
1

Network Coding-Based Protection of Wireless Mesh
Networks

Osameh M. Al-Kofahi Ahmad E. Kamal
Department of Electrical and Computer Engineering, Iowa State University

Abstract—Survivability of wireless mesh networks
(WMN) is an important issue that has not received
enough attention in the literature. Traditional proactive
and reactive protection schemes are either resource-hungry
like the (1+1) protection scheme, or introduce a delay and
interrupt the network operation to recover from failures,
such as the (1 : N) protection scheme. In this paper, we
introduced a novel approach that relies on network coding
to provide protection to many-to-one flows in WMNs
at the speed of proactive protection, but at the cost of
reactive protection. We derive and prove the necessary and
sufficient conditions for our solution to exist on a restricted
network topology. Then we introduce two generalizations
of our problem, and provide a heuristic and a mixed
integer linear program (MILP) to solve one of them. We
also show that deterministic coding with {0,1} coefficients
is enough in our case under some conditions. Finally,
we discuss some practical considerations related to our
approach, and define a more general problem that takes
these considerations into account. We also formulate this
general problem as an MILP.

I. INTRODUCTION

Wireless mesh networks (WMNs) have recently
emerged as a convenient solution to provide last-mile
service, where they can be deployed as community or
metropolitan networks to grant Internet access to end-
users. WMNs are composed of two types of nodes:
the wireless mesh routers that are usually organized to
establish an infrastructure or a backbone that serves
the second type of nodes, which are the clients. In
contrast to traditional infrastructure wireless networks,
not all routers need to be connected directly to the
wired network to access Internet. This is because WMNs
allow direct wireless communication between routers,
hence enabling unconnected routers to access the Internet
through multi-hop communication with the connected
ones. The latter routers are commonly referred to as
gateways (an illustration is shown in Fig.1). Since the
data flow on a WMN is mainly Internet related, one
important characteristic of the flow is that it takes one
of two main structures, either a one-to-many flow from
a certain gateway to a certain set of users or routers, or
a many-to-one flow from the routers to the gateway.

I n te r n e t
Ga t e wa yRo u te rUs e r

L1 L2 L3

Fig. 1. Wireless Mesh Network

The wireless communication medium in WMNs is
susceptible to various types of interference, which causes
the link status to dynamically change according to the
channel conditions, hence resulting in information loss.
To mitigate the effects of this problem, various schemes
to enhance the survivability of wireless networks were
presented. These methods can be divided into three
main classes, 1) protection schemes [1][2][3][4][5][6].
2) restoration schemes [7][8], and 3) hybrid schemes
[9][10].

Protection schemes reserve backup resources in ad-
vance and can be divided into two main categories:

1) Proactive protection, viz., 1+1 protection, where
each source sends two copies of its data unit on two
edge-disjoint paths to the sink, so that if a link on one
of the paths fails, the sink receives another copy on the
other path. This is a very resource demanding solution,
because we need at least twice as many resources. This
makes this approach hard to realize. For example, in the
network shown in Fig.2(b), there are two sources, S1 and
S2, sending two data units, b1 and b2, respectively to a
sink node T . Since the minimum-cut between the sources
and the sink is 3, each source must use the network in
a different time slot to be able to tolerate a single-link
failure, i.e., to have two edge-disjoint paths to the sink.

2) A less demanding solution is to use reactive pro-
tection, viz., 1:2 protection, where each source uses a
primary path to the sink that is edge disjoint from the

2

other primary paths used by other sources, and one extra
path is reserved to be used by any of the sources if
a failure occurs, as shown in Fig.2(c). In this case, if
a failure takes place on one of the primary paths. The
affected source will have to detect the failure, and then
reroute its data to use the backup path. This introduces
delay and interrupts network operation.

Restoration schemes are feedback-based, since they
only get into action after detecting a failure or a missing
packet and then they start to discover the available
resources, which introduces some delay in the recov-
ery process. Hybrid schemes resort to restoration when
protection fails.

In this paper, we take a first step toward utilizing
network coding [11][12][13] to provide protection in
a proactive manner in many-to-one flow networks, the
main advantage of using network coding lies in reducing
the required resources to provide such protection. As far
as we know, using network coding in this direction has
not been explored yet.

The rest of this paper is organized as follows. Section
II, describes the problem, and states the paper contri-
butions. In Section III, we discuss the sufficient and
necessary conditions for our solution to exist. Section
IV provides a mixed integer program to solve one of
the general cases introduced at the end of Section III.
In Section V we discuss how to perform coding using
{0, 1} coefficients. In Section VI, we discuss some of
the practical issues related to our solution. Finally, we
conclude the paper in Section VII.

II. PROBLEM DESCRIPTION

We consider a WMN, in which there is only one
gateway, and in which the routers can be organized in t
levels, where the routers in level i (or Li for short) are i
hops away from the gateway. For example, the network
in Fig.1 has 3 levels of routers. We assume that the t
levels access the wireless medium in a TDMA manner,
where each level of routers is assigned a different time
slot, that is used to send data units from those routers.

In general, we assume that there are n source nodes
in the network, which represent the routers in a certain
level, say Ls, in their assigned time slot. We assume that
there are n data units that need to be sent from the n
routers to a single sink node. Fig.2(a) shows a network
with two source nodes.

