
Multi-Objective Multicast Routing Optimization in
Cognitive Radio Networks

Yu Jie, Ahmed E. Kamal

Abstract—In this paper, we study the multicast routing prob-
lem in Cognitive Radio Networks (CRNs). We propose a new
network modeling method, where we model CRNs using a
Multi-rate Multilayer Hyper-Graph (MMHG). Given a multicast
session of the MMHG, our goal is to find the multicast routing
trees that minimize the worst case end-to-end delay (delay),
maximize the multicast rate (rate) and minimize the number
of transmission links (numOfLinks) used in the multicast tree.
We apply two metaheuristic algorithms (Multi-Objective Ant
Colony System optimization algorithm (MOACS) [1] and A
Simulated Annealing-Based Multi-objective Optimization Algo-
rithm (AMOSA) [2]) in solving the problem. We also study the
scheduling problem of multicast routing trees obtained using the
MMHG model. Our simulation results show that within a few
seconds, MOACS can find more than 60% of the approximated
Pareto Front (APF) in small CRNs, and AMOSA can find
approximately 45%. Moreover, the solutions found by MOACS
and AMOSA that are not in the APF are within 10% relative
distances to solutions in the APF.

I. INTRODUCTION

With a growing number of wireless spectrum-hungry ser-
vices, current wireless networks are becoming overcrowded.
To increase spectrum utilization, CRNs are proposed to al-
low unlicensed secondary users (SUs) to dynamically access
licensed spectrum bands without interfering with the licensed
Primary Users (PUs). Many researchers explored CRNs’ capa-
bilities in supporting different wireless applications. Multicast
is one of the important service models, as a growing number of
applications rely on multicast, such as scheduled audio/video
distribution, gaming and social networking, etc.

There is some recent work in the literature which study
multicast support in CRNs. Reference [3] developed an op-
timal power control policy on base station (BS) and an effi-
cient cooperative communication schedule among SUs so that
aggregate throughput on all SUs is maximized. In reference
[4], a BS can provide service to both PUs and SUs, and
a non-linear program was formulated to find the optimal
spectrum and power allocation scheme on BS as well as
SUs to maximize the total sum rate of SUs. Reference [5]
considered multicast scheduling in a cell formed by a Mesh
Router and its served Mesh Clients. It studied spectrum local-
ization, cooperative communication as well as network coding
schemes to minimize multicast end-to-end delay. Reference [6]
formulated the multicast routing problem as a mixed linear
program with a multiple set of communication constraints,
and an objective of minimizing the required network-wide
resources to support multiple multicast sessions. Reference

Yu Jie and Ahmed E. Kamal are with Electrical and Computer Engineering
Department of Iowa State University, Ames, IA, 50011

Email: {jysarah, kamal}@iastate.edu

[7] proposed a distributed and on-demand multicast routing
protocol COCAST, where all nodes in the multicast group
cooperatively detect other signals, and exchange information
through piggybacked Join Query and Join Reply messages us-
ing a predefined common channel. Nodes select their channels
based on exchanged information.

Different from works introduced above, this paper considers
multi-objective multicast optimization problem in CRNs. The
goal is to develop methods for finding the Pareto Front
of multicast routing trees that can reduce the influence of
transmission delay as well as switching delay on multicast
end-to-end delays, maximize the throughput and minimize the
number of used links of the CRN. Pareto Front is a set of non-
dominated solutions that strictly dominate all other possible
solutions. We use Xsolui

� Xsoluj
to denote that multicast

tree solution i strictly dominates multicast tree solution j.
Xsolui

� Xsoluj
if and only if delayi ≤ delayj , ratei ≥

ratej and numOfLinksi ≤ numOfLinksj and there exists
at least one strict inequality. We apply two metaheuristic
algorithms in finding the Pareto Front. Moreover, we study
the scheduling problem of the multicast trees obtained through
MMHG. The rest of this paper is organized as follows. The
system model is introduced in Section II, and our research
problem is described in Section III. In Section IV, we show
how to use metaheuristic search algorithms to solve the
problem. Simulation results are shown in Section V. Section
VI concludes the paper.

