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Abstract—Accurately simulating user movements in Mobile Ad
hoc Networks (MANETs) is very important to the prediction of
actual network and user performance. Therefore, using a realistic
mobility model is a crucial factor in enhancing the confidence
in the simulation results of these networks. In this paper, we
present a new mobility model for MANETs, called Realistic
Mobility Model (RMM). In RMM, node velocities and directions
of movement are taken from probability distributions that mimic
real user mobility behavior. The model is shown to be stationary
since it satisfies the conditions of [2]. Simulation results show
that RMM produces mobility traces that closely resemble real
mobility traces.

I. INTRODUCTION

Wireless ad hoc networks are very attractive since they
provide ubiquitous connectivity without the need for fixed
infrastructure or centralized control. Mobile Ad hoc Networks
(MANETs) is a class of wireless ad hoc networks in which
mobile nodes exhibit features of free node mobility in addition
to ephemeral node association. Node mobility, in particular,
can cause frequent and unpredictable topology changes, while
ephemeral node associations may limit the link lifetime,
hence affecting the route lifetime. Despite these challenges,
MANETs are envisioned to have many applications in both
civil and military aspects. As such, innovative solutions for
the above challenges are highly needed.

In MANETs, mobile nodes roam around the network area. It
is hard to model the actual node mobility in a way that captures
real life user mobility patterns. Therefore, many researchers
attempted to design approximate mobility models to resemble
real node movements in MANETs. A mobility model defines
rules that can be used to generate trajectories for mobile nodes.
Most of MANET simulations are based on random mobility
models used to generate network topology changes due to node
movement. Many of these mobility models were embedded
in well-known simulators for MANETs, the most popular of
which is the Network Simulator (NS-2) [10]. Traditionally,
the simplified random Waypoint mobility model [1] is used to
capture node mobility in NS-2. The random Waypoint mobility
model includes pause times between changes in direction
and/or speed (or walk-and-pause cycle). A mobile node begins
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by staying in one location for a certain period of time (i.e.,
a pause time). Once this time expires, the node chooses a
random destination in the simulation area and a speed that
is uniformly distributed between [minspeed,maxspeed]. The
node then travels toward the newly chosen destination at the
selected speed. Upon arrival, the mobile node pauses for a
specified time period before starting the process again. It has
been shown that the waypoint model has many performance
issues that make it unrealistic [1].

The stationary distributions for speed, location, and pause
time for a node moving in a rectangular area under the random
waypoint mobility model was derived in [3]. It was found that
if the initial speed, location, and pause time are sampled from
the stationary distribution rather than the uniform distribution,
convergence to stationarity is immediate and no data need be
discarded. All subsequent node destinations, speeds, and pause
times should be sampled from the uniform distribution. A
detailed survey of existing mobility models can be found in [1]
and the references therein. Another useful survey on advances
in mobility modeling for mobile ad hoc network research
can be found in [8]. As the results of [1] show, each of the
existing mobility models is based on certain intuitions and/or
assumptions that might not correctly reflect realistic mobility
in the system. In fact, there is no indication that there exists a
single mobility model that will accurately capture all the be-
havior of an ad hoc network. To achieve accurate user mobility
prediction, the user mobility model needs to incorporate user
behavioral patterns, wireless link characteristics, and the node
association decision-making mechanisms. Unfortunately, these
are complicated problems. Hence, the problem of designing
realistic and reproducible mobility models is really hard. The
Mobility Vector Model [7] is a more general framework. It can
be used to describe a very large set of scenarios. It is especially
useful in a heterogeneous environment where different types
of hosts have different mobility patterns.

Another approach for modeling mobility is based on social
networks [6] since mobile devices are usually carried by
humans. The model is based on the observation that the
movement pattern of humans are strongly influenced by the
social relationships amongst them. This can be used to math-
ematically construct more realistic mobility models based on
the exploitation of results in social networks theory. The social



networks are generated using random distributions. After the
generation of the social network, it is possible to detect the
presence of communities in the network and then place these
communities in the simulation area.

