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Abstract—We consider spectrum sensing strategies used to
discover available spectrum in Cognitive Radio Networks (CRNs),
using both non-cooperative sensing and cooperative sensing
approaches. After introducing the background to sensing tech-
niques, this position paper focuses on strategies and algorithms
for conducting sensing such that the sensing time and energy are
minimized, and the likelihood of finding available spectrum is
maximized. The paper mainly focuses on two approaches. The
first is the ordering of channels to be sensed, and the second
is cooperative spectrum sensing. After discussing the available
strategies under each of these two approaches, we introduce
our own proposed approaches. We first introduce a method for
sorting the channels to be sensed in order to optimize the sensing
time, while satisfying PUs’ protection and false alarm constraints.
Then, we introduce a framework for cooperative sensing of
multiple PUs’ channels by a group of SUs. The framework
includes strategies for assigning different SUs to sense different
PUs’ channels, selection of the fusion center for each of the SUs
clusters, and routing sensing data within the cluster from the SUs
to the fusion center. We show how this framework is capable of
optimizing different objective functions. Several open problems
and future research directions are also introduced.

I. INTRODUCTION

Cognitive Radio Networks (CRNs) were introduced to solve
the problem of the under utilization of the wireless spectrum,
which has already been exhausted due to allocation to li-
censees [1]. In CRNs licensed users, called Primary Users
(PUs), should be able to use their licensed spectrum bands
whenever they want, and in the licensed localities. However,
if the PUs are not active, unlicensed users, termed Secondary
Users (SUs), may use the PUs’ spectrum bands, but they
must also monitor these bands for resumed PUs’ activities to
vacate the spectrum bands in a timely manner, hence avoiding
interference with the PUs.

The above requires that the SUs be aware of the PUs’
channels status, and this is done by sensing the PUs’ channels.
There are two modes of sensing: 1) out-of-band sensing, which
refers to sensing PUs’ channels to determine whether PUs are
active or not, and if not active, determine that the channels
are usable by the SUs; and 2) in-band sensing, or monitoring,
which refers to monitoring the status of the channels used by
the SUs to determine if the owner PUs have become active
again or not. This paper focuses on out-of-band sensing, which
is the discovery of usable channels.

In this position paper, we consider the problem of out-of-
band sensing, and discuss the properties that the sensing func-
tion must satisfy. We also survey the most prominent channel
sensing techniques. However, this paper is more focused on the
sensing strategies, which deal with issues such as determining
the channels to be sensed, and their order, and also determining
the sensing times that will satisfy the required properties and
constraints. Therefore, we discuss the state-of-the-art in the
development of sensing strategies and algorithms, and discuss

the advantages and disadvantages of such techniques. We then
introduce two of our group’s contributions. The first one is
an algorithm to sort PUs’ channels for sensing, such that the
likelihood of finding an available channel is maximized, while
spending the minimum sensing time and energy. The second
one is a framework for cooperative spectrum sensing in the
presence of multiple PUs, which optimizes the assignment
of SUs to PUs’ channels. The approach also optimizes the
selection of the fusion center within each cluster of SUs
sensing a PU channel, and optimizes the routing of sensing
information within this cluster. Several open research problems
will also be introduced.

II. SPECTRUM SENSING TECHNIQUES
Spectrum sensing is the task of achieving the spectral

awareness about the PU occupancy in the sensing space with
spectral, spatial and temporal dimensions. We define binary
hypotheses H0 and H1 which represent idle and busy states
of the channel, respectively. Then, the purpose of sensing is
to determine which hypothesis is valid. Contingent upon the
available information about the primary signal characteristics,
a variety of spectrum sensing methods are studied in the
literature.

If the receiver has an absolute a priori knowledge about pri-
mary signal, matched filters (MFs) are known to be the optimal
method for detection within a short sensing time to achieve a
certain processing gain [2]. Cyclostationary feature detectors
(CFDs) exploit the known statistical properties of primary
signals which arise from the spectrum redundancy caused by
periodicity of modulated and/or coded signals. CFDs have
the ability of recognizing the distinctive features of different
primary signals and relatively better performance under low
SNR regimes [3]. Covariance-based sensing employs the fact
that the statistical covariance matrices of primary signal and
noise are different from each other. Thus, it is robust against
noise estimation uncertainty. In particular, it gives a superior
performance for detecting correlated signals [4].

