∑

k=1

gk
c = h− 1 , ∀c (16)

Now the bandwidth is utilized by constraint (16) that sets
the size of all groups to its maximum size h−1, and a source
is allowed to participate in more than one group by constraint
(15).

D. Implementation

Assumption 8 states that a node can receive from, or
transmit to, multiple nodes simultaneously. Practically, this can
be through using multiple transceivers utilizing different fre-
quency channels. On the other hand, if we want to remove this
assumption completely, time scheduling of node transmissions
can be used. It can be shown for some simple cases, that if D
is the number of time slots, where D is a function of N and
D increases as N increases, that the difference in D between
(1 : N ) protection and network coding protection will be very
small. We elaborate more on scheduling in Section VIII.

E. Decoding at the sink node

We showed in Section V that {0,1} coding can be accom-
plished in O(n2). In this section we discuss the decoding
process at the sink node. We assume that each packet carries
the coding vector for the combination in that packet. Which
can be done by adding a bit-map of length n in the header
of each packet, where a 1 at position i indicates that the data
unit from source i participates in this combination, since we
use {0,1} coding.

Assuming a single-link failure, the sink is guaranteed to
receive at least one trivial combination consisting of a single
data unit (and at least two trivial combinations if no failure
occurs), which does not need any further processing to retrieve
the carried symbol. This is due to the fact that the coding tree
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Fig. 16. Comparing the number of produced leaf nodes for a BFS-tree and
a DFS-tree

will have at least two leaf nodes in Ls (when the tree is a path),
which will produce these single data unit combinations; we
refer to these combinations as leaf combinations. The details
of decoding process were previously discussed in Section V-A,
where we showed how to solve the set of linear combinations
at the sink using a simple procedure that runs in O(n). Note
that when a network has a limited cut h, the decoding time
will be of order O(h).

Clearly, it is better to have as many leaves as possible
in the coding tree. This is because as the number of leaf
combinations increases the running time will decrease. Unfor-
tunately, this is an NP-complete problem and cannot be solved
in polynomial time. Note that the coding tree algorithm does
not reduce the number of leaf nodes in the initial tree (unless
it is trimming unneeded leaves in Ls that will create duplicate
trivial combinations), it just modifies the tree to ensure that all
the leaf nodes are in Ls. Therefore, to maximize the number
of leaf nodes in the coding tree we can start by finding the
maximum leaf spanning tree on the bipartite graph containing
Us and Ls (which is a known NP-complete problem [19]), then
run the coding tree algorithm to ensure that all leaf nodes are
in Ls, which will transfer the maximum leaf spanning tree to
the maximum leaf coding tree in polynomial time.

To keep the coding simple the initial tree must be con-
structed in an efficient manner. There are two well known tree
search strategies, the DFS-tree (Depth First Search) and the
BFS-tree (Breadth First Tree). To compare these two strategies,
we ran our algorithm in Section V using both options to see
which strategy performs better in terms of producing leaf
combinations (leaf nodes). The results are shown in Fig.16,
where each point on the graph corresponds to the average of
50 runs using the same number of nodes in Us and choosing
the number of Ls randomly between |Us|+1 and 2|Us|. From
the figure, we can see that on average BFS produces more
leaf combinations than DFS. Although not optimal, in terms
of producing maximum number of leaves, we use a BFS-tree
as the initial tree in our algorithm for its simplicity where it
can be constructed in O(|E|) steps [18].

It is worth mentioning that the decoding process will be
simplified if there was a node, say x, in Ls with a degree equal
to n. This is because we can send n trivial combinations from
nodes other than x, plus a combination carrying the XOR of
all data units that is created at node x. An example is shown
in Figure 11(a). If this was the case then decoding is only
needed if a trivial combination was lost.



F. Sink to sources transmission

To send data to users, the sink can literally reverse the
process used by the sources. That is, generate n+1 combina-
tions, such that any n of them are linearly independent. Then,
forward these combinations to the nodes in Ls so that they
can collaboratively recover the original data units and send
each of which to its designated receiver (user). One way to do
this is by using the same coding vectors for the combinations
received from the sources. For example, if the sink received
the combination bi ⊕ bj on path k, then when sending data
upstream to sources the data units for sources bi and bj are
XORed and sent back on the same path k.