Our objective is to provide protection at the speed of
proactive protection, but at the cost of reactive protection.
We achieve this by using network coding. Suppose we
allow node A in the network shown in Fig.2(a) to
combine b1 and b2 (bitwise XOR), and send the resulting
symbol to the sink on the link (A, T), as illustrated

in Fig.2(d). This way, the two sources can use the
network in the same time slot and still achieve proactive
protection. If any of the three symbols sent to the sink
is lost due to a link failure, the sink will still be able to
recover the original data units. For example, assume that
link (S2, C) fails, the sink will receive b1 ⊕ b2 on link
(A, T) and b1 on link (D,T), and it can recover b2 by
performing the bitwise XOR operation on the received
symbols. Specifically, the contribution of this paper lies
in answering the following questions:
• How can network coding be used to provide pro-

tection against link (or path) failures in such many-
to-one flow networks, while using the minimum
possible number of paths?

• What are the necessary and sufficient conditions for
such a solution to exist?

III. PROPOSED APPROACH

A. Assumptions, Definitions and Notation

There are two modes of communication in WMNs,
either one-to-many where the flow is directed from the
gateway to the routers in Li, or many-to-one where the
flow is directed from the routers in Li to the gateway.
Since we are only considering the case of many-to-
one flows, we can adopt the directed graph model in
which a graph G(V, E) is used to represent the network,
where the set of vertices V represents the network nodes,
and the set of edges E represents the available wireless
links between the network nodes, such that the edges are
always directed from levels with higher indices to levels
with lower indices. Taking that into account we define
the following:

1) Let Ls be the set of routers in the level being
considered, where |Ls| = n.

2) Let T be the only sink node in the network.
3) Let Ls−1 be the set of one-hop neighbors of all

the sources in Ls. Where |Ls−1| ≥ n + 1.
4) All the links in the original graph G are of unit

capacity, and there are no parallel links.
5) The maximum-flow between the nodes in Ls−1

and the sink node T is ≥ n + 1. Later in this
paper we will discuss networks that do not have
this property.

6) The sub-graph induced by the nodes in Ls and
Ls−1 is bipartite, i.e., there is no link with both
ends belonging to Ls or to Ls−1 in the original
graph G. We will consider general cases later in
this paper.

7) Only one link fails at a time.
8) GT

01 is the graph formed by: the nodes in Ls and
Ls−1 and all the links between them, a hypothet-

3

T

A

S2 S1

C D

b1b2

b1

b1

b2

b2

(a)

Time Slot 1

Time Slot 2

T

A

S2 S1

C D

b1b2

b1

b1

b2

b2

b1b2

b1b2

(b)

T

A

S2 S1

C D

b1b2

b1

b1

b2

b2

b1b2

b1b2

Primary Path

Backup Path

(c)

T

A

S1 S2

C D

b1b2

b1

b1

b2

b2

b1b2

b1+b2

(d)

Fig. 2. (a) Original graph (b) 1+1 Protection, (c) 1:2 Protection, (d) Network coding Protection

ical sink node T ′ and hypothetical links from all
the nodes in Ls−1 to T ′.

9) GST
01 is the graph formed by: the nodes in Ls

and Ls−1, and all the links between them, with
a capacity of n assigned to each of these links, a
hypothetical sink node T ′, hypothetical links with
capacity of n from all nodes in Ls−1 to T ′, a
hypothetical source node S′ and hypothetical links
with capacity of n+1 from S′ to the nodes in Ls.

As an illustration of points 8 and 9 above, a simple
graph is shown in Fig.3, and its corresponding GT

01 and
GST

01 are given in Fig.4 and Fig.5 respectively. In these
figures S1, S2 and S3 are the nodes in Ls, and A, B, C
and D are the nodes in Ls−1.

B. Overview

The basic idea of our approach is to create n+1 linear
combinations (equations) from the n original data units,
using deterministic coding, such that, any n of them are
linearly independent (solvable), and then forward these
combinations to the sink using n+1 edge disjoint paths,
assuming such paths exist. This way, the sink will be
able to recover the original n data units even if one of
the combinations is lost due to a link failure, without the
need to detect the failure or to use different time slots for
each of the sources. This is illustrated in Fig.2(d), where
redundant data units are sent to node A, which created
the combination b1+b2, making a total of three linear
combinations, such that any two of them are linearly
independent. Thus, the sink can recreate the original data
units if it receives at least two of the combinations.

C. Solution Details

In this subsection we do not consider the details
of coding, we only focus on the needed information
content in the linear combinations that will enable the
sink to recover the original n data units upon a failure.
Thus, in this subsection we always assume that the

created combinations are linearly independent, and we
will elaborate more on coding in Section V.

We assume that only one level of routers, Ls, is active
at a certain time, and our goal is to use deterministic
network coding to provide proactive protection for the n
sources in that level. Under assumption 6, coding cannot
begin in sources, since each of which only knows its
own data. Hence, creating the n + 1 combinations is
the responsibility of the intermediate network nodes that
connect the sources to the sink. We only consider the
closest nodes in the intermediate network to Ls that can
perform coding on the data units from the sources in
Ls, which are the nodes of Ls−1 that are only one hop
away from the nodes in Ls. We assume the worst case
scenario that occurs when |Ls−1| = n+1, i.e., each one
of the nodes in Ls−1 is responsible for producing one
linear combination and forwarding it to the sink.

