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Abstract—In [1], the author presented a 1+N protection strat-
egy against single link failures using a network coding approach
on p-Cycles. In this paper, we extend this approach to protect
against multiple link failures. For the network to be protected
against M link failures, M p-Cycles are used. The connections
sharing a certain cycle must have link disjoint paths, and they
encode their transmitted and received data units on two counter
rotating half cycles on each of the two cycles. To recover from m

link failures using M cycles, where 1 ≤ m ≤ M , the data units
are encoded on the cycles in such a way that each node affected
by failures should recover m linearly independent combinations
of the m units affected by the failures. To illustrate the concept,
we show how to protect against two link failures, and describe
in detail the encoding and decoding processes.

I. INTRODUCTION

Predesigned Protection techniques provide survivable oper-
ation for optical networks by reserving bandwidth in advance.
Therefore, when upon failures, pre-provisioned backup paths
are used to reroute the traffic affected by the failure. These
techniques include the 1+1 protection, in which traffic of
a circuit is transmitted on two link disjoint paths, and the
receiver selects the stronger of the two signals; 1:1 protection,
which is similar to 1+1, except that traffic is not transmitted on
the backup path until failure takes place; 1:N protection, which
is similar to 1:1, except that one path is used to protect N
paths; and M:N, where M protection paths are used to protect
N working paths. The 1:1, 1:N and M:N techniques involve the
management plane to detect failures, and the control plane to
route against failures, which can prolong the failure recovery
time. The concept of p-Cycles was introduced in [2], [3] to
provide 1:N protection to connections with the same transport
capacity, with an efficiency that approaches that of the optimal
1:N protection in mesh networks.

Recently, the author introduced a new concept for surviv-
ability, namely, 1+N protection in [1]. The technique is based
on using a bidirectional p-Cycle to protect a number of link
disjoint connections, and using network coding [4] to transmit
modulo 2 sums of the connections signals on the cycle. A
failure of any link on a primary path can be recovered from
by using a decoding operation of the signals transmitted on
the p-Cycle. This strategy was introduced to protect against a
single link failure.

While single link failures are the most common type of
failures in optical networks, there are situations in which
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multiple links may fail simultaneously. For example, when
a number of fibers run through the same duct and the entire
duct is subject to failure, all fibers fail simultaneously1. This is
usually referred to as a Shared Risk Link Group (SRLG) [5].
While protection against multiple failures is more challenging,
as compared to protection against a single failure, it has started
to receive attention from researchers. Reference [6] compared
between path protection and path rerouting under dual failures
using optimal ILP models. Reference [7] considers network
reconfiguration for protection against two link failures, and
finds that this can result in up to 95% recovery from second
failures. In [8] the same problem was considered for multiple
sequential link failures but for connection protection, and two
algorithms were introduced. In [9] three loopback strategies
for link protection against two sequential link failures were
introduced, and heuristics were developed. Reference [10]
developed optimal implementations for one of the algorithms
in [9] considering both dedicated link protection, and shared
link protection. The problem of path protection against single
and multiple link failures, as well as single node failures is
considered in [11]. A matrix-based formulation for computing,
and reducing the spare capacity allocation was developed. The
Successive Survivable Routing heuristic was introduced, which
iteratively routes and updates backup paths such that spare
capacity allocation is minimized.

In this paper we extend our 1+N protection strategy in [1] to
protect against multiple link failures. The extension is based on
using multiple p-Cycles. However, the encoding and decoding
operations for protecting against multiple failures are different
from the single failure case. Moreover, certain conditions must
be satisfied for data affected by failures to be recovered.

The rest of the paper is organized as follows. In Section
II we introduce the strategy by which 1+N protection can be
extended to protect against multiple link failures. The cycle
and connection arrangements will be introduced, as well as the
encoding and decoding operations. Data recovery algorithm,
and sufficient and necessary conditions for recovery from
multiple link failures will also be presented. In Section III
we illustrate the details of applying this technique to protect
against two failures, and Section IV concludes the paper with
some remarks. For the sake of easy reference, we list the
symbols used in this paper in Table I.