To recover the data units the users should collaborate with
routers in the following manner. The recovery can start from
the Ls nodes that receive single data unit combinations, which
correspond to leaf nodes in the coding tree (there are at least
two such nodes). These nodes send the received data units to
their corresponding users (each leaf node in Ls sends to a
single source). By doing this the users have received the data
units destined to them. After that the users send these data
units to their other neighboring nodes in Ls on the coding tree
(since each source has at least two neighbors in Ls). Upon
receiving a data unit, a node in Ls removes this data unit
from the combination it received from the sink. The Ls node
continues to remove data units until the Ls node has received
data units from all but one of its Us neighbors, say y, after
which the data unit for user y will be recovered, and then sent
to user y. The process repeats until all the original data units
are recovered by the user nodes.

The recovery will be successful as long as there is at least
one leaf combination that was received successfully by a node
in Ls. We are guaranteed to have such a leaf combination
when a single-link failure takes place. Basically there are two
possibilities:

1) The failure affects a leaf combination: in this case as we
discussed above we are guaranteed to have at least one
other leaf combination.

2) The failure affects a non-leaf combination: in this case
the coding tree is divided into two smaller trees, each
of which will have at least one leaf combination.

In the worst case, when the coding tree is a path, and one
of the leaf combinations is lost due to a failure, this process
takes O(2n) transmissions or O(2h) in networks with limited
min-cuts.

VII. NETWORK PERFORMANCE

Since redundant data is sent to provide protection, the
effective data rate will be decreased, compared to the case
when there is no protection. In this section, we will study the
effect of network coding-based protection on the effective data
rate. Specifically, we will discuss the following cases:
• Case 1: Fair bandwidth sharing, with no protection.
• Case 2: Fair bandwidth sharing, with protection.
• Case 3: Opportunistic transmission, with no protection.
• Case 4: Opportunistic transmission, with protection.
By fair bandwidth sharing we mean that a source does not

transmit again until all other sources have transmitted, and by

opportunistic transmission we mean that a source transmits
whenever it has an opportunity to do so. In our discussion,
we define the rate R as the number of data units that can
be received by the sink per unit time. Also we assume the
following:

1) Sources will be divided into groups, like we did in
section VI, if h was not large enough to forward all
the n + 1 combinations in the case of coding, or the n
data units when there is no protection.

2) There are two edge-disjoint paths from every source to
the sink, i.e., minimum number of neighbors is used.
This assumption will simplify the analysis, and will not
affect its validity. This is because the rate is affected
by the total number of combinations received at the
sink, and the number of unique data symbols that can
be recovered, but not by the number of occurrences of
the data symbols in the combinations.

3) We assume that the selected groups are feasible as
defined in section VI.

Case 1.a: When h ≥ n, the sink can receive all the n data
units at the same time, which means that:

R = n

Case 1.b: When h < n, the sources should be grouped,
which will cause the rate to vary at the sink depending on the
way the sources were divided:

1) The best grouping scenario is when the sources are
sorted in disjoint groups, giving rise to dn

h e groups,
i.e., dn

h e time units are needed for all the sources to
be covered, which means that:

R =
n

dn
he

≤ n
n
h

= h

2) Since every source has two-edge disjoint paths to the
sink, then any source can reach two different edges in
the min-cut. The worst grouping scenario occurs when
there are h− 2 min-cut edges that can be only reached
by h − 2 sources, forcing the remaining n − h + 2
sources to use just the remaining two min-cut links.
Because we assume no protection in this case, each
source can use one edge in the min-cut, hence, the
n − h + 2 sources can be divided into dn−h+2

2 e pairs,
each pair when combined with the other h− 2 sources
will form a group. Which produces dn−h+2

2 e similar
groups that only differ in two elements. The network in
Fig. 17 shows an example, where the sources S1, S2,
...,Sh−2 are present in all the selected groups (although
we assume that they transmit in only one time slot out
of the dn−h+2

2 e), and the sources from Sh−1 to Sn can
connect to the sink only through the last two min-cut
links. In this case the n−h+2 sources will share these
two links in dn−h+2

2 e time slots. Which means that:

R =
n

dn−h+2
2 e ≤

n
n−h+2

2

=
2n

n− h + 2

It can be seen that the last two cases are equivalent when
h = 2, and they both give R = 2.