Recently, the random trip mobility model was introduced
in [2] as a generic mobility model for independent mobiles.
Several mobility models, such as the random waypoint model,
are included as special cases of the random trip model.
This model assumes perfect simulation and do not study the
convergence of the model to the stationary regime when it
exists. For a perfect simulation, all what is required is to
sample from the time stationary distribution of the process
state, which is defined by four parameters: the phase, the
path, the trip duration, and the fraction of time elapsed on
the trip. The fundamental relation between these parameters
in the random trip model and its stationary distribution were
derived in the paper. The Palm calculus was used to study the
model and to give a necessary and sufficient condition for a
stationary regime to exist. When the stationary regime exists, it
was shown that it is unique for all models studied. A sampling
algorithm for the stationary distribution over general areas that
does not require the computation of geometric integrals was
also provided in [2].

In this paper, we present a new mobility model for
MANETs, called Realistic Mobility Model (RMM), that is
able to capture real mobility of mobile users or nodes. The
model is based on a simple, but efficient, probabilistic model
that mimics the users’ behaviors. In this model, nodes velocity
and direction are based on practical probabilistic distributions
as will be described later. The model can be also regarded
as a special case of the random trip model, and is therefore
stationary. Using simulation, we validated the model and
compared synthetic traces generated by the model to real traces
that were collected and presented in [11]. Results show a
convincing correspondence between RMM traces and the real
traces. To be specific, trajectories of both location and speed
of RMM for variable number of users are shown to mimic
those trajectories collected from the real traces. Furthermore,
our validation shows that synthetic traces match real traces
with a relative mean error of no more than 18%.

The rest of the paper is organized as follows. In section II,
the mobility model (RMM) is described in detail. In Sec-
tion III, the existence of a unique stationary mobility distri-
bution for RMM is shown to hold based on the assumptions
of [2]. The performance evaluation of RMM is presented in
Section IV. Section V concludes the paper and highlights some
future work directions.

II. REALISTIC MOBILITY MODEL FOR MANETS

In this section, we present the details of the mobility
model, namely, the Realistic Mobility Model (RMM). RMM
guarantees that we do not stray too much from realistic world.
As such, the model represents a general-purpose method that
may be used to reliably generate realistic mobility patterns
with different characteristics. Initially, the model selects an
initial speed, and direction of movement. At discrete time

steps, which are determined by the simulation environment,
the speed and direction of movement are re-evaluated, based
on the current state of the mobile node, and using a Markovian
process, which will be described below. We now describe the
model in detail.

A. Initialization:
At the start of movement, the location, speed and directions
are initialized as follows:

1) Location:
The initial and final locations, S and E, defined in terms of
the coordinates (xs, ys) and (xe, ye), respectively, are both
chosen from a uniform distribution.
2) Speed:
The speed of the mobile node is determined by N phases,
where each phase corresponds to a speed zone. The ini-
tial phase, or speed zone, is i with probability νi, where
∑N

i=1 νi = 1. Note that this speed set can include a speed
of zero, which corresponds to pausing. The initial speed of
the mobile node in phase i, i ∈ {1, 2, . . . , N}, is a random
variable with truncated Gaussian probability density function
fVi

(v) with a mean and standard deviation of µi and σi,
respectively. The choice of such a distribution seems to
be reasonable since usually most mobile nodes will move
around the imposed maximum speed limit, while a few will
exceed that speed, and a few others may move at a lower
speed. It is also very unlikely that the speed in phase i will
exceed a certain maximum value, vmaxi

, or will be lower
than a minimum speed value, vmini

. The probability density
fVi

(v) is given by:

fVi
(v) =

Ki

σi

√
2π
e−(v−µi)

2/2σ2

i , vmini
≤ v ≤ vmaxi

(1)

where Ki is a normalization constant.
3) Direction:
The initial direction is chosen out of δ directions, including
the direction towards the destination. The directions are
separated by segments with equal angles ( 2π

δ ), similar to
those shown in Figure 1 1.
The direction towards the destination is chosen with proba-
bility d0, while a direction that is i segments (either in the
clockwise, or counter-clockwise direction) away from that
leading directly to the destination is chosen with probability
di, such that d0 + 2

∑θ∗

i=1 di = 1, where θ∗ = bδ/2c.

Determining the initial probability vectors,
~d = {dθ∗ , dθ∗

−1, . . . , d1, d0, d1, dθ∗
−1, dθ∗}, and

~ν = {ν1, ν2, . . . , νN} will be described below.