1Another scenario is when a number of links, e.g., lightpaths, share a fiber.



TABLE I
LIST OF SYMBOLS

Symbol Meaning
N number of connections
M total number of failures to be protected against
S, T two classes of communicating nodes, such that a node in S

communicates with a node in T

Si, Tj nodes in S and T , respectively
di, uj data units sent by nodes Si and Tj , respectively
Ck kth bidirectional cycle used for protection
Tk, Rk clockwise and counterclockwise unidirectional subcycles of

Ck

~αk encoding vector used on cycle Ck

nk number of connections protected by cycle Ck

Sk, Tk nodes in connections protected by cycle Ck, such that Sk ⊂

S, and Tk ⊂ T

N set of connections to be protected
Ni connection to be protected, such that Ni ∈ N

C set of cycles to be used to protect N

II. 1+N PROTECTION AGAINST MULTIPLE FAILURES

In this section, we extend the procedure in [1] to provide
protection against multiple failures.

A. Connections

1) There are N bidirectional connections between N pairs
of nodes. The nodes in different connections need not
be disjoint. That is, connections between the same
pair of nodes, multicast connections, or many-to-one
connections can be present. A node which participates in
multiple connections is logically replicated, and different
copies are treated as independent nodes.

2) Nodes are partitioned into two classes: S and T , where
node Si in S sends di units to nodes in T , and node Tj

in T sends uj units to nodes in S. The enumeration of
nodes in S and T is performed using the procedure in
[1], and is explained below.

3) Primary paths used by connections to carry different data
streams must be disjoint.

4) Node Si ∈ S transmits data units di on the primary paths
to the corresponding receivers, while node Ti ∈ T trans-
mits data units ui on the primary paths to corresponding
receivers. The data units are fixed and equal in size for
all connections. Assume that the packet length is s bits.

B. Protection Cycles

Protection is achieved by transmitting linear functions of
data units on cycles, which are received by all nodes. In the
case of failure, data affected by failures on primary paths can
be recovered from the data transmitted on the cycles. It is to
be noted that all addition operations are modulo 2 operations,
i.e., bitwise XOR operations.

The following outlines how the cycles are constructed, and
how data is encoded on such cycles.

1) For a network to be protected against a maximum
of M link failures, it employs M cycles, which are
referred to by Ck for k = 1, 2, . . . , M . Protection
cycle Ck passes through all nodes in Sk ⊆ S and
Tk ⊆ T (in any arbitrary order), where nodes in Sk
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Fig. 1. An example of a network protected against a maximum of 3 failures.

communicate bidirectionally with the nodes in Tk. Note
that ∪M

k=1Sk = S, and ∪M
k=1Tk = T . The Sk and Sl are

not necessarily disjoint for l 6= k. The m cycles must be
link disjoint, and they must also be link disjoint from
the primary paths of the connections they protect.

2) The sequence of nodes in Sk is arbitrarily selected to be
in the clockwise direction, and the sequence of nodes in
Tk to be in the counter-clockwise direction. The nodes
are enumerated such at an arbitrary node in Ck is labeled
S1. Proceeding in the clockwise direction, if a node has
not been accounted for, it will be the next node in Sk,
and using increasing indices for Si. Otherwise, it will
be in T , and using decreasing indices for Ti. Therefore,
node T1 will always be the one next to node S1 in the
counter-clockwise direction. The example in Figure 2
shows how ten nodes, in five connections are assigned
to S and T .