From assumption 5, our original graph G can be re-
placed with GT

01. Taking this transformation into account,
the condition that will enable the Ls−1 nodes to construct
the n + 1 combinations that can tolerate a single link or
path failure is:

Condition: Any k nodes in Ls, are connected to k + 1
nodes in Ls−1: Consider the network in Fig.6, if either
of the links AT or BT fails, the sink will not be able
to recover all three data units, because the other link
that did not fail will be carrying the only combination
of the two data units b1 and b2, while the sink needs
at least two. Regard the linear combination created in a
node v in Ls−1. There are n possible participants that
can contribute to creating this linear combination. Let
us assume that the combination consisted of two data
units (i.e. v is connected to two source nodes in Ls).
Then the sink can recover the two data units upon the
failure of the path from node v if these two symbols
were present in at least two other equations such that
there are n independent equations in n unknowns. That
is, if node v is connected to k nodes in Ls, then for the

4

T’

DB

S1 S2

A C

S2

E F G H I

J K L M

Fig. 3. The original graph G

T ’
DBS1 S2A C S 2

Fig. 4. Graph GT
01

T ’ DBS1 S2A C S2S ’
3 4 4 43 33 3 3 33 3 3

Fig. 5. Graph GST
01

AC

S
3

S
1

D B

S
2

T’

b
3

b
3

b
2

b
1

b
3

Fig. 6. If link AT fails the sink
can not recover the data

sink to be able to recover all the original data units if
the combination created in v is lost, the neighboring set
in Ls−1 which encode data units from the k nodes in Ls

must be of size that is at least k, or k + 1 if we include
v. In general we can say: Any group of nodes in Ls of
size k must be connected to at least k+1 nodes in Ls−1.

Using the concept of matching in graph theory, an
equivalent statement would be: n + 1 perfect matchings
between the nodes in Ls and those in Ls−1 must exist,
such that each matching, Mi, corresponds to the case
when one of the nodes in Ls−1, vi, is removed, where
1 ≤ i ≤ n+1. This guarantees the existence of a working
path from every source node to the sink upon a single
link failure. This condition implies that the Max-flow is
greater than or equal to 2 from every source to the sink.

We now continue with proving that this condition is
necessary and sufficient for the nodes in Ls−1 to be able
to construct the n + 1 combinations that can tolerate a
single link (or path) failure.

Theorem 1. The sink will be able to recover the n data
units even if ANY one from the n+1 combinations is lost,
if and only if, any subset of Ls of size k is connected to
a subset in Ls−1 of size at least k+1, where 1 ≤ k ≤ n.

Proof. In the previous scenario we view the data units
from sources as variables, and the n + 1 nodes in Ls−1

as combinations (or equations), and a variable is present
in an equation if the corresponding source is connected
to the node in Ls−1 representing that equation.

We prove the implication by contradiction. Assume
that the sink is able to recover the n data units, even if
ANY one from the n+1 combinations is lost. Then, let
there be a subset of Ls nodes of size k, that is connected
to a subset of Ls−1 nodes of the same size k. Then, the
sink cannot randomly choose n combinations from the
n + 1, because it MUST pick the k combinations that
were just mentioned; otherwise, the k variables from the
corresponding k nodes in Ls will only be present in k−1
equations, which means we cannot recover them. This
contradicts the assumption that the sink is able to recover
the original n data units if ANY of the combinations was

lost, which concludes the proof of the implication.
To prove the converse, we also use contradiction.

Assume that any subset of nodes in Ls of size k is
connected to another subset of nodes in Ls−1 that is of
size at least k+1. But, there is a mandatory combination,
which cannot be lost for the sink to be able to recover
the original n data units. A combination is essential and
can not be lost, if it leaves a set of equations of size say l
with l+1 unknowns, that are impossible to solve without
the combination. But for this case to happen, there must
have been some l+1 nodes in Ls that are only connected
to l + 1 nodes in Ls−1, which contradicts our original
assumption, of having any k nodes in Ls connected to
at least k + 1 nodes in Ls−1, where 1 ≤ k ≤ n.¥

It can be seen that a naive check for the above
condition takes time of order O(2n). We will now show
how to check the condition above in polynomial-time
with respect to the number of sources using a max-
flow algorithm. We will use the graph GST

01 in our next
theorem. (see Section III-A, bullet 9 for definition).

Theorem 2. An S-T maximum-flow of n(n + 1) is
achievable in GST

01 , if and only if, any subset of Ls of
size k is connected to a subset in Ls−1 of size at least
k + 1, where 1 ≤ k ≤ n.

Proof. We prove the implication by contradiction.
Assume the max-flow value is indeed n(n + 1), then
all the incoming links from S to the n original sources
are saturated (i.e. each one carries a flow equal to n+1).
And assume that there are some k nodes in Ls that are
only connected to k other nodes in Ls−1. The incoming
flow to this component equals k(n + 1) = kn + k while
the outgoing capacity equals kn, which means that there
are k units of flow that will be blocked from the sink,
that is the max-flow = n(n + 1) − k which contradicts
the original assumption of the max-flow.