Case 2.a: When h ≥ n + 1 the sink can receive the n + 1
combinations at the same time and recover all the n data units
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using any n combinations, that is:
R = n

Case 2.b: When h < n + 1 the sources should be divided
into groups, and the rate at the sink will depend on how the
grouping was accomplished:

1) As before, the best grouping is when the sources can be
divided into disjoint groups, but in this case, since we
assume protection is provided, the groups will be of size
h−1, thus producing at most d n

h−1e groups. Hence, the
rate will be:

R =
n

d n
h−1e

≤ n
n

h−1

= h− 1

2) The worst case grouping is similar to that discussed in
Case 1.b, but in this case since protection is assumed,
the n − h + 2 sources mentioned earlier will not be
divided into pairs, rather, each of which will be active
alone with the other h − 2 sources, thus giving rise to
n − h + 2 groups, each of size h − 1. The network in
Fig.17 still gives a valid example. The rate in this case
is:

R =
n

n− h + 2
Note that the last two cases are also equivalent when h = 2,
and give R = 1, since each source must use two edge-disjoint
paths to forward data to the sink.

Case 3: The calculations from Case 1 are still valid for this
case, except when h < n with worst case grouping, in which
the rate at the sink will equal h, since the h − 2 sources are
allowed to transmit in every one of the dn−h+2

2 e time slots.
To capture the difference, we should consider the rate at the
sources, where it was 1

dn−h+2
2 e for each of the n sources in

Case 1. However, in this case, R = 1 for each of the h − 2
sources that are repeated in all groups and 1

dn−h+2
2 e for each

of the n− h + 2 sources that can only use two min-cut links.
Case 4: The only difference between this case and case 2,

is when h < n+1 with worst case grouping, in which the rate
at the sink will always be equal to h − 1. Again, to see the
difference we should consider the rate at the sources, where it
will be 1 for each of the h− 2 common sources, and 1

n−h+2
for each of the n− h + 2 sources that share only two min-cut
edges.

VIII. SCHEDULING

As mentioned in Subsection VI-D, if each node has a
single transceiver, a scheduling mechanism for the sources
transmissions should be used. In this section we introduce a
greedy algorithm that constructs a feasible schedule for the
transmissions of the sources in Us, taking into consideration

their connectivity with their neighbors in Ls in the original
graph (see appendix). In the appendix, we discuss the case if
the original induced graph was not bipartite and a transforma-
tion was applied.

We use this algorithm as a common ground to compare
the performance of our protection scheme with the 1 : N ,
and the 1 + 1 protection schemes, in terms of the number of
needed time slots. Before stating the algorithm, let us define
the feasibility of a schedule for the three protection schemes,
assuming that the max-flow between Ls and the sink is h:

For Network Coding-Based protection the following
must hold:
• The number of sources in a certain slot does not exceed

h− 1.
• If source x is scheduled in a time slot, then no other

source that has a common neighbor with x can be
scheduled in the same time slot.

For 1:N protection the following must hold:
• The number of sources in a certain slot does not exceed

h− 1.
• If source x is scheduled in a time slot, then there must

be at least one neighbor for x, which does not receive
from any source other than x in that slot.

For 1+1 protection the following must hold:
• The number of sources in a certain slot does not exceed

h/2.
• If source x is scheduled in a time slot, then there must be

at least two neighbors for x, which do not receive from
any source other than x in that slot.

Taking the feasibility conditions into account, Algorithm 3
shows how to build a schedule that satisfies those conditions
for the case of network coding-based protection (we will
discuss the other two cases shortly). For each time slot,
the algorithm selects the source with the least degree in
Us. Then, it excludes all the sources that will violate the
feasibility conditions from future choices, by putting them
in the Colliding Sources set. The previous two steps are
repeated until no more sources can be added to the current time
slot. After that, Colliding Sources is reinitialized and the
algorithm starts filling the next time slot. The process repeats
until all sources are scheduled.