II. SYSTEM MODEL

In this paper, we assume a CRN operating on TV White
Space channels (Television channels 2-51) [8]. Each channel
is licensed to a PU. There is a set of SUs in the CRN that can
operate on all available channels, but we assume that each
SU has one radio only, and can transmit or receive on one
channel at a time. Moreover, each SU knows the availability
of all channels and the location of all nodes (including all SUs
and PUs) in the CRN. The CRN uses an overlay model, such
that an SU’s transmission can cause interference to an active
licensed PU of the same channel if the SU is located within
the PU’s interference range, and vice versa. We also assume
that the CRN is quasi-static, such that the PUs will not change
their activities during our computing process.

Under the assumption that all SUs adopt the best modulation
and coding scheme, we apply Shannon-Hartley’s formula to
calculate the maximum achievable rate of a communication
session: C = Wlog2(1 + PtG

dαN0W
). C is the maximum

achievable rate in bits/second, W is the channel bandwidth
in Hz, Pt is the transmission power in Watts, d in meters is

the transmission range of the SU transmitter, G is the antenna
gain, N0 is the noise power spectrum density in W/Hz, and
α is the path loss exponent which is in the range from 2 to
4. In our paper, we use W as the TV channel bandwidth, 6
MHz, Pt as the maximum transmission power that is allowed
by the IEEE 802.11 protocol which is 100 mW , G as 1, N0

as the thermal noise power spectrum density -174dbm/Hz,
and α = 2.

The CRN is modeled using a directed hypergraph. Ref-
erence [9] proposed the use of multilayer hypergraph in
modeling CRNs. In our paper, we use multilayer hypergraph
to model a CRN while introducing a significant extension.
In a hypergraph, a hyperedge, also referred to here as a
supernode, models a transmission process which consists of a
transmitter SU set (TSU) and a receiver SU set (RSU), where
they operate on the same channel. TSU only contains one SU,
and RSU can have multiple SUs due to the wireless broadcast
feature. Let dr denote the transmission range of the TSU in
the supernode. Then, the RSU is a set of SUs that are located
within dr from the TSU. The transmission rate C within a
supernode is defined by Shannon-Hartley’s formula, with d
set to the transmission range dr. The same SU of the TSU
may form a different supernode that transmits at a higher rate,
C

′
> C, and over a shorter distance, d

′

r < dr, such that
the new RSU is a set of SUs within a maximum distance d

′

r

from the TSU, and a subset of the SUs within a distance dr
from the TSU. The cost of the supernodes with transmission
rate C is 1 data segment/C, where 1 data segment is the
size of scheduled transmitted data every transmission cycle,
as will be explained below. The hypergraph also has a set
of dummy supernodes to represent each transmitting SU and
receiving SU. If there are n SUs in the CRN, then n transmitter
dummy supernodes (TDsupernode) and n receiver dummy
supernodes (RDsupernode) are present in the hypergraph.
TDsupernodes and RDsupernodes have no rate, no operating
channel, no cost and both their TSU and RSU correspond to
the same SU. To distinguish them from dummy supernode,
we use Csupernode trefers to communication supernode that
is neither TDsupernode nor RDsupernode. TDsupernodes and
RDsupernodes will always exist in the hypergraph, but one
condition must hold for a Csupernode to be present in a
hypergraph: its TSU is not located within the interference
range of the active PU licensed on the same channel to be
used by itself.

The following conditions should be satisfied when consid-
ering the existence of a link between two supernodes in the
hypergraph (we define TSUi and RSUi as the TSU and RSU
of supernode i):

(1) A link exists from Csupernode i to Csupernode j if
TSUj ⊆ RSU i and the active PU of the same channel used
by Csupernode i is not located within the interference range
of the SU in TSUj .

(2) A link exists from TDsupernode i to Csupernode j
if TSUj has the same SU as the SU that TDsupernode i
represents.