We prove the converse by contradiction. Suppose that
any k nodes in Ls are connected to at least k + 1 nodes
in Ls−1, but the maximum achievable flow was less than
n(n+1), then there are some of the incoming links from
S to the nodes in Ls that could not be saturated. Assume
only one of those links carried just n units of flow to a

5

node in Ls say node u, then node u either has a single
outgoing link, or is one of k nodes in Ls, that are only
connected to another k nodes in Ls−1 (because if it was
not the case, then it would have been able to forward this
remaining unit of flow to the sink through an augmenting
path on the residual network), in both cases node u will
violate the connectivity assumptions. Therefore, the max-
flow must be n(n + 1). This concludes the proof. ¥

D. Generalizations
1) A Larger Ls−1: Until now, we have assumed that

the number of nodes in Ls−1 is exactly n+1. The number
of Ls−1 nodes could be much larger than n + 1. This
however, does not invalidate our approach and the above
requirements will still apply.

The only difference is that the number of minimum
linear combinations may be more than n+1, depending
on the topology of the graph. One simple example, is
when each of the n sources is connected to exactly two
nodes in Ls−1, and each of the Ls−1 nodes has exactly
one node as a neighbor in Ls. That is, |Ls−1| = 2n.
Assuming that the max-flow from Ls−1 to the sink is 2n,
the minimum number of required linear combinations
that can tolerate a single link failure in this case is
2n, which will be equivalent to 1 + 1 protection, where
coding is not needed and routing can be used.

Another issue that rises in this case is selecting the
appropriate linear combinations that will enable the sink
to recover all the original data units. The network shown
in Fig.7 gives a good example, where the minimum
number of combinations is n + 2. In this network,
picking 4 combinations randomly may not cover all
the data units. For example if the combinations created
in nodes C, D, E and F were chosen by the sink
to calculate the original four data units, b1 cannot be
recovered. However, if any of the above mentioned four
combinations was replaced by either of the combinations
produced in A or B, the sink will be able to recover
all the original data units. Thus, choosing combinations
randomly when the minimum number of combinations is
larger than n+1, may not result in choosing a collection
of combinations that will enable the sink to decode and
recover the original n data units.

We conjecture that the problem of finding the mini-
mum number Ls−1 nodes that satisfies the connectivity
conditions, and hence, the problem of finding the mini-
mum number of linear combinations that can tolerate a
single link failure is NP-Complete. We therefore formu-
late a solution to this problem as a mixed integer program
in Section IV.

2) General Network Topology: Assumption 6 in sec-
tion III-A states that the graph induced by the nodes

in Ls and Ls−1 is bipartite. This is a very restricted
topology that may not be present in a real network.
Therefore, below we address in our solution the problem
of adapting to other network topologies.

By carefully inspecting the condition of Theorem 1,
one can see that the essence of the solution lies in the
number of edge-disjoint paths from a group of sources to
the sink. In the special case considered previously, each
node in Ls−1 had at least one such path. Theorem 1 can
be generalized in the following corollary.

Corollary 1. The sink will be able to recover the n data
units even if ANY one from the n + 1 combinations is
lost, if and only if, any subset of Ls of size k is connected
to the sink through a set of edge-disjoint paths of size at
least k + 1, where 1 ≤ k ≤ n.

Proof. The proof of this corollary is straightforward,
and follows directly the same reasoning used in proving
Theorem 1. ¥

As an example to illustrate Corollary 1, consider a less
restricted network topology, where we allow a source to
be in the Ls−1 neighborhood of another source node, as
shown in Fig.8. Table I lists a collection of edge-disjoint
paths between every possible combination of sources and
the sink. It can be easily verified that the network in Fig.8
satisfies the condition in Corollary 1.

TABLE I
EDGE-DISJOINT PATHS BETWEEN COMBINATIONS OF SOURCES

AND SINK IN FIG.8

Sources Paths
S1 {S1-A-T}, {S1-S3-B-T}
S2 {S2-D-T}, {S2-S3-C-T}
S3 {S3-B-T}, {S3-C-T}
{S1, S2} {S1-A-T}, {S1-S3-B-T}, {S2-D-T}
{S1, S3} {S1-A-T}, {S1-S3-B-T}, {S3-C-T}
{S2, S3} {S2-D-T}, {S2-S3-C-T}, {S3-B-T}
{S1, S2, S3} {S1-A-T}, {S2-D-T}, {S3-B-T}, {S3-C-T}

IV. MIXED INTEGER LINEAR PROGRAM

FORMULATION

Continuing on the problem of finding the minimum
number Ls−1 nodes that satisfies the connectivity con-
dition that was introduced in Section III-D1, we use
the graph GST

01 to formulate an MILP to calculate the
minimum number of paths that are needed from nodes
in Ls−1 to the sink, in order to forward n(n+1) units of
flow. Since we assume that each Ls−1 node has a single
path to the sink (that is edge-disjoint from the paths used
by other Ls−1 nodes), calculating the minimum number
of paths will result in the minimum number of nodes

6

FDB

S
1

S
2

A C

S
3

S
4

E

b
1

b
2

b
3

b
4

b
1

b
2
+

b
1

b
3
+

b
2

b
4

 +
 b

2

b
3

b
4

Fig. 7. Minimum n+2 combinations
T

S
3

S
1

S
2

A D

b
2

b
1

b
2

b
2

b
1

b
1

b
3

b
1
+b

3

B C

b
2
+b

3

b
1
+b

3
b
2
+b

3

Fig. 8. Non-bipartite topology

in Ls−1 that satisfies the connectivity conditions, and
hence, the minimum number of linear combinations that
can tolerate a single failure.