For the case of 1 : N protection, one slight modification
is needed. That is, in step 22 Colliding Sources should be
modified to include All the Us neighbors of the one node in
Ls that is a neighbor to x, and has the least degree.

However, in the case of 1+1 protection, two modifications
are required:

1) The condition of the if statement in 11 should be
modified to (index > h/2 || Found == FALSE).

2) In step 22, Colliding Sources should be modified to
include All the Us neighbors of the two nodes in Ls that
are neighbors to x, and have the least degrees.

To be as practical as possible in our comparison, the sources
in Us should have small degrees. This is because 1) the sources
only see the nearby neighbors (routers), which fall within their
vicinity, and 2) the routers in reality are not placed too close to
each other, so that the maximum amount of users are covered



Algorithm 3 Scheduling Algorithm
1: {Defining Variables}
2: SchdSet = ∅; {a set that contains the scheduled sources}
3: Colliding Sources[|Us|] = ∅; {a set that contains the sources

that will collide with the scheduled source if both transmit at the
same time}

4: Schedule[|Us|][|Us|]; {transmissions schedule}
5: Slot = 0; {the number of needed time slots}
6: Index = 0; {source index in a time slot}
7: h = Max-flow; {the max-flow from Ls to the sink}
8: Found = TRUE; {a boolean variable, which is TRUE if a new

source is added}
9: while (|SchdSet| < |Us|) do

10: x = ∅;
11: if (Index > h− 1 || Found == FALSE) then
12: Slot++;
13: Index = 0;
14: Colliding Sources[|Us|] = ∅;
15: end if
16: x = Select the node in Ls with the least degree, say u,such

that (u /∈ Colliding Sources) AND (u /∈ SchdSet);
17: if (x == ∅) then
18: Found = FALSE;
19: else
20: SchdSet = SchedSet ∪ x;
21: Schedule[Slot][Index] = x;
22: Colliding Sources = Colliding Sources ∪ {All the

Us neighbors of the Ls neighbors of x that are not in
SchdSet}

23: Index++;
24: end if
25: end while

with the minimum number of routers. In addition to the source
degree, the max-flow between Ls and the sink should also
be small, since in reality the network gets narrower as we
approach the sink.

We compared the three schemes based on the algorithm and
the following setup. The cardinality of Us was varied from 2
to 20 in 19 steps. In each step, we generated 10 different
topologies, with the cardinality of Ls being randomly chosen
between |Us|+ 1 and 2|Us|, and with connectivity conditions
in Lemma 1 satisfied. The algorithm was then executed for the
three protection schemes on each of the ten topologies, and
the average was taken.

We conducted two experiments with two different values
for the max-flow. Specifically, we made h equals (Ls/4) + 1
and (Ls/6) + 1, the results are shown in Figures 18 and 19
respectively. It can be seen that the difference between 1:N
and network coding is very small, and it shrinks further as the
max-flow decreases, i.e., in more practical cases. Obviously,
1+1 protection performance is poor compared to the other two
schemes, since it approximately consumes twice the resources
used by the 1:N or the network coding-based protection. Thus,
fewer sources can be scheduled together.

These results compare the performance of the three schemes
when no failure occurs, which is unjust to the 1+1 and network
coding-based protection schemes when compared to the 1:N
protection. This is because, in the case of a failure, the
performance of 1+1 and network coding will not be affected,
i.e., no more time slots are required. On the other hand, the
performance of 1:N will get worse, because it will consume
more time slots to do the rescheduling, which establishes the
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advantage of network coding-based protection over the other
two schemes.

IX. CONCLUSIONS

In this paper we presented a novel network coding-based
approach that provides protection to many-to-one flows at
the speed of proactive protection but at the cost of reactive
protection. We derived and proved the necessary and sufficient
conditions to achieve this protection for n source nodes.
A polynomial-time algorithm was presented to perform the
coding with {0,1} coefficients. We considered some of the
practical issues related to our approach, such as adapting
our scheme to general network topologies. In addition, we
studied the effect of network coding on the performance of
the network. Finally, we considered the implementation of our
approach when each network node has a single transceiver.
This was done through a scheduling algorithm, which showed
that the performance of our approach in terms of the number
of needed time slots, and hence throughput, is comparable to
the performance of 1:N when no failures occur, and is better
in the case of failures.