The techniques mentioned above either depend upon the
accurate knowledge regarding primary signal characteristics or
some other assumptions which are not always readily available
in practice. In the absence of a priori knowledge of primary
signals, however, energy detection has been shown to be robust
to the unknown dispersed channels and fading. To detect a
primary signal, energy detector (ED) simply measures the
received signal energy for a time interval and compares it with
a predetermined threshold to decide on the PU activity. Under
energy detection, the kth sample of the received primary signal
taken by SU m during the sensing period Tm,n on channel n
with bandwidth Wn is given as

ym,n (k) ∼

{
vn (k) ,H0

hm,nsn (k) + vn (k) ,H1

(1)



where vn (k) is additive white Gaussian noise (AWGN), sn (k)
is the primary signal, and hm,n is the convex envelope of
the channel gain under the slow fading assumption. Then,
ED measures the test statistic Tm,n(y) which is energy of the
received signal and compares it with a threshold λm,nto decide
on PU presence/absence. In [5], Tm,n(y) has been shown to
have central and non-central chi-square distribution under H0

and H1, respectively. In the case of deterministic hm,n, the
probabilities of false alarm, and detection are given as [6]

P fm,n = P [H1|H0] =
Γ (Nm,n, λm,n/2)

Γ (Nm,n)
(2)

P dm,n = P [H1|H1] = QNm,n

(√
2Nm,nγm,n,

√
λm,n

)
(3)

where Nm,n = Tm,nWn is the time-bandwidth product,
Γ (·) is the gamma function, Γ (x, a) =

∫∞
x
e−tta−1dt

is the incomplete gamma function, and Qm (x, a) is the
generalized Marcum-Q function defined as Qm (x, a) =

1
am−1

∫∞
x
tm exp−

t2+a2

2 Im−1 (at) dt where Im−1 is the
(m− 1)

th order modified Bessel function of the first kind.
In the case of Rayleigh fading, the closed form expression for
equation (3) is derived in [7].

Out of the above sensing techniques, energy detection is
usually the preferred approach and this is due to a number
of desirable properties, including: 1) its low computational
complexity; 2) applicability to any signal shape; and 3) it
does not require any a priori knowledge about the PUs and
their transmission characteristics [8]. Therefore, in the rest of
this paper, we only consider spectrum sensing using energy
detection.

III. SENSING TIME AND THRESHOLD OPTIMIZATION

The most significant purpose of cognitive radio technology
is to increase the spectral efficiency of wireless networks
in an opportunistic manner. Therefore, the first trend in
the sensing optimization studies has focused on maximiz-
ing the achievable throughput subject to detection errors:
probabilities of misdetection (Pm = P [H0|H1]) and false
alarm (Pf = P [H1|H0]). While minimizing the former result
in a higher level of PU protection from SU interference,
minimizing the latter is the key part to maximize unused
spectrum utilization. Furthermore, sensing for longer duration
provides more measurements for the decision maker, hence
decreasing the error probabilities with increasing the mea-
surements. If a slotted time frame is considered, sensing for
a longer duration results in achievable throughput reduction.
If the energy detection is chosen for sensing white space,
threshold determination impacts Pf . Moreover, Pm decreases
as the sensing duration increases for a given Pf and received
SNR. Thus, required detection threshold should be jointly
optimized along with sensing duration in order to maximize
the achievable throughput when the optimization is constrained
on PU protection and spectrum utilization.