A. Notations

• Let m be the number of nodes in Ls−1.
• Nx

y (z) is the set of level y neighbors of node z, such
that z is in level x, where x and y ∈ {s, (s− 1)}.

• fuv and cuv corresponds to the flow and capacity
of edge (u, v), respectively, where 0 ≤ fuv ≤ cuv.

• cS′u equals n+1 where S′ is the hypothetical source
node and u ∈ Ls. The capacity of all other edges
equals n.

• yv is defined for every node v in Ls−1 and it equals
the sum of all flows going through that node

yv =
∑

∀u:v∈N0
1 (u)

fuv

where 0 ≤ yv ≤ n, and v = 1, 2, ...,m
• zv is a binary variable, which is equal to 1 if the

outgoing link from v to the sink forwards flow, i.e.:

zv =
{

1 if 0 < yv ≤ n
0 otherwise

B. MILP Formulation

We begin with the assumption that the maximum
achievable flow from S′ to T ′ is n(n+1). All the nodes
in Ls−1 that participate in the flow are selected to be
the coding nodes. We calculate the minimum number
of Ls−1 nodes that satisfy the connectivity conditions,
by calculating the minimum number of used paths. The
objective function is:

Minimize

m∑
v=1

zv (1)

Subject to:

zv − yv

n
≥ 0,∀v ∈ Ls−1 (2)

This constraint is defined for every node v in Ls−1,
and it sets the binary variable zv to 1 if there is an
outgoing flow from node v to the sink T ′.

∑

∀v:vεN0
1 (u)

fuv = n + 1,∀u ∈ Ls (3)

yv −
∑

∀u:vεN0
1 (u)

fuv = 0, ∀v ∈ Ls−1 (4)

These two constraints represent the conservation of
flow constraints, where the first one beside conserving
the flow assures that the links from the hypothetical
source to all the nodes in Ls are saturated to guarantee
a max-flow of n(n+1). And, the second one (combined
with the bounds on yv below) simply says that the sum
of all incoming flows to a certain node v in Ls−1 cannot
exceed the capacity of the single outgoing link to the
sink. Finally the following two bounds are needed:

0 ≤ fuv ≤ n, ∀(u, v) (5)

0 ≤ yv ≤ n,∀v (6)

For u ε Ls and v ∈ Ls−1.

V. CODING

In the previous sections, we assumed linear inde-
pendence between linearly combined data units. In this
section, we will show how to achieve this independence
between combinations through using {0, 1} coefficients.

A linear combination is a summation of data symbols
(bi’s) each of which is multiplied by a coefficient (αi)
from a finite field GF (2k), as follows: Cc =

∑
i α

c
i .bi,

where αi ∈ GF (2k). The independence of combinations
relies on the bi’s and the choice of the αi’s. Therefore,
achieving independence using {0, 1} coefficients de-
pends solely on how we compose each combination from
only the data units. For instance, in Fig.2(d), the three
combinations that were sent to the sink are, C1 = b1,
C2 = b2 and C3 = b1 + b2. The coding in this example
can be expressed using matrices by:

M.b =

1 0
0 1
1 1

(
b1

b2

)
=

C1

C2

C3

 = C

7

Where M is the coding matrix, and each row in it is the
coding vector for the corresponding combination. In the
following subsections, we presume that assumption 6 in
Section III-A and the connectivity condition of Theorem
1 are satisfied, and we show how to decide on the data
units composing each of the linear combinations, through
finding simple paths and trees.

A. The benefits of paths and trees

Consider a single path, in the bipartite graph induced
by the nodes in Ls and Ls−1, that starts from a node
in Ls−1 and ends at a different node also in Ls−1, and
in the middle it alternates between Ls and Ls−1 until it
covers all the nodes in Ls. It can be easily verified that
any k nodes from Ls on that path have at least k + 1
neighboring nodes from Ls−1 also on that path.

To illustrate the benefits of coding according to the
connectivity on a path, consider the example in Fig.9,
where we have 4 source nodes in Ls, and 5 nodes in
Ls−1. If we let all the sources use all their outgoing
links to Ls−1 as shown in the example, we will have
dependent combinations like {b4 + b3} and {b4 + b3}
(or {b1 + b2} and {b1 + b2}), thus invalidating the linear
independence requirements.

DB

S
1

S
2

A C

S
3

S
4

E

b
1

b
2

b
3

b
4

b
4

+ b
3
+b

2
+b

1
b

1
+ b

2
b

1
+ b

2
b

3
+ b

4
b

3
+ b

4

Fig. 9. Bad coding: linear Independence of any n combinations is
not satisfied

However, consider the simple path {A, S1, B, S2, C,
S3, D, S4, E} that is represented by the solid edges
in Fig.10. If we compose the linear combinations at
the Ls−1 nodes according to their connectivity with the
nodes in Ls on the path, i.e., a solid line correspond
to a coefficient of 1 and a dashed line correspond to a
coefficient of 0. Linear independence will be guaranteed,
since there cannot be two (or more) nodes in Ls−1 that
are connected to the same nodes in Ls on a simple path.