B. Location, Speed and direction updates:
The location, speed and direction of a mobile node are
updated at intervals which are chosen from an exponential
distribution with rate λ. Such intervals cannot be taken
deterministically since in real life, road and traffic conditions

1We choose the number of different directions, δ, to be odd in order to
simplify the direction update process, which will be described below.



q1=0.2

q0=0.5

q2=0.05

q3=0

q4=0q4=0

q3=0

q2=0.05

q1=0.2

current direction

Fig. 1. C process: One-step Markov path model with memory and possible
directions probabilities.

which result in changing directions or speed occur at irregular
intervals. The update processes are as follows:

1) Location:
Assume that the direction of movement is defined by the
angle ψ. Also, let the expiring update interval be of duration
t. If the previous location was defined in terms of the
coordinates, (xp, yp), then the current location is calculated
as:
xc = xp + t · cosψ, and yc = yp + t · sinψ
If xe and ye satisfy
√

(xe − xp)2 + (ye − yp)2 ≤
√

(xc − xp)2 + (yc − yp)2 and θ = 0

where θ is the number of segments between the current
direction and the direction of the final destination, as will
be defined below, then, the mobile node has reached the
final destination, and we set
xc = xe and yc = ye

2) Speed:
At update times, two processes are invoked:

a) A phase transition process from the current phase,
j, to another phase i, with probability nji, such that
∑N

i=1 nji = 1, ∀j. The transition probability matrix
governing the transitions between phases is given by
N = [nij ].

b) If the phase changes, the speed of the mobile nodes
is evaluated using equation (1). However, if the phase
does not change, i.e., it remains in phase i, the mobile
node speed is correlated to the current speed, vci

. The
new speed, vni

, of the mobile node is taken as a
uniformly distributed random variable in the range of
±10% of the current speed. However, the maximum
and minimum speed limits within the phase must be
observed. Therefore, defining
vci

= max(0.9vci
, vmini

) ,

and
vci

= min(1.1vci
, vmaxi

) ,

the pdf of the new speed, fVni
(vni

) is given by

fVni
(vni

) =

{

1
0.2vc

, vci
≤ vn ≤ vci

0 Otherwise
This is because users usually maintain a constant speed
with small fluctuations around their target speed.

3) Direction:
The mobile node direction of movement is also updated at
update instants. Similar to the one-step Markov path model
[9], our mobility model is also Markovian. However, our
model takes two processes into account:

• The current direction of movement of the mobile node,
and

• The direction towards the final destination.
Therefore, the direction of movement is a composition of
two processes.

a) In the first process, C, which is similar to the one-
step Markov path in [9], and is shown in Figure 1, we
assume that there are δ different directions, including
the current direction, as described above, and as shown
in Figure 1. The current direction is chosen with a
probability that is higher than adjacent directions. We
define θ to be the fewest number of segments between
the current direction and the direction toward the final
destination, with θ ∈ {0, 1, . . . , θ∗}, where θ∗ = bδ/2c,
as defined above. θ can be measured in either the clock-
wise, or counter-clockwise direction, in order to arrive
at the fewest number of segments. The probability of
choosing a direction that is i segments away from the
current direction is given by qi, with i ∈ {0, 1, . . . , θ∗},
with q0 being the probability of choosing the current di-
rection. We also enforce qi ≥ qi+1, i.e., the probability
of choosing a direction decreases as the angle between
that direction and the current direction increases. This
is because of the fact that a mobile node tends not to
drift far away from the current direction, unless it wants
to correct its direction towards the destination, which
is implemented by the second process to be described
next. In the figure, we show nine different directions,
and an example of the probabilities that can be assigned
to them.

b) The second process, D, which is shown in Figure
2, attempts to correct the direction of movement so
that the mobile node will eventually reach the final
destination. Given θ, as defined above, we assign the
segments, starting from the one next to the current
direction, to the one leading to the final destination, the
probabilities mθ

1,m
θ
2, . . . ,m

θ
θ, such that

∑θ
i=1 m

θ
i = 1,

as shown in Figure 2. In this paper, we choose these
probabilities from a uniform distribution. That is,

mθ
i =

{

1
θ θ > 0, and 1 ≤ i ≤ θ
0 otherwise

(2)

For a given θ, the Markovian mobility model uses a proba-
bility pθ = θ

θ∗
to choose process D, while it chooses process
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Fig. 2. D process: correction of direction towards the final destination.