3) Each of the M cycles consists of two counter rotating
directional cycles, which we refer to as Tk and Rk

half cycles of cycle Ck. We choose Tk and Rk to
be in the clockwise, and counter-clockwise directions,
respectively. Newly generated di and ui data units are
encoded and then transmitted on Tk, and will be referred
to as dt

i and ut
i. Data units received on the working paths

are transmitted, after encoding, on the Rk half cycle.
4) A connection can be selectively protected against any

number, m, of link failures where 1 ≤ m ≤ M . A con-
nection that is protected against m failures must be part
of at least m protection cycles. The network in Figure 1
is protected against a maximum of 3 failures. Node pairs
(S4, T4), (S5, T5), and (S7, T7) are protected against
a single link failure, node pairs (S1, T1), (S3, T3) and
(S6, T6) are protected against 2 failures, while node pair
(S2, T2) is protected against 3 failures.

5) Similar to the 1+N protection against single link failure,
in addition to transmitting new data units on the work-
ing paths, sources of data units use a linear encoding
function to transmit those data units on Tk cycles.
Similarly, received data units are transmitted on Rk

cycles. However, unlike the single failure protection



scheme, instead of just simply adding the data units
using modulo 2 addition (XOR operation), di and uj

data units are transmitted on cycle Ck using a vector of
integer scalar coefficients ~αk, which is given by

~αk = (αk
1 , αk

2 , . . . , αk
nk

) (1)

where nk is the number of connections protected by
cycle Ck. The encoding of di and uj data units using
~αk will be described in the next section.

C. Data Encoding Operation

Transmissions occur in rounds, such that dt
i data units which

are encoded together and transmitted on a cycle must belong to
the same round. Rounds can be started by the S1 node, and are
then followed by other nodes. All nodes in S and T must keep
track of round numbers. The same round number conditions
apply to rounds in which sums of encoded ut

i data units are
transmitted, as well as rounds for transmitting functions of dr

i ,
and functions of ur

i data units.
The encoding is implemented as follows, while noting

that all additions (including those used to implement the
multiplication operation) are bit-wise XOR operations, and
that round numbers are observed:

1) Node Si in S will do the following:
a) It adds the following to the signal received on Tk:

i) Newly generated dt
i units after multiplying

them by αk
i . This adds new data units to Tk.

ii) Data unit ut
j which it received on the primary

path from Tj after multiplying it by αk
j . This

removes this data unit, which was added by Tj ,
from the signal on Tk.

b) It also adds the following to the signal received on
Rk:
i) Data unit dr

i , which it transmitted in an earlier
round, after multiplying it by αk

i , which will
remove this product from the signal on Rk.

ii) Data unit ur
j , which it received on the primary

path from Tj , after multiplying it by αk
j , hence

adding it to the signal on Rk.
2) Similarly, node Ti will do the following:

a) It adds the following to the signal received on Tk:
i) Newly generated ut

i units after multiplying
them by αk

i . This adds new data units to Tk.
ii) Data unit dt

j which it received on the primary
path from Sj after multiplying it by αk

j . This
removes this data unit, which was added by Sj ,
from the signal on Tk.

b) It also adds the following to the signal received on
Rk:
i) Data unit ur

i , which it transmitted in an earlier
round, after multiplying it by αk

i , which will
remove this product from the signal on Rk.

ii) Data unit dr
j , which it received on the primary

path from Sj , after multiplying it by αk
j , hence

adding it to the signal on Rk.
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Fig. 2. An example of five nodes being protected by one cycle [1].

Figure 2 (taken from [1]) shows five connections protected by
one cycle, and ~α1 = ~e, i.e., a vector of 1s.

The above procedure, as applied to one cycle Ck only, with
the exception of using the ~αk vector, is similar to that in [1].
However, what is new here is the use of multiple cycles to
protect against multiple link failures, and, as will be explained
below, the selection of ~αk to satisfy certain properties, which
is central to providing protection against multiple failures.