(3) A link exists from Csupernode i to RDsupernode j if
TSUj ⊆ RSUi and the active PU of the same channel used
by Csupernode i is not located within TSUj’s interference

range.
(4) No links exist between TDsupernodes and RDsupern-

odes.
The cost of a link between two Csupernodes is k ∗ W ∗

|ci − cj |, where ci and cj are the channel numbers used by
Csupernode i and Csupernode j, respectively, k is the constant
10ms/10MHz [10] and W is the TV channel bandwidth 6
MHz. When ci 6= cj , the link cost is the switching delay of
the same SU in TSU of Csupernode j switching from channel
ci to channel cj . The costs of links from TDsupernodes to
Csupernodes, or from Csupernodes to RDsupernodes are 0
seconds.

Figure 1 shows a simple CRN of two channels, 6 SUs and
2 active PUs, one for each channel. The virtual dotted links
between SUs show that they can switch between channels.
Here we assume that an SU’s transmission range dr1 = 50
meters with achievable rate R1, dr2 = 100 meters with rate
R2, and dr3 = 150 meters with rate R3, where R1 > R2 >
R3. Table I shows the distances among all SUs of the CRN
shown in Figure 1.

Figure 1. A multilayer graph representation

Table I
DISTANCES AMONG SUS IN FIGURE 1

Distance(meters) SU 1 SU 2 SU 3 SU 4 SU 5 SU 6
SU 1 — 50 65 130 180 260
SU 2 50 — 185 55 280 190
SU 3 65 185 — 220 150 320
SU 4 130 55 220 — 330 200
SU 5 180 280 150 330 — 500
SU 6 260 190 320 200 500 —

Using the principles we defined for constructing supernodes
and links between supernodes, Figure 2 shows the directed
hypergraph mapped from the multilayer graph shown in Figure
1. The six shaded supernodes on the left side of the hypergraph
are TDsupernodes, and other six shaded supernodes on the
right side of the hypergraph are RDsupernodes. The dashed
circles represent Csupernodes operating on channel 1, and
the two unshaded undashed circles represent Csupernodes
operating on channel 2. Link costs are not shown in Figure
2. We create 3 Csupernodes with TSU as {1}: Csupernodes
{1, 2}, {1, 2 3} and {1, 2 3 4} with rates R1, R2 and R3,

respectively. The numbers between the curly braces are SUs
ID. We also create two Csupernodes with TSU as {3} and
one Csupernodes with TSU as {5}. Csupernodes operating on
channel 1 with TSU as {2}, {4} or {6} are not present in the
hypergraph because SUs 2, 4 and 6 are located within PU A’s
interference range. On channel 2, we create two Csupernodes
with TSU as {4}. Csupernodes with TSU as {1}, {2}, {3}
or {5} are not present in the hypergraph, as SUs 1, 2, 3 and
5 are located within PU B’s interference range. There are no
Csupernodes with TSU as {6} available in the hypergraph
since no SUs are located within SU 6’s maximum transmission
range.

Figure 2. The directed hypergraph mapped from the multilayer graph shown
in Figure 1

III. PROBLEM DESCRIPTION

Given a multicast session (s, Des), where s is a source
TDsupernode, Des is a set of destination RDsupernodes, our
goal is to find the optimal set of multicast routing trees
satisfying three objectives: 1) minimal worst case end-to-end
delay (delay), 2) maximal data rate (rate) and 3) minimal
number of links (numOfLinks) used in the multicast tree.
The problem is a multi-objective optimization problem with
decision variables Xsolu = (x1, x2, x3, ..., xn), where n is the
number of all links in the hypergraph, and xk ∈ {0, 1} is 1
if link k is selected to build the multicast tree, and 0 if not.
With the computed Pareto Front of multicast routing trees, we
select the final solution out of the Pareto Front depending on
which objective is more important.