C with probability 1 − pθ.
To formally define the Markov process for choosing the new
direction at each direction update instant, we define the state
of the process, ω, as the number of segments between the
current direction and the direction toward the destination,
measured in the counter-clockwise direction. That is, ω ∈
{0, 1, 2, . . . , δ}. Therefore, the transition probability matrix
Rδ×δ can be expressed as
R = PM + (I −P)Q

where all matrices are of size (2θ∗ + 1) × (2θ∗ + 1). The
matrix P is the diagonal matrix
P = diag(p0, p1, . . . , pθ∗

−1, pθ∗ , pθ∗
−1, . . . , p1, p0)

The elements of the M matrix are defined by

Mij =



















1 i = j = 0

mi
i−j 1 ≤ i ≤ θ∗, 0 ≤ j ≤ i − 1

m2θ∗
+1−i

2θ∗+1−i θ∗

+ 1 ≤ i ≤ 2θ∗, j = 0

m2θ∗+1−i
2θ∗+1−j θ∗

+ 1 ≤ i ≤ 2θ∗, i + 1 ≤ j ≤ 2θ∗

0 otherwise

Equation (3) shows an example of M. The matrix Q is
given by






q0 q1 . . . qθ∗−1
qθ∗ qθ∗ qθ∗−1

. . . q2 q1

q1 q0 . . . qθ∗−2
qθ∗−1

qθ∗ qθ∗ . . . q3 q2

q2 q1 . . . qθ∗−3
qθ∗−2

qθ∗−1
qθ∗ . . . q4 q3

.

.

.
q1 q2 . . . qθ∗ qθ∗ qθ∗−1

qθ∗−2
. . . q1 q0







The matrix Q consists of a first row (row number 0) that
is given by the [q0, q1, . . . , qθ∗

−1, qθ∗ , qθ∗ , qθ∗
−1, . . . , q2, q1].

Row i is then obtained by rotating row 0 i times to the right.
It is to be noticed that element M00 can assume any value,
including 0, since it is only used when the mobile node is
moving in the direction toward the destination, in which case
p0 = 0 and M will not be chosen. However, it was chosen
to be 1 in order to make M a stochastic matrix.

Note that although the matrix Q represents a one-step Markov
process similar to the one-step Markov path model in [9],
RMM attempts to stear the mobile node back on track to-
wards its final destination. This property ensures that the final
destination is reached within a finite time.

Note also that the probability of reversing the direction of
movement is set to 0. As the moving direction and the speed
of mobile nodes are non-deterministic processes, the path of
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Fig. 3. (a) Movement in most probable directions, and (b) path trajectory
trace of six mobile nodes (S and E: Start and End points).

a mobile node will be a random trajectory. Figure 3 shows
the movement in most probable directions of a mobile node.
The movement is within a square area of 36 square zones,
which are organized as a 6 × 6 grid. A mobile node roams
for one hour, and updates its direction and speed after an
exponentially distributed time with a mean of 10 minutes.
The direction is chosen according to the model shown in
Figures 1 and 2, and according to the values of mθ

i given in
equation (2). The figure also shows a sample trajectory paths
collected from simulation experiments for six users wandering
in the network area with starting points (S) and ending points
(E). The path trajectories resemble a smooth movement of
each user, which may represent a more realistic movement
pattern. The changes in direction occur in time steps that are
exponentially distributed with an average value of one minute.

III. STATIONARY DISTRIBUTION OF THE MOBILITY STATE
OF RMM

For the mobility state of RMM to be stationary, and to
have a unique stationary distribution, it needs to satisfy three
conditions [2], which are slightly rephrased to fit our model:

1) Condition H1: The trip selection rule depends on all past
only through the current mobile location, and the state
of the one-step Markov chain controlling the direction
and speed.

2) Condition H2b: The distribution of the location at a
direction and speed update instant is independent of the
Markov chain state to be chosen at this instant, and
future trip duration and state depend on the current
Markov chain state.

3) Condition H3: The Markov chain is positive recurrent.
It is to be noted that assumptions H1 and H2b above are
satisfied by the construction of RMM. Notice that in this case
the phase of the process is the Cartesian product of the set
of speed phases, and the set of direction states. To satisfy as-
sumption H3, we have to make sure that the involved Markov
processes are stationary. This can be simply guaranteed by
making sure that the matrices N and R are stochastic, and
they correspond to irreducible and aperiodic Markov chains.
Since the Markov chains are finite and irreducible, then they
are positive recurrent, and are therefore ergodic. Choosing
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(3)

appropriate transition probabilities, which also reflect real life
situations can lead to the satisfaction of this assumption.