DB

S
1

S
2

A C

S
3

S
4

E

b
1

b
2

b
3

b
4

b
3
+b

2
b

1
b

1
+ b

2
b

3
+ b

4
b

4

Fig. 10. Path coding: linear independence is satisfied in any n
combinations

Of course, we may not always find a simple path that
goes through all the nodes in Ls and has both of its ends

in Ls−1. However, since a path is a special case of a tree
with two leaves, then if we can find a tree that covers all
the nodes in Ls, with all of its leaf nodes in Ls−1, such
that a node in Ls has at most one leaf neighbor, we can
construct independent linear combinations according to
the connectivity on the tree. This is shown in Fig.11(a),
for the network presented in Fig.9, Fig.11(b) clarifies the
underlying tree structure.

DB

S
1

S
2

A C

S
3

S
4

E

b
1

b
2

b
3

b
4

b
4 b

3
b

1
b

2 b
4

+ b
3
+b

2
+b

1

(a)

C

S
1

S
2

S
3

S
4

DB

A E

b
1

b
2

b
3

b
4

(b)

Fig. 11. (a) Tree coding: linear independence
is satisfied in any n linear combinations, (b)
Underlying tree

It is guaranteed that there are no two or more coding
vectors (matrix rows) with ones at the same positions,
because if this was the case, this means that there are two
or more nodes in Ls−1 that are connected to the same
nodes in Ls, which produces a cycle that can not exist in
a tree. In the next subsection we will show how to create
a tree that satisfies the previous conditions efficiently.

B. Constructing a coding tree

We begin by constructing a Depth-First Search tree
(DFS-tree) rooted at a node in Ls−1, then we modify
its structure to guarantee that there are no leaves in Ls.
Finally we trim the extra Ls−1 leaves if any.

A DFS-tree can be constructed in time of order
O(|E|), and the trimming can be done in time of order
O(|V |). The non-trivial part is modifying the structure
of the tree to guarantee that there are no Ls leaves.
Algorithms 1 and 2 describes a procedure to do the
modification.

Algorithm 1 Construct a coding tree
1: while there are leaves from Ls do
2: LIST = φ
3: Pick a leaf node from Ls in the tree, say u
4: Find one of u’s neighbors say x {other than its parent}
5: LIST = LIST ∪ {u, x}
6: Call ModTree(u, x)
7: end while

In Algorithm 1, we search the tree for a leaf node
u that falls in Ls. Upon finding such a leaf node, we

8

S
1

S
2

S
3

D ECBA

Fig. 12. The original net-
work with 3 source nodes

D

S
1

S
2

S
3

A

B

C

E

(a)

D

S
1

S
2

S
3

A

B

C

Eu
x

w 1
v 1

v 2 w 2

(b)

D

S
1

S
2

S
3

A

B

C

Eu
x

w 1
v 1

v 2 w 2
C1

C2

(c)

D

S
1

S
2

S
3

A
C

E

(d)

Fig. 13. (a) DFS-Tree, (b) Nodes found in two iterations, (c) Making the
modification, (d) Result after trimming extra leaves

02 46
81 01 2

2 3 4 5 6 7 8 9 1 0Av er a gen um ber ofn eededL s- 1n odes

Ls No de s

Co d in g tr e e V S M I L P
Co d in g Tr e eM I P

Fig. 14. Coding tree VS
MILP

Algorithm 2 ModTree(u,x)
1: Connect u to x, this will create a cycle, say C
2: Traverse the nodes on the cycle, until we reach a node in

Ls, say node v, that has a neighbor w not on the cycle,
such that u and w /∈ LIST

3: if w is already connected to v then
4: Cut the cycle directly before or after v
5: return
6: else
7: Cut the cycle before or after v
8: LIST = LIST ∪ {v, w}
9: Call ModTree(v, w)

10: end if

look for a neighbor x for this node that is different from
its parent, we are guaranteed to find such a neighbor x,
because each single node in Ls is connected to at least
2 nodes in Ls−1 (Theorem 1). After finding u and x,
the procedure ModTree adds the link between them to
the tree creating a cycle C. Then, it traverses the nodes
on C to find a node v in Ls that has a neighbor w in
Ls−1 not on C. Again, we are guaranteed to find such
a node v that has such a neighbor w, because any k
nodes in Ls are connected to at least k + 1 nodes in
Ls−1, and since the cycle is composed of equal number
of nodes from both Ls and Ls−1, then there must be
a Ls node on this cycle that has a neighbor in Ls−1

not on the cycle. If v was connected to w on the tree,
we cut the cycle before or after v, to make the graph
a tree again. On the other hand, if v and w are not
connected on the tree, we exclude them from our future
choices and we recursively call ModTree until we find a
suitable v and w, which is guaranteed to happen because
of the imposed connectivity conditions. As an illustration
consider the network in Fig.12, the resulting DFS-Tree
rooted at node C is shown in Fig.13(a). The nodes
that will be found when running Algorithm 1 and two

iterations of ModTree are shown in Fig.13(b), the cycles
and the edges that are marked to be cut are shown in
Fig.13(c), and the final result after trimming the extra
leaf nodes is shown in Fig.13(d).