According to the above operations, node Tj receives on Tk

and Rk the the following signals, respectively:

αk
i dt

i +
∑

l,Sl∈S′

k

αk
l dt

l +
∑

l,Tl∈T ′

k

αk
l ut

l (2)

αk
j ur

j +
∑

l,Sl∈S′

k

αk
l dr

l +
∑

l,Tl∈T ′

k

αk
l ur

l (3)

for some T ′
k ⊂ Tk and S ′

k ⊂ Sk , where Tj /∈ T ′
k and Si /∈ S ′

k.
The signals received at node Si can be expressed similarly.

Data unit di sent from Si to Tj , can be recovered by adding
the signals received on Tk and Rk as expressed by equations
(2) and (3), in addition to αk

j uj , where uj is a data unit
generated earlier by node Tj , and is stored in its buffer, viz.,



αk
i dt

i +
∑

l,Sk∈S′

k

αk
l dt

l +
∑

l,Tl∈T ′

k

αk
l ut

l



 + αk
j uj +



αk
j ur

j +
∑

l,Sk∈S′

k

αk
l dr

l +
∑

l,Tl∈T ′

k

αk
l ur

l



 = αk
i di (4)

With all nodes knowing ~αk, data unit di can then be easily
recovered from the above result. Therefore, if only one primary
path between Si and Tj where Si ∈ Sk and Tj ∈ Tk fails, di

can be recovered by Tj using the above procedure. Data unit
uj can also be recovered by Si using a similar procedure.

D. Data Recovery Algorithm:

Consider a node with connections that are protected against
m link failures using m cycles. Let this set be C.



Case I: Normal operation (no failures)
Data is received on the working paths. m copies of
the same data can be also recovered from the m cy-
cles in C, hence allowing recovery from transmission
errors, which is an added functionality.

Case II: Recovery from multiple failures on working paths:
Suppose there is a total of n failures in the network,
and all of the failures are on working paths. Assume
also that m, where m ≤ n, of the failed working
paths are protected by cycle Ck. Also, let Sk and
Tk denote the set of nodes in S and T , respectively,
using cycle Ck for protection. Denote by Sk and
T k the nodes in Sk and Tk, respectively, with failed
working paths, i.e., |Sk| = |T k| = m. We consider
the data recovery at node Ti ∈ T k.
Let node Ti be protected by l cycles, where m ≤ l,
and of which, as assumed above, is cycle Ck. Using
the approach described above, node Ti adds incom-
ing signals on Tk and Rk, as well as αk

i ui where
ui is a signal that was transmitted in an earlier cycle
(see equation (4)) to obtain the following equation

∑

j,Sj∈Sk

αk
j dj . (5)

Sj in the above equation is the source of the dj data
unit transmitted on one of the failed paths. Since
node Ti is protected by l cycles, it obtains l equations
of the form shown in equation (5), and each equa-
tion should contain a number of variables (d data
units) which correspond to failed connections which
are protected by the cycle generating this equation.
Therefore, if the total number of d variables, denoted
by D, in such equations does not exceed l, and we
have at least D linearly independent equations, then
di can be recovered.

Case III: Recovery from m failures on working paths, and
n failures on protection cycles:
Note that the failed protection cycles cannot be used
to recover from failures. Hence, the m failures can
be recovered from if they are protected by l ≥ m
cycles, which have not failed. The discussion in Case
II above still holds.

Referring to the example in Figure 1, in Table II we show
three sets of failures and the equations which can be obtained
at some of the affected nodes in T . In Table II.(a), the two
paths used by connections (S2, T2) and (S3, T3) fail. Since
both connections can withstand at least 2 failures, node T3

obtains a set of two equations. Node T2, however, obtains 3
equations, since it is also protected by cycle C3. Therefore,
all nodes involved can recover their affected data units if
the equations can be uniquely solved. In Table II.(b), three
paths fail, which are used by connections (S1, T1), (S2, T2),
and (S7, T7). Only node T2 is protected against 3 failures,
and obtains 3 equations in 3 unknowns, which it can use to
recover data unit d2. However, node T1 is only able to obtain
2 equations, but in 2 unknowns, since one of the failures

TABLE II
AN EXAMPLE OF FAILURES AND THE SETS OF EQUATIONS OBTAINED AT

THE NODES IN T ; f
j
i IS THE jTH EQUATION OBTAINED BY NODE Ti .