IV. MULTI-OBJECTIVE OPTIMIZATION SOLVERS

Evolutionary Algorithms (EA) are usually used for solv-
ing multi-objective optimization problems, Kalyanmoy Deb’s
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [11]
and Eckart Zitzler’s Strength Pareto Evolutionary Algorithm-
2 (SPEA2) [12] are two classic EAs which are used for
this purpose. The basic idea of NSGA-II is that it builds
a population of competing individuals, ranks and sorts each
individual according to non-domination level, applies evo-
lutionary operations to create new pool of offsprings, and
then combines the parents and offsprings before partitioning
the new combined pool into fronts. SPEA2 uses an external
archive to contain non-dominated solutions previously found,
and non-dominated individuals found through mutation are
copied to the external archive at each generation.

Most EAs are suitable for solving optimization problems
with continuous decision variables. However, the decision vari-
ables in our problem are binary discrete, and are constrained
by tree structure. The evolutionary operations to create new
pool of offsprings are not efficient for our problem. Therefore,
we adopt two other metaheuristic algorithms, which have
better features than EAs in solving our problems. The two
algorithms are MOACS [1] and AMOSA [2]. For the rest
of this section, Subsection A introduces the algorithms for
generating a random multicast tree solution. MOACS and
AMOSA are described in Subsection B and Subsection C,
respectively.

A. Generating a random multicast tree solution
It is not hard to search for a random multicast tree in a given

hypergraph. However, we cannot compute its corresponding
delay and rate unless we find its optimal transmission sched-
ule. So in this paper, the process of generating a random
multicast tree solution follows four steps:

Step 1, search for a random multicast tree in the hypergraph.
Step 2, modify the tree in order to remove instances

of duplicate transmissions. Two Csupernodes i and j are
duplicate transmissions when they have the same TSU and
RSUi ⊆ RSUj or RSUj ⊆ RSUi. The multicast tree found
by Step 1 sometimes has such duplicate transmissions that are
wasteful of bandwidth, and should be merged.

Step 3, find the optimal transmission schedule of the
modified tree.

Step 4, compute the delay, rate, and numOfLinks of the
modified tree.

Step 1 and Step 2 are presented in Subsection 1). Step 3 is
explained in Subsection 2). Step 4 is described in Subsection
3).

1) Building a multicast tree: To build a multicast tree in
a hypergraph, we apply algorithm BuildTree() from reference
[1] with modifications. We start from the source TDsupernode
s, and a non-visited supernode is selected at each step. We
assign the probability of selecting next un-visited neighbor
node of supernode i using Equation (4.1). In the equation,
Ni is the set of unvisited neighbor supernodes of supernode
i, Cj = 1/(tij + tj), tij is the cost of link (i, j), and tj is
the cost of supernode j. This process continues until all the
destination RDsupernodes in Des of the multicast session are
reached. In MOACS, the equation to compute the probabilities
is different from Equation (4.1), and will be introduced in later
sections.

pij =

{
Cj∑

∀g∈Ni
Cg

if j ∈ Ni

0 otherwise
· · · · · · (4.1)

With the multicast tree computed using BuildTree(), we
perform following modifications:

(1) Merge supernodes that are duplicate transmissions.
(2) Check destination RDsupernodes’s reachability. In the

multicast tree build by BuildTree(), some destination RDsu-
pernodes might not be connected to the Csupernodes (whose
RSU contains SU corresponding to the RDsupernode) which
have the shortest link distance to the source TDsupernode.
In reality, this is not the case. We correct such unrealistic
connections.

2) Transmission Scheduling: In this subsection, we want to
schedule a transmission cycle, which consists of a number of
time units that have the same constant duration. There is a
set of Csupernodes to be scheduled to transmit at each time
unit. Our goal is to compute what Csupernodes of the given
multicast tree should be scheduled in which time unit, such
that a minimal total number of time units in a transmission
cycle is obtained. With the optimal transmission cycle, we
compute the time interval needed between each time unit of a
cycle, in order to prevent any interference caused by switching
between channels.

In the heuristic algorithm, there are two major phases. Phase
1 uses a weighted graph-coloring heuristic algorithm [13] to
compute the transmission cycle of a given multicast tree. Phase
2 formulates a simple linear program (LP) to compute the time
interval needed between each time unit of a cycle.