There can be at most n−1 Ls leaves, and the recursive
call to ModTree can be done at most n times. Hence, the
running time of Algorithm 1 is of order O(n2). To see
how well this algorithm performs, in terms of needed
number of Ls−1 nodes, we compared it to the MILP
presented in Section IV, the results are shown in Fig.14.
Each point on the graph corresponds to the average over
100 random topologies with the same number of nodes
in Ls and Ls−1, where we varied the number of Ls nodes
from 2 to 10 with keeping the number of Ls−1 nodes
twice as many.

VI. PRACTICAL CONSIDERATIONS

A. Networks with limited minimum cuts

In our previous discussion, we only considered the
nodes in Ls and Ls−1, and ignored the rest of the
network, where we assumed that the Ls−1 nodes can
forward each of the formed combinations on an edge-
disjoint path to the sink. In practice, this may not be the
case, thus, in this section we study networks with limited
min-cuts.

What concerns us in the rest of the network is the
maximum number of edge-disjoint paths between the
nodes in Ls−1 and the sink, which equals the minimum
edge cut between Ls−1 and the sink (from Menger’s
theorem [14]). Let the number of these edges be h. If
h is greater than or equal to n + 1, then our approach
can be applied directly, and the combinations formed in
Ls−1 can be forwarded to the sink. On the other hand,
if h is less than the minimum number of required edge-
disjoint paths, then the formed combinations cannot be
forwarded as is, and must be modified.

9

Assume that the minimum edge cut between Ls−1

and the sink is h, and is less than the required number
of edge-disjoint paths. Then the maximum number of
sources that can be protected together at the same time
is h− 1. Therefore, we propose to divide the n sources
into groups of size h − 1, and then choose a set of
feasible groups that covers all the sources, where we
assume different groups are time multiplexed, i.e., only
one group is active at a time. A group of sources is
said to be feasible if it can create h combinations that
can tolerate a single link failure, i.e., if it satisfies the
condition in Corollary 1. A set of groups covers all the
sources, if each source is present in at least one of the
feasible groups in the chosen set.

To illustrate the idea consider the simple network in
Fig.15 that contains 4 sources. One can see that the
maximum number of edge-disjoint paths, from Ls−1 to
the sink in this network is 3, i.e., h = 3. Hence, the
largest possible group of sources, that can be protected
together, will be of size at most 2. The number of
possible groups is equal to 6, to be specific, there are 3
feasible groups: 1){S1S2}, 2){S1S3} and 3){S1S4}, and
3 infeasible groups: 4){S2S3}, 5){S2S4} and 6){S3S4}.
Therefore, to cover all the sources, the first three groups
must be picked, which means, 3 time slots must be used
for all the sources to transmit.

In the previous example, groups 1, 2 and 3 were the
only possible subset of groups of size 2 that cover all the
sources. Clearly, this is not a fair solution, because S1

is in all groups, and is allowed to transmit in all three
time slots, i.e, transmitting at a rate of 1 symbol/time
slot, while each of the remaining sources is allowed
to transmit only in one of the three time slots, i.e,
transmitting at a rate of 1

3 symbol/time slot. The solution
could have been more optimal (fair), if there was a link
between the nodes C and F . This is illustrated in the
network in Fig.16. One can see that all the groups are
feasible now, according to Corollary 1. It is obvious that
the previous solution is still valid, but it is not optimal
any more, since, for example we can choose groups
3 and 4, and not only cover all the sources, but also
achieve better fairness, where the bandwidth is equally
divided and all the sources transmit at a rate equal to 1

2
symbol/time slot.

Fairness is not the only measure for the optimality of
the chosen groups. The used network resources should
also be taken into account. Keeping this in mind, and
by carefully inspecting the network in Fig.16, we can
see that groups 3 and 4 are not the most optimal choice,
because each group uses 4 links to forward data from
Ls−1 to the minimum cut edges, while we can choose
groups 1 and 6, where each of which only uses 3 links to

forward data to the minimum cut edges. To summarize,
the optimality of our choice of groups that covers all the
sources is determined by:
1) The degree of disjointedness of the chosen groups:
This affects fairness between sources and the minimum
number of groups that could possibly be chosen, which
plays an important role in determining the rate. The
minimum number of groups that can cover all the sources
is dn/(h−1)e,if all the groups are disjoint, except maybe
for one group, when n does not divide perfectly by h−1,
like groups 1 and 6 (or 3 and 4) in the network in Fig.16.
And, an upper bound on the minimum number of groups
to be chosen is n−h+2, where in this case, the groups
will not be disjoint. On the contrary, they will only differ
in one source node each time, e.g., groups 1, 2 and 3 in
the network in Fig.15.

2) The degree of resource utilization: which is affected
by a)where the coding takes place, and b)the network
topology, which governs the paths each source uses
to reach the minimum cut. The amount of required
resources is influenced by the number of paths or links
used to forward data from Ls−1 to the sink, which
in turn, is affected by the number of data units, since
each path or link carries only one (possibly encoded)
symbol. Thus, it is better for the coding to be in Ls−1,
and not in the tail nodes of the minimum cut edges,
because, data units will be combined by coding, and
this MAY decrease the required number of symbols to
be transmitted from Ls−1 to the sink, e.g., the case of
groups 1 and 6 shown in Fig.17, where all coding is
done in Ls−1.

The problem of choosing the suitable set of feasible
groups to cover all the sources can be proved to be
NP-complete through a reduction from the K-Set Cover
problem. We omit the proof because of space limitations.