Failures T2 T3

(S2, T2), (S3, T3) f1

2
(d2, d3) on C1 f1

3
(d2, d3) on C1

f2

2
(d2, d3) on C2 f2

3
(d2, d3) on C2

f3

2
(d3) on C3

(a)

Failures T1 T2 T7

(S1, T1), f1

1
(d1, d2) on C1 f1

2
(d1, d2) on C1 f1

7
(d2, d7) on C2

(S2, T2), f2

1
(d1, d2) on C3 f2

2
(d1, d2, d7) on C2

(S7, T7) f3

2
(d1, d2) on C3

(b)
Failures T1 T2

C1, (S1, T1), (S2, T2) f1

1
(d1 , d2) on C3 f1

2
(d2) on C2

f2

2
(d1 , d2) on C3

(c)

(between S7 and T7) does not share a cycle with it. Therefore,
node T1 can recover d1. On the other hand, node T7 obtains
one equation in two unknowns, and it cannot recover d7.
The third example, shown in Table II.(c), is different, since
in this case cycle C1 fails in addition to working paths for
connections (S1, T1) and (S2, T2). Nodes T1 and T2 are unable
to obtain equations using cycle C1, and therefore node T1

obtains one equation only in d1 and d2, which are not sufficient
to recover d1. However, node T2, which is protected using
three cycles, obtains two equations in d1 and d2 on cycles C2

and C3, from which it can recover d2.

E. Conditions for Data Recovery:

We represent the failed connections, and the protecting
cycles using a bipartite graph, G(V, E), where the set of
vertices V = N ∪ C, and the set of edges E ⊆ N × C. N

is the set of connections to be protected, and C is the set of
protecting cycles. That is, there is an edge from connection
Ni ∈ N to cycle Ck ∈ C if cycle Ck protects connection Ni.

Define C(Ni) as the set of cycles protecting connection Ni,
i.e., C(Ni) = {Ck ∈ C : edge (Ni,Ck) ∈ E}. Also define
N(Ck) as the set of connections protected by cycle Ck. That
is, N(Ck) = {Ni ∈ N : edge (Ni,Ck) ∈ E}. Then, the
following four conditions must apply for connection Ni to be
protected against m failures, i.e., the end nodes of Ni can
recover their data when there are m failures:
C1: Connection Ni must be protected by at least m cycles,

i.e.,
|C(Ni)| ≥ m (6)

This is a necessary, but not a sufficient condition.
C2: The number of connections protected by a cycle Ck ∈

C(Ni) must not exceed the number of cycles protecting
connection Ni. That is,

|N(Ck)| ≤ |C(Ni)| ∀Ck ∈ C(Ni) (7)

This condition guarantees that the number of variables
in each of the equations obtained on one cycle does not
exceed the number of cycles protecting connection Ni.
Also, this condition is necessary, but not sufficient.



C3: The number of connections protected by all cycles
protecting Ni must not exceed the number of such
cycles. That is,

|
⋃

Ck∈C(Ni)

N(Ck)| ≤ |C(Ni)| (8)

This is to guarantee that the number of distinct variables
in the set of equations does not exceed the number of
equations. This is a necessary condition.
Notice that since N(Ck) ⊆

⋃

Ck∈C(Ni)
N(Ck), condi-

tion C3 always implies condition C2.
C4: Any subspace of the vector space consisting of the

vectors ~αk, where k = i1, i2, . . . , in, must correspond to
set of linearly independent vectors. This condition guar-
antees that any two equations of the same set of variables
obtained on two different cycles are independent.