In Phase 1, we first build the directed conflict graph Fg of
the multicast tree. All Csupernodes of the given multicast tree
form all nodes in Fg . For a Csupernode i, we use IntendDesi
to denote the set of SUs that are the intended receivers of
TSUi. The IntendDesi of TSUi is the union of TSUs of all
supernodes (including RDsupernodes) that have the outgoing
link from supernode i in the hypergraph. A link exists from
Csupernode i to Csupernode j in Fg when:

(1) Csupernode i and Csupernode j are of the same channel,
and TSUi is located within the interference range of any node
in IntendDesj , or TSUj ∈ RSUi.

(2) Csupernode i and Csupernode j are on different chan-
nels, and TSUi ∩ TSUj 6= Ø or TSUj ⊆ IntendDesi or
TSUi ⊆ IntendDesj or IntendDesi ∩ IntendDesj 6= Ø.

To form a weighted conflict graph F
′

g from Fg , we assign
weight 1 to Csupernodes of the largest rate Rmax and other
Csupernodes are assigned with weight dRmax/Rie where Ri

is the rate of the Csupernode i, since the same amount of data
transmitted by Csupernode of Rmax will take more time to be
transmitted by Csupernodes with rate lower than Rmax. Note
that we can also use least common multiple (LCM) of rates of
all Csupernodes in the multicast tree, divided by Ri to denote
the weight of each Csupernode i, but this may cause the cycle
length too long to be a feasible transmission schedule.

With the directed conflict graph Fg and weights for all
Csupernodes, we apply the weighted graph-coloring algorithm
proposed in reference [13] to compute the transmission cycle.

The following gives an example of a computed transmission
cycle. In the hypergraph, {55} is the source TDsupernode, s,
and {72, 73, 74, 75} is the destination RDsupernode set, Des.
BuildTree() generates a random multicast tree which is shown
in Figure 3.

Csupernodes 9 and 30 have rate 36.5 Mbits/s. Csupernodes
38 and 35 have rate 52.2 Mbits/s. So Rmax = 52.2 Mbits/s.
The weight for Csupernodes 38 and 35 is 1, and weight
for Csupernodes 9 and 30 is d52.2/36.5e, which is 2. The
computed transmission cycle XsoluSche of the multicast tree
shown in Figure 3 is:

unit 1: 9, 38
unit 2: 9
unit 3: 30, 35
unit 4: 30

Figure 3. A random multicast tree

In Phase 2, we formulate an LP to compute the time inter-
vals needed between each time unit of a cycle. Csupernodes
of different time units may have different operation channels,
and the time intervals between each time unit are used for
SUs to switch between channels. In the LP, our objective is
to minimize the sum of all time intervals of a cycle. With the
multicast tree example in Figure 3 and its transmission cycle
computed in Phase 1, the LP problem is formulated below:

We use [inter i] to represent the value of time interval i
in seconds between time units i and i + 1, use [unit time]
to represent the period of one time unit in seconds, and
[1 data segment] to represent size of the transmitted data
segment in bits.

Minimize : [inter 1] + [inter 2] + [inter 3] + [inter 4]
Subject To :
A: for unit 1
[inter 4] ≥ 0.006 ∗ |2− 1| · · · · · · · · · · · · (1)
B: for unit 3
[inter 1] + [unit time] + [inter 2] ≥ 0.006 ∗ |1− 2| · · · (2)
C: for each time interval
[inter 1] ≥ 0· · · · · · · · · · · · (3)
[inter 2] ≥ 0· · · · · · · · · · · · (4)
[inter 3] ≥ 0· · · · · · · · · · · · (5)
[inter 4] ≥ 0· · · · · · · · · · · · (6)
D: for each time unit
[unit time] = [1 data Segment]/Rmax· · · · · · · · · · · · (7)
The constraints above show that there should be sufficient

time gap for SUs to switch channels between two successive
time units where they are scheduled for operating. In the
constraints above, 0.006 = k∗6MHz and k is 10ms/10MHz.