APPENDIX

A. Finding Bipartite equivalent

Creating a feasible set of combinations at the nodes in Ls

depends on the data units that can reach these nodes from the
sources in Us. The assumption of a bipartite induced graph
in Section III-A accurately captures the data unit reachability
to the nodes in Ls. Therefor, if the original graph induced by
the nodes in Us and Ls was not bipartite we need to find a
bipartite equivalent.

As mentioned earlier, user nodes do not communicate
directly in practice, rather, they use the infrastructure formed
by the routers to communicate. Therefore, there is only one
case in which the induced graph is not bipartite, and that is



when there is a link between two routers in Ls. Such a graph
is called semi-bipartite since only one of its partitions can
contain both ends of a link. An example is shown in Fig. 20.
In a semi-bipartite graph the links from Us to Ls nodes are
not enough to accurately capture the reachability of data units
to the routers. For example in Fig. 20 S1 can reach router C
through router node B, but there is no direct link between S1

and C.
In this section we introduce a simple transformation to find

the bipartite equivalent of any semi-bipartite graph, in terms of
data unit reachability in a certain level i. Assume that the edge
(Ri, Rj) connects router Ri with router Rj , then to remove
(Ri, Rj) we add the following logical edges:

1) Add edge (u,Rj), if it does not already exist, for all u
such that (u,Ri) ∈ E.

2) Add edge (u,Ri), if it does not already exist, for all u
such that (u,Rj) ∈ E.

The transformation of the semi-bipartite subgraph shown in
Fig. 20 is illustrated in Fig. 21. Where we represent the ability
of users to reach routers through other router nodes by direct
links. For example, S1 is now connected directly to router C. It
is worth mentioning that this transformation is not necessary to
find a feasible set of combinations if the condition of Lemma
1 is already satisfied. That is, we can just ignore the links
between the routers. However, the transformation may help
in reducing the needed number of combinations by adding
the logical links. For example, the condition in Lemma 1 is
satisfied in the network in Fig. 22. Thus, we can ignore the
link (D, E), and in this case we need n+2 combination to be
able to tolerate a single link failure. However, if the bipartite
equivalent is used, only n+1 are needed as shown in Fig. 23.
Therefore, it is better to do the transformation whenever the
induced graph by the nodes in Us and Ls is semi-bipartite,
since this will allow us to maximize the throughput and reduce
the used resources.

Using this transformation, we can always assume in the
paper that the induced graph by the nodes in Us and Ls is
bipartite. In the next subsection we discuss how this trans-
formation works with the coding and scheduling mechanisms
introduced in Sections III and VIII.
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B. The effect of transformation on coding and scheduling

In this section we briefly discuss how the transformation
introduced in the previous subsection works with the coding
and scheduling mechanisms presented in sections III and VIII
respectively.

The coding tree algorithm tells each node in Ls how to
incorporate data units in the combination originating from it.
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Fig. 22. need n+2 combinations if transformation is ignored
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This is simply known from the tree structure found by the
algorithm, where the edges are assigned a coefficient of 1 if
they are on the tree and 0 otherwise. It is important to notice
that this only works if all the neighbors of a node in Ls were in
Us. Otherwise, if the tree included a link between two nodes
in Ls (in a semi-bipartite graph) these two nodes will not
be able to correctly decide on the data units to be included.
Therefore, the transformation is a must for the coding tree to
run properly.

Unlike the coding tree, the scheduling algorithm introduced
in Section VIII must not use the transformation and must
be executed over the original graph to construct the proper
schedule. This is because if the transformed graph is used, then
the newly added edges will incorrectly increase the contention
between sources. For example, in the graph shown in Fig.
20 the transmission of source S1 does not reach router C
directly, and thus, if the scheduling algorithm used the bipartite
equivalent in Fig. 21 it will incorrectly consider C as a
neighbor to S1. Therefore, scheduling must be done using the
original graph.
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