In this paper, we consider path loss and Rayleigh fading
for both control and sensing channels. If we consider SU m
sensing channel n, based on received SNR γm,n and corre-
sponding threshold λm,n, each SU can locally find its own

optimal sensing time subject to a PU protection and spectrum
utilization threshold. Assuming sensing power is constant for
every PU and SU pair, i.e., Psm,n = Ps, ∀m,n, then the optimal
energy consumed by SU m for sensing channel n is given by
εm,n = PsTm,n. Accordingly, the optimal local sensing energy
εm,n is calculated using Algorithm 1 where P̄d and P̄f are
required thresholds for detection and false alarm probability,
respectively. The constraints in Lines 2 and 3 protect PUs from
SU interference, and ensure adequate spectrum utilization by
SUs, respectively.

Algorithm 1 : Optimal sensing energy of the SU m at channel n
1: Min εm,n

2: s.t. Pd
m,n ≥ P̄d

3: P f
m,n ≤ P̄f

IV. CHANNEL SORTING

Channel sorting is an approach to find the sequential order
of the channels to be followed during searching an idle chan-
nel. Sorting criteria may differ from application to application.
Some sorting techniques may favor sorting the channels based
on channel capacity. Channel sorting techniques which reduce
search time should ideally take three factors into consideration:

1) The probability of the channel being idle, P(H0), which
can also be conditional on the last sensed status and time
sensing. This can also be based on modeling the channel
activities, using either parametric, or non-parametric
statistical models.

2) Channel sensing time, which is influenced by the char-
acteristics of the channels between the PUs and the SUs,
as described in Section III. And,

3) Switching times between the channels that are sensed,
which is dependent on the difference between the central
frequencies of these channels, and is also dependent on
the technology of the Phase-Locked Loops (PLL) used.
Switching times can be significant, and therefore, they
have to be taken into consideration.

The literature includes three basic approaches for channel
sorting to minimize search time:
• The first approach is sequential searching, in which the

channels are searched sequentially, typically starting from
the lowest frequency channel[9]. Although it provides
a minimized switching time, this approach suffers from
the fact that the channel sorting does not take into
consideration the channel availability likelihood, e.g., in
terms of P(H0), or the channels characteristics, which
impact the sensing time.

• The second approach considers the likelihood that the
channels will be idle. Kim and Shin [10] introduced
such an approach where sensing-sequence sorts channels
in descending order of the probability of being idle.
Also, [11] finds a search sequence that helps in finding
spectrum opportunities with minimal delay. To achieve
their goal, [11] maintains two channel lists: back-up
channel list (BCL) and candidate channel list (CCL).
Both of these two approaches do not optimize the sensing



time per channel, and they also do not take channel
switching times into consideration.

• The third approach sorts channels randomly.
We believe that a sensing strategy that takes all above three
factors into consideration will result in better performance, in
terms of faster discovery of available channels, and minimum
sensing energy consumption. However, this problem is hard,
and can only be solved offline. Hence, developing algorithms
for sorting channels, while taking into consideration all three
factors, is an important problem. Our group has developed
a heuristic algorithm for channel sorting that takes all above
factors into account, which is shown in Algorithm 2.

Algorithm 2 : Finding the best sequence of channels
1: For i = 1 up to M
2: Min=∞ , MinIndex=-1
3: For s = i up to M
4: Min t(s) = [ts(s) + tsw(f0, fs)] ∗ Prs(H1)
5: s.t. Pr(H1|H1) ≥ P̄d(s)
6: Pr(H1|H0) ≤ 0.1
7: if (t(s) ≤ Min)
8: Min=t(s)
9: MinIndex=s

10: End if
11: End For
12: Temp=f(i)
13: f(i)=f (MinIndex)
14: f (MinIndex)=Temp
15: f0 = f (MinIndex)
16: End For

The algorithm minimizes the sensing plus switching time
among the remaining channels, and it works in iterations. In
iteration i of the outer for loop, a channel that minimizes
the sensing + switching time will be found. The inner for
loop searches the M − i channels to find the channel which
minimizes the sensing plus switching time and makes it the ith

channel to be sensed. Lines 4-6 find the minimum sensing +
switching time for each channel given the current channel.
Lines 7-10 keep track of the channel that minimizes the
sensing + switching time. Lines 12-15 swap the next channel
with the channel that minimizes sensing + switchingtime.