This is a polynomial time solvable LP, and we use
CPLEX to solve it. Notice that a sufficiently large size of
[1 data segment] can result in a large [unit time], such that
the sum of time intervals in the transmission cycle can be
minimized. However, the size of 1 data segment can not be
set too large, otherwise the retransmission cost will be huge
when network is unstable. A tradeoff needs to be considered
here to set the size of 1 data segment, and is not studied in
this paper.

3) Computing the objective value: With the generate mul-
ticast routing tree, the computed transmission cycle and the
computed time intervals between each time unit, we can
compute the three objective values of the multicast tree.

delay is the time interval from the time unit where source
SU sends the data segment and the time unit where all
destination SUs finish receiving the data segment.

rate equals the size of 1 data segment divided by the
duration of a transmission cycle, which includes the time
intervals between each time unit in the cycle.

numOfLinks equals the number of links of the generate
multicast tree.

B. MOACS

In this subsection, we describe the metaheuristic algorithms
for computing the Pareto Front of multicast routing trees in a
CRN.

Ant colony optimization (ACO) algorithm is a metaheuristic
inspired from the foraging behavior of some ant species. The
ants leave pheromone at a path they select. The amount of
pheromone on a path will cause the ants to eventually choose
the shortest path to reach the destination.

Reference [1] proposed the ACO based MOACS to solve
multi-objective multicast problem in wired networks. We adopt
this algorithm with modifications to solve our problem. Algo-
rithm 1 shows the general procedure of the modified MOACS.

Algorithm 1 General procedure of modified MOACS
1: Input: HyperGraph H(VH , EH), Multicast Session(s, Des)
2: Output: Optimal multicast tree set Yknown

3: Initialize τij with τ0 for all edges,
numOfIterations = 0, Yknown = φ;

4: while(numOfIterations < Iteration Size)
5: for(i from 0 to popSize)
6: BuildTree(Xsolu);
7: construct transmission schedule of Xsolu;
8: compute delay, rate, numOfLinks of Xsolu;
9: if(Xsolu is not dominated by any Xsoluk ∈

Yknown) then
10: Yknown = Yknown ∪ Xsolu−

{Xsoluk|Xsolu � Xsoluk},
∀Xsoluk ∈ Yknown

11: end if
12: if(Yknown was modified) then
13: τij = τ0 ∀(i, j) ∈ EH

14: else
15: repeat ∀Xsoluk ∈ Yknown

16: 4τbest = w1 ∗ delayk

+w2 ∗ ratek +w3 ∗ numOfLinksk
17: τij = (1 − p)τij + p4τbest ∀(i, j) ∈ EH

18: end repeat
19: end if
20: end for
21: numOfIterations++;

22: end while

Given the HyperGraph H(VH , EH), we first initialize
pheromone matrix τij with τ0 on all edges. In each iteration,
with each Xsolu found by an ant, a known Pareto Front Yknown

is updated including the best non-dominated solutions that
have been found so far. If Yknown changes, τij will be re-
initialized to improve the exploration in the decision space.
Otherwise, τij is updated using the solutions in Yknown to
better exploit the knowledge of the best known solutions. In
BuildTree() of Algorithm 1, we calculate the probabilities of
selecting the next un-visited neighbor node using Equation
(4.2). In this equation, τij is the pheromone of link (i, j),
Cj = 1/(tij + tj), tij is the cost of link (i, j), and tj is
the cost of supernode j. By setting α and β, we can adjust

the weight of τij and Cj in computing the probabilities. A
pseudo-random procedure [1] is also used in selecting the next
non-visited supernode.

pij =

τα
ijC

β
j∑

∀g∈Ni
τα
igC

β
g

if j ∈ Ni

0 otherwise
· · · · · · (4.2)

C. AMOSA

AMOSA is an algorithm proposed in reference [2] to
use simulated annealing to solve multi-objective optimization
problems. We adopt the code provided by reference [2] and
modify the process of constructing a random multicast tree
solution as introduced in previous subsections. AMOSA will
return an archive which records all optimal multicast routing
trees that can be found within a given number of iterations.