In order make sure that the simulation generates samples
from the stationary RMM, and not from its transient behavior,
the initial direction and speed vectors need to be selected from
the stationary process. Notice that if the number of update
intervals until the mobile node reaches its final destination,
E, is given by k, then the direction probability vector when
the node reaches E, ~de is given by
~de = ~d Rk

If k is large enough, then ~de is very close to the steady state
probability vector of the embedded Markov process described
by the transition probability matrix R. Therefore, in order to
ensure the stationarity of the paths generated by RMM, we set
~d to be the steady state probability vector of R.

Using a similar argument, we set ~ν to the steady state
probability vector of the transition probability matrix N.

IV. PERFORMANCE EVALUATION OF RMM
In this section, we demonstrate and validate RMM as a

realistic mobility model by comparing it to real traces of user
movement. We compare the performance of RMM model to
a real trace scenario available at [11] in terms of mobility
patterns. We consider a network of mobile and heterogeneous
mobile nodes that are randomly deployed in the network field
(bounded region of 500 × 500 m2). The network area was
divided into 36 zones (6 x 6) with an average of 36 mobile
nodes per zone using the VGA clustering approach 2 [12]. The
trace duration is about 4 hours. Each mobile node is allowed to
move for a duration of 30 minutes. Start points of mobile nodes
were generated to correspond to the beginning and end points
of the trace. In the simulations, the initial speed of a mobile
node follows a truncated Gaussian pdf with an average of 50
Km/h, and standard deviation of 15 Km/h. There 11 phases,
and 18 possible directions. Changes in direction occur in time
steps that are exponentially distributed with an average value
of one minute. The velocity increments of a mobile node is
taken to be uniformly distributed in the range of 10% of the

2When the same simulation scenarios are run for different network area
sizes and different numbers of zones, similar error values between traces
were exhibited.

current velocity, such that the minimum and maximum speeds
are 0 and 100 Km/h, respectively. Then we vary the average
initial speed of a mobile node, µ, as well as the standard
deviation, σ in order to study the effect of node speed on the
network performance.

In Figure 4, we plot the real trace mobility pattern for two
users wandering in the grid. In the same figure, we compare
the mobility pattern of users under RMM model and the
trajectories derived from the real traces. The mobility shows
that RMM model is almost capturing the same real mobility
pattern of the two users. We experimented with different
mobility traces, and they showed the same trend of mobility
pattern3. In most experiments, the mean difference between
user locations under RMM and the real traces, taken over the
entire experiment, was limited to no more than 18%. This
indicates that the RMM model is able to mimic actual and
realistic movement patterns.

Next, we study the effect of the simulation time on the
mobility of the generated scenario. The mobility characteristics
of the RMM should be independent of the simulation time.
In Figure 5, we depict the average relative speed4 of the
mobile nodes plotted against simulation time. As shown, the
first 300 seconds is too short for the model to display the
mobility characteristics of MANETs. The average relative
speed stabilizes at about 600-800 seconds of simulation time.

Finally, we compare the average relative speed of RMM
and other mobility models when we vary the maximum speed
(vmax) of mobile nodes. Figure 6 shows the comparison
results. For the same vmax, it is observed in Figure 6 that
the average relative speed for CRM and PRWM is higher than
RWP, which is in turn higher than RMM. This means that even
if the maximum nodal speed is increased, the RMM model
reaches steady state faster and hence the network performance
can be obtained with high accuracy.

V. CONCLUSIONS

This paper presented a new mobility model called Realistic
Mobility Model (RMM) for MANETs. The model is able

3The trace can also be generated in terms of the location and not the zone
number. However, the same behavior can also be noticed.

4The average relative speed is the average speed with respect to the speed
of the initial phase.



Fig. 4. Mobility pattern of users under RMM model and real trace
scenarios.
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Fig. 6. The average relative speed versus maximum speed.

to capture the node mobility based on a simple but efficient
probabilistic model. When compared to real mobility traces,
RMM is able to trace closely the real user behavior. As such,
RMM becomes a more practical and efficient mobility model
for MANETs research. The question whether a fine tuning of
RMM parameters will enhance its performance is still under
investigation. While RMM is aimed specifically at MANET,

the work does have its applications in simulating user mobility
in general mobile networks. As a future work, we intend to
investigate the extension of the model to incorporate obstacles
or different street layouts such as sharp curves or semi-circles.
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