The satisfaction of these necessary conditions altogether is
a sufficient condition for the protection against m failures, as
stated in the theorem below, whose proof is straightforward:

Theorem 1: Connection Ni will be guaranteed protection
against any m link failures in the network if and only if
conditions C1, C2, C3 and C4 are satisfied.

In Figure 3 we show an example that applies to the network
in Figure 1. Figure 3.(a) shows the bipartite graph for the entire
network, while Figures 3.(b), 3.(c) and 3.(d) show the graph
corresponding to the failures in Table II.(a), II.(b) and II.(c),
respectively. Let all vectors ~αk be chosen to satisfy condition
C4. From Figure 3.(b) it can be verified that the four conditions
stated above are satisfied to detect the failures of connections
(S2, T2) and (S3, T3). From Figure 3.(c) the conditions for
detecting the failures in connections (S1, T1) and (S2, T2) are
satisfied. However, for connection (S7, T7), condition C2, and
consequently condition C3, are not satisfied. In Figure 3.(d),
cycle C1 does not exist, and T1 is protected only by cycle C3.
Therefore, condition C2 for connection (T1, S1) is violated.
T2 can still recover its d2 data unit, since all conditions are
satisfied. Figure 3.(a), together with conditions C1, C2 and
C3, are useful in finding, for each connection Ni, which
other connections can fail, and still protect connection Ni. For
example, taking connection (S1, T1), since it is protected by
two cycles, C1 and C2, by applying condition C1 we find that
if this connection fails it can still tolerate the failure of another
connection. Applying condition C2 we find that only one of the
connections in the set {(S2, T2), (S3, T3), (S4, T4), (S5, T5)}
and one of the connections in the set {(S2, T2), (S6, T6)}
can fail. Applying condition C3 means that only connection
(S2, T2) can fail with connection (S1, T1) and still recover the
data of connection (S1, T1).

III. DATA RECOVERY ALGORITHM UNDER FAILURE OF
TWO PRIMARY PATHS

In this section we show the details of providing protection
and data recovery when two primary paths fail, but are
protected against two failures.

Consider two protection cycles, C1 and C2, over which data
is encoded using the two vectors ~α1 and ~α2, respectively. Let
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(S2,T2)

(S3,T3)

(S4,T4)

(S5,T5)

(S6,T6)

(S7,T7)

C1

C2

C3

(S1,T1)

(S2,T2)

(S3,T3)

(S4,T4)

(S5,T5)

(S6,T6)

(S7,T7)

C1

C2

C3

(S1,T1)

(S2,T2)

(S3,T3)

(S4,T4)

(S5,T5)

(S6,T6)

(S7,T7)

(a) (b)

(c)

C2

C3

(S1,T1)

(S2,T2)

(S3,T3)

(S4,T4)

(S5,T5)

(S6,T6)

(S7,T7)

(d)

Fig. 3. Using the bipartite graph to verify protection against failures

us first consider the recovery of di and dj data units by nodes
Ti′ and Tj′ , respectively, due to the failure of their working
paths to nodes Si and Sj , respectively. Since other nodes in T ,
e.g., Tk′ , can remove their received data units, dk, then nodes
Ti′ and Tj′ will each calculate the following two combinations
from the C1 and C2 cycles, respectively.

α1
i di + α1

jdj (9)
α2

i di + α2
jdj (10)

Without loss of generality, we assume that i < j. Note that
both of the nodes, Ti′ and Tj′ , are aware that their working
paths have failed, but they do not know which other working
paths have failed. Therefore, as far as node Ti′ is concerned,
to solve the above two equations and recover the di data units,
the following three conditions must be satisfied:

1) Equations (9) and (10) must be linearly independent,
which follows from condition C4 in Section II-E.