Notice that AMOSA starts with a set of initial solutions.
An archiving process is applied to the initial solution set to
select all Pareto optimal solutions within the solution set and
put them into an archive. One solution (current solution) is
randomly selected from the archive. Then the iteration process
starts by generating a new solution from the current solution
through mutation. After comparing the new solution with
current solution and optimal solutions in the archive found
so far, it will decide whether to put the new solution into the
archive, drop the new solution or set the new solution as the
current solution. The process repeats for a given number of
iterations.

V. SIMULATION RESULTS

In this section, we study the performance of MOACS and
AMOSA in finding optimal multicast tree solutions in a
hypergraph. Due to the dynamic nature of CRNs, we study
the performance of MOACS and AMOSA after running them
for a few seconds. We study the following three metrics of
MOACS and AMOSA: 1) the percentage of solutions in true
Pareto Front found by MOACS and AMOSA; 2) the distances
of solutions found by MOACS and AMOSA from solutions
in true Pareto Front; 3) running time comparison between
MOACS and AMOSA.

To approximate the true Pareto Front, we run a Uniformly
Random Search Algorithm (URSA) for millions of iterations.
The procedure of URSA is very similar to MOACS, except
URSA does not consider the influence of pheromone. On
a computer with 31 GB memory and 8 core Intel Xeon
CPU E5440@2.83GHz, we run a simulation of 20 randomly
generate CRNs. Each network has 20 SUs (with ID from
0 - 19), 3 different channels, and 3 primary users, one for
each channel. There are 1 source TDsupernode, 5 destination
RDsupernodes for one multicast session in each CRN. For all
SUs, we use three different transmission ranges corresponding
to three different transmission rates. We set the size of 1 data
segment as 1 Mbits. We use Yutrue to denote the approximated
true Pareto Front (APF) found using URSA, and YMOACS

and YAMOSA to denote the solution set found by MOACS
and AMOSA, respectively. For these 20 randomly generate
CRNs, we run URSA for 1,000,000 iterations to approximate
Yutrue, and run MOACS and AMOSA both for 200 iterations

and 1000 iterations to compute YMOACS and YAMOSA. In
Table II, we record sum of solutions in Yutrue of 20 CRNs,
sum of solutions in YMOACS and YAMOSA that exist in the
Yutrue of 20 CRNs, and compute the average percentages of
solutions out of Yutrue that YMOACS and YAMOSA have and
the average relative distances of solutions in YMOACS and
YAMOSA that are not in Yutrue from solutions in Yutrue.

Table II
PERCENTAGES OF SOLUTIONS IN APF THAT MOACS AND AMOSA

FOUND THROUGH 200 AND 1000 ITERATIONS AND AVERAGE RELATIVE
DISTANCES FROM APF

Iterations 1,000,000 200 200 1000 1000
Solution

Set Yutrue YMOACS YAMOSA YMOACS YAMOSA

Sum of
Solutions
in APF

62 26 28 39 28

Percent-
age of
Yutrue

— 41.94% 45.16% 62.9% 45.16%

Relative
distance

from
Yutrue

— 6.7% 8.81% 5.14% 9.1%

Of all 20 simulation CRNs, the optimal solutions in APF
that AMOSA finds within 200 iterations are the same as
in 1000 iterations, and are an average of 45.16% of the
APF. Moreover, the optimal solutions found by AMOSA
are mostly from the archiving process of the initial solution
set, and the iteration process can not improve its solutions
significantly. However, MOACS finds more solutions of the
APF by performing more iterations. Within 200 iterations,
MOACS finds an average of 41.94% of the APF, and it
finds an average of 62.9% of the APF within 1000 itera-
tions. To study the closeness of solutions in APF and so-
lutions found by MOACS and AMOSA, we use (|delayi −
delayj |/delayi + |ratei − ratej |/ratei + |numOfLinksi −
numOfLinksj |/numOfLinksi)/3 to compute the relative
distance between two solutions i and j, where solution i is in
APF. The numbers in the bottom row of Table II show that
the average relative distances of solutions find by AMOSA
and MOACS that are not in APF to solutions in APF is small.