A. Search Sequence Results

Fig. 1: Comparison of search times for different switching times
We compare our approach of sorting the channels with: 1)

searching the channels sequentially which does not consider
any other properties of the channels like P(H0), SNR, or
required sensing time; 2) the approach that sorts the channels
according to the P(H0). We simulate 51 channels in the ranges
of 470MHz to 770 MHz. Each channel is 6MHz wide. Each
channel has: 1) random SNR between -10 dB and -20 dB, 2)
random P(H0) between 0.2 and 0.8, and 3) random required
detection probability P̄d between 0.92 and 0.99. We consider

different switching times that can range from 10µs/1MHz
up to 0.1ms/1MHz. Figure 1 compares our approach to the
other two approaches. It is clear that our approach is better
than the other approaches because our approach considers both
the switching time and the probability of being idle. Sorting
according P(H0) takes the longest time. This is because
P(H0) does not take into consideration sensing and switching
times.

V. COOPERATIVE SPECTRUM SENSING (CSS)

The use of energy detection for channel sensing is based on
an underlying assumption of perfect noise power estimation.
Therefore, the uncertainty in noise results in SNR wall and
high false alarm probability. Furthermore, receiver uncertainty
and hidden terminal problem caused from radio propagation
characteristics are other matters of challenge for EDs [3].

CSS can alleviate the shortage of individual SUs by getting
benefits of spatial diversity of SUs since it is highly unlikely
for spatially distributed SUs to concurrently suffer from similar
channel impairments. CSS can be grouped into subcategories
based upon the cooperation method within the network (cen-
tralized and distributed) and the shared data type (soft data
fusion and hard decision fusion). Even though exploiting the
soft data fusion results in a superior performance, sharing large
amount of measurement data ends up with communication
overhead which cannot be sustained by a bandwidth limited
CC. Hence, hard decision fusion surpass the soft data fusion
with its low reporting overhead. Nonetheless, as the number
of cooperating SUs and the geographical area of the network
increase, CC still experiences bandwidth insufficiency along
with reporting unreliability, power consumption and delay due
to long distances. To surmount these problems, grouping SUs
into clusters is a favorable and effective technique to reduce
cooperation range and communication overhead [12], [13]. In
particular, an energy efficient clustering method plays a vital
role for extending the battery life of SUs if the mobility and
power resource limitations of SUs are taken into consideration.

If we define the spectrum utilization and energy consump-
tion as currency and commodity, respectively, an energy and
throughput efficient design would be clustering SUs such
that commodity per currency is maximized subject to a PU
protection level. For energy efficiency, the total energy con-
sumption within each cluster will be minimized i.e. intra-
cluster energy minimization. For throughput efficient design,
we will minimize the maximum sensing duration within each
cluster to maximize remaining time for secondary data trans-
mission. This objective is based on the fact that a cluster
head would not diffuse back the final decision until the SU
with longest sensing time finish and report its sensing results.
Furthermore, fairness is another design factor to be focused
on because an SU would like to get a fair benefit in return for
spending energy for others. Since sensing energy consumption
is proportional to sensing duration, a fair energy efficient
clustering may be achieved by minimizing the total energy
consumption difference among clusters i.e. inter-cluster energy
minimization. Similarly, a fair throughput efficient design
may be obtained by minimizing the achievable throughput



difference among clusters.
Considering the objectives and constraints above, planning

the selection of SUs into clusters is a nontrivial task, especially
when geolocation information is not available. Even if the
optimal clustering of a CRN is given, picking an optimal
cluster head (CH) among cluster members is still a design
issue. Decision fusion rules employed by each CHs is also
required to be designated under imperfect CC conditions.
Moreover, if there exists multiple channels, the matters given
above become a complicated optimization problem. In the
following, we introduce a framework for addressing all the
issues above, which is based on our recent work in [14].
A. Phases of Cooperation

Assume that for a given sensing period, there existsM SUs
available to help with sensing and there exists N potential PU
channels to sense, we propose a CSS process that consists of
three phases:

1) Sensing Phase: This is done using the procedure and
algorithm described in Section III based on received SNR γm,n
and corresponding threshold λm,n, for SU m and channel n.
Each SU can locally find its own optimal sensing time subject
to a PU protection and spectrum utilization threshold.