2) The values of di and dj can be recovered from equations
(9) and (10) by using XOR operations only. A sufficient
condition for this is that the least significant 1’s in the
binary representations of each of the two products α1

i α
2
j

and α2
i α

1
j should not occur in the same bit position, for

all i 6= j.
3) In addition to knowing its own α1

i and α2
i , node Ti′ must

also know α1
j and α2

j .
Condition 3 above can be achieved by using two header fields,
D and U , with each packet, which are bit maps of which di

and ui packets are covered by the encoded packet, respectively
(see Figure 4). The bits corresponding to the di and ui bits will
be set by the nodes in S and T , which add them, respectively,
and will be reset by the nodes in T and S which remove them.



UD

d + d + u + u u
1 2 1 3 4

+1 1 0 0 1 0 1 1

Fig. 4. Data unit map header: data units d1, d2, u1, u3 and u4 are XORed.

Conditions 1 and 2 above can be satisfied by using:

α1
i = 1 for i = 1, 2, . . . , N

α2
i = 2i−1 for i = 1, 2, . . . , N

This assignment makes equations (9) and (10) independent,
and also makes solution of these equations equal to the
data unit XORed with a shifted version of itself. That is,
multiplying equation (9) by 2j−1 and XORing it with equation
(10) yields:

δi = 2i−1di + 2j−1di = 2i−1(1 + 2j−i)di , (11)

while multiplying equation (9) by 2i−1 and XORing it with
equation (10) yields:

δj = 2i−1dj + 2j−1dj = 2i−1(1 + 2j−i)dj . (12)

These two expressions are used below to solve for di and dj .
Note that the above assignment of α2

i is not necessarily
an optimal assignment in terms of the packet length (or
equivalently, the number of elements in the field of encoded
packet symbols), since it requires packet lengths to be equal to
s, the packet length, plus N −1 bits. This is in addition to the
use of 2N bits for the data unit maps described above. Using
other carefully selected assignments can reduce the number
of additional bits to about log2 N + 2N , at the expense of
increased processing in order to recover the data units. Notice
that in the case of α2

i = 2i−1, multiplying by α2
i is a simple

shift operation. Moreover, as shown below, to recover di, or dj ,
from equations (11) and (12), respectively, a maximum of N
XOR operations are needed, which is less than the N log2 N
operations needed with other more optimal assignments.

A. Data Recovery Algorithm

With the assumption that i < j, to recover di, which is M
bits long, node Ti′ applies the procedure in Algorithm 1 to the
data unit δi in equation (11). In this procedure, node Ti′ sets
di(0) to δi(i−1). Then, it multiplies di(0) by 2j−1, and adds
the product to δi(j−1). It repeatedly applies this procedure to
all remaining bits in δi, which will finally yield di. Similarly,
node Tj′ applies the same procedure to the δj data unit in
equation (12) in order to recover dj .

We show an example in Figure 5, in which M = 4, d1 =
1101 and d3 = 0110. In the application of the algorithm, the
dashed lines indicate how the XOR operations are applied.

IV. CONCLUSIONS

This paper has extended the approach presented in [1]
for 1+N protection in order to protect against multiple link
failures, and presented necessary and sufficient conditions
for such protection. A procedure for data recovery when the

Algorithm 1: Algorithm to recover data unit di from δi =
2i−1(1 + 2j−i)di

Input: δi, i, and j
Output: di = {di(0), di(1), . . . , di(M − 1)}
for (k = 0; k < M ; k + +) do

di(k) = δi(k + i − 1) ;
δi(k + j − 1) = δi(k + j − 1) ⊕ di(k);

d1 = 1101

d3 = 0110

d1 + d3 = 1011

d1 + 22d3 = 010101

δ1 = 22(d1 + d3) + d1 + 22d3

= d1 + 22d1 = 111001

Algorithm: 

d1

100

0

1

110 0 1

1 1

Fig. 5. An example of applying Algorithm 1 with i = 1, j = 3 and M = 4.

network is protected against two link failures was presented.
The strategy can be applied to provide protection under a
number of scenarios including protection against multiple
failures, shared risk link group, and non-disjoint primary paths.
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