B. MILP Formulation

In this subsection we formulate the Source-Grouping
problem as a mixed integer program. For convenience,
we define the following:

1) sk source number k
2) h minimum cut between L0 and the sink
3) C the maximum number of groups which equals

n− h + 2
4) fkc

ij the flow of source k in group c on edge (i, j)
5) gk

c a binary variable which is equal to one only if
source k was in group c

Assuming that the capacity of all edges is h − 1, the
linear program is:

Minimize

n∑

k=1

C∑
c=1

gk
c (7)

10

T

F G H

DB

S
1

S
2

A C

S
3

S
4

E

b
1

b
2

b
3

b
4

Fig. 15. A network with h < n + 1

T

F G H

DB

S
1

S
2

A C

S
3

S
4

E

b
1

b
2

b
3

b
4

Fig. 16. Network in Fig.15 with CF link
added

T

F G H

DB

S
1

S
2

A C

S
3

S
4

E

b
1

b
2

b
3

b
4

b
1

b
1

+b
2

b
3

+b
4

b
4

b
1

b
1

+b
2

b
2

b
3 b

3
+b

4
b

4

b
2

b
3

Time slot 1

Time slot 2

Fig. 17. Groups 1 and 6: each group uses only 3 links
since all the coding is done in Ls−1

Subject to:
∑

∀i:(sk,i)εE

fkc
skj = gk

c .h ∀k, c (8)

∑

∀i:(i,j)εE

n∑

k=1

fkc
ij =

∑

∀i:(j,i)εE

n∑

k=1

fkc
ji , ∀jε{V −L0−T}, c (9)

n∑

k=1

fkc
ij ≤ h− 1 ∀c, (i, j)εE (10)

C∑
c=1

gk
c ≥ 1 ∀k (11)

n∑

k=1

gk
c = h− 1 ∀c (12)

The objective in (7) is to minimize the number of groups
that each source participates in, i.e. the best case is when
each sources is present in only one group. Constraint
(8) says that for a certain group c if source k was
participating the outgoing flow from it must be equal to
h. (9) says that in a certain group (i.e. at a certain time
slot) the amount of flow (of all sources) entering a node
j equals the amount leaving that node given that these
sources are in the same group. (10) says that the sum of
flow of all sources in a certain group cannot exceed the
capacity of any link which is equal to h−1. (11) ensures
that each source participates in at least one group, and
(12) guarantees that all groups are of size h− 1.

VII. CONCLUSIONS

In this paper we presented a novel network coding-
based approach to provide proactive protection to many-
to-one flows in WMNs with minimum cost in terms
of the number of used paths. We derived and proved
the necessary and sufficient conditions to achieve this
protection for n source nodes by only using n+1 paths to
the sink. We also showed that deterministic coding with
{0,1} coefficients is sufficient to achieve the required
linear independence between the linear combinations. To
perform the coding, a polynomial-time algorithm was
presented to decide on the data units that compose each

linear combination (hence {0,1} coefficients) through
finding simple paths and trees in the network under
consideration. Finally, we discussed a generalization of
our original problem, where we took into account the
practical issues related to general network topologies,
and showed how to adapt our solution to these issues,
we also formulated a mixed integer linear program to
solve this generalization.

REFERENCES

[1] A. Srinivas and E. Modiano. Minimum energy disjoint path
routing in wireless ad-hoc networks. Mobicom 2003.

[2] M. Medard D. S. Lun and M. Eros. On coding for reliable
communication over packet networks. Allerton 2004.

[3] N. Li and J. C. Hou. Flss: A fault-tolerant topology control
algorithm for wireless networks. MobiCom 2004.

[4] C. Georghiades S. El Rouayheb, A. Sprintson. Simple network
codes for instantaneous recovery from edge failures in unicast
connections. USCD 2006.

[5] G. Xue J. Tang and W. Zhang. Energy efficient survivable
broadcasting and multicasting in wireless ad hoc networks.
MILCOM 2004.

[6] D. Remondo M. C. Domingo and O. Len. A simple routing
scheme for improving ad hoc network survivability. GLOBE-
COM 2003.

[7] M. Adler Q. Dong, S. Banerjee and A. Misra. Minimum energy
reliable paths using unreliable wireless links. MobiHoc 2005.

[8] R. Sivakumar S. Park, R. Vedantham and Ian F. Akyildiz.
A scalable approach for reliable downstream data delivery in
wireless sensor networks. MobiHoc 2004.

[9] L. Kant and W. Chen. Service survivability in wireless networks
via multi-layer self-healing. WCNC 2005.

[10] N. Rahnavard and F. Fekri. Crbcast: A collaborative rateless
scheme for reliable and energy efficient broadcasting in wireless
sensor networks. IPSN 2006.

[11] S. R. Li R. Ahlswede, N. Cai and R. Yeung. Network in-
formation flow. IEEE TRANSACTIONS ON INFORMATION
THEORY, VOL. 46, NO. 4, JULY 2000.

[12] N. Cai R. W. Yeung, S. R. Li and Z. Zhang. Network Coding
Theory. now Publishers Inc, 2006.

[13] W. Hu D. Katabi M. Medard S. Katti, H. Rahul and
J. Crowcroft. Xors in the air: Practical wireless network coding.
SIGCOMM 2006.

[14] E. Tardos J. Kleinberg. Algorithm Design. Addison Wesley,
2005.