Figure 4 shows the running time of AMOSA and MOACS in
20 simulated CRNs within 200 iterations and 1000 iterations,
respectively. For all 20 CRNs, the running time of AMOSA
and MOACS for 1000 iterations is within 5 seconds, and even
less when running them for 200 iterations. Moreover, for most
cases, the running time of AMOSA is 1 to 2 seconds longer
than the running time of MOACS.

From the results above we can see that AMOSA and
MOACS can find most solutions that are within or close to
the APF in only a few seconds. However, one advantage of
MOACS is that, unlike AMOSA, it is not limited by the
annealing temperature, and it can be run continuously, hence
adapting to the dynamic nature of CRNs.

VI. CONCLUSIONS

In this paper, we proposed a new modeling method to model
a CRN into a MMHG. Using this MMHG, we proposed an

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7

8

9

10

Network Number

R
u

n
n

in
g

 T
im

e
 i
n

 S
e

c
o

n
d

s

AMOSA(1000 iterations)

AMOSA(200 iterations)

MOACS(1000 iterations)

MOACS(200 iterations)

Figure 4. Running time comparison between AMOSA and MOACS

approach for building multicast trees and studied scheduling
algorithms to compute the delay and rate of a multicast tree.
We applied two metaheuristic algorithms to find the Pareto
Front of multicast routing trees with multiple objectives. Our
simulation results show that in small CRNs, MOACS can find
over 60% of the APF within only a few seconds, and AMOSA
can find approximately 45%. The solutions found that are not
in the APF are within 10% relative distances from the solutions
in APF. Moreover, MOACS performs better than AMOSA as
the speed of AMOSA in finding optimal solutions is limited
by the annealing temperature.

REFERENCES

[1] D. Pinto, and B. Barán. "Solving multiobjective multicast routing prob-
lem with a new ant colony optimization approach." Proceedings of ACM,
international IFIP/ACM Latin American conference on Networking,
2005.

[2] S. Bandyopadhyay, et al. "A simulated annealing-based multiobjective
optimization algorithm: AMOSA." Evolutionary Computation, IEEE
Transactions on 12.3 (2008): 269-283.

[3] J. Jin, H. Xu, and B. Li. "Multicast scheduling with cooperation and
network coding in cognitive radio networks." INFOCOM, IEEE, 2010.

[4] D. T. Ngo, C. Tellambura, and H. H. Nguyen. "Resource allocation for
OFDM-based cognitive radio multicast networks." WCNC, IEEE 2009.

[5] H. M. Almasaeid, and A. E. Kamal. "Exploiting Multichannel Diver-
sity for Cooperative Multicast in Cognitive Radio Mesh Networks."
IEEE/ACM Transactions on Networking, 2014.

[6] C. Gao, et al. "Multicast communications in multi-hop cognitive radio
networks." Selected Areas in Communications, IEEE Journal on 29.4
(2011): 784-793.

[7] W. Kim, et al. "CoCast: multicast mobile ad hoc networks using
cognitive radio." MILCOM, IEEE, 2009.

[8] White spaces (radio), webpage:http://en.wikipedia.org/wiki/White_spaces
_(radio)

[9] S. H. Alnabelsi, and A. E. Kamal. "Resilient Multicast Routing in CRNs
Using a Multilayer Hyper-graph Approach." ICC, IEEE, 2013.

[10] S. Krishnamurthy, et al. "Time-Efficient Layer-2 Auto-Configuration for
Cognitive Radios." IASTED PDCS. 2005.

[11] K. Deb, et al. "A fast and elitist multiobjective genetic algorithm:
NSGA-II." Evolutionary Computation, IEEE Transactions on 6.2 (2002):
182-197.

[12] M. Laumanns. "SPEA2: Improving the strength Pareto evolutionary
algorithm." Evolutionary Methods for Design Optimization and Control
with Applications to Industrial Problems, page 95–100. Athens, Greece,
International Center for Numerical Methods in Engineering, (2001).

[13] W. Wang, et al. "Efficient interference-aware TDMA link scheduling for
static wireless networks." Proceedings of ACM, international conference
on Mobile computing and networking, 2006.