2) Reporting Phase: Under noisy CC and maximum trans-
mission power limitation, single-hop reporting links between
SUs and CHs may not always yield a reliable and energy
efficient collaboration among SUs. Preferably, employing a
multi-hop method for the reporting phase does not only
mitigate the communication range limitation but also gives
an opportunity for exploiting an algorithm which finds the
multi-hop path with minimum error probability from cluster
members to a specific CH.

Let us consider an asymmetric directed graph of cluster n,
Gn(Cn,Ln), with the set of vertices Cn representing SU nodes
and the set of links representing the direct hop between SU
nodes i and j. Denoting the bit error probability (BEP) of
the link li,j as pi,j = 1 − qi,j , any multi-hop path from SU
i to SU j, i  j, has the bit success probability (BSP) of
qi j =

∏
k,l∈i j qk,l. Indeed, maximizing qi j is equivalent

to minimizing the negative sum of logarithm of qi j . By doing
so, Dijkstra’s algorithm can be employed to calculate the route
with minimum path cost from SU i to SU j. Hence, the best
CH among members of cluster n with minimum BEP can be
determined as follows

CHn = argmin
j∈Cn

∑
i∈Cn
i6=j

Di→j (4)

where i → j and Di→j are Dijkstra path and its cost,
respectively.

3) Decision Phase: After the final CH assignment, each SU
within cluster n reports its final binary decision uni = {0, 1}
to CH over the route i → j. Defining the random variable
kn

∆
=
∑
i∈Cn

uni , kn is binomially distributed under perfect
reporting channel and i.i.d. SU reports, which is a.k.a. k-
out-of-N rule. Under the k-out-of-N rule, CH decides on H1

for PU n if at least k̄n of SUs report 1, i.e. kn ≥ k̄n.
Although all local observations are i.i.d. before the reporting

phase, since each multi-hop path has a different success rate,
CH receives non-identical detection and false alarm probabil-
ities which are denoted by P̃ di,n and P̃ fi,n, respectively. For
independent and nonidentically distributed (i.n.d.) SUs, kn
has Poisson-Binomial distribution [15]. The optimal k̄n (k̄∗n),
however, may not be the same for all scenarios. Therefore,
we numerically find k̄∗n which minimizes the total error rate,
QTn

(
k̄
)

= Qfn
(
k̄
)

+
(
1−Qdn

(
k̄
))

.
B. Multi-objective Clustering Optimization (MOCO)

To fulfill the objectives mentioned earlier, we define the
function In (m) which indicates the membership of SU m ∈
[1,M] in cluster n ∈ [1,N ]. For each cluster, three types
of objective vectors are defined to be minimized: F ∈ RN ,
G ∈ RN , and H ∈ R2 with elements

Fn =
∑
m∈Cn

εm,n , Gn = max
m∈Cn

(Tm,n) ,

H1 = max
n

(Fn)−min
n

(Fn) , H2 = max
n

(Gn)−min
n

(Gn)

where Fn is for intra-cluster total energy consumption min-
imization within cluster n, Gn is for intra-cluster maximum
sensing time minimization within cluster n, such that the time
available after sensing phase is maximized for maximizing
the achievable throughput. H1 and H2 handle the inter-cluster
total energy consumption and throughput balance, respectively.
Based on these objectives, we formulate Algorithm 3 which
clusters the network as follows:
Algorithm 3 : MOCO

1: Min F, G, H
2: s.t.

∑N
n=1 In(m) ≤ 1, ∀m

3:
∑M

m=1 In(m) ≥ 1, ∀n
4: Qd

n (k∗n) ≥ Q̄d, ∀n
5: Qf

n (k∗n) ≤ Q̄f , ∀n
6: Tm,n ≤ τ, ∀m,n

Since, an SU can sense at most one channel during a
sensing period,

∑N
n=1 In(m) ≤ 1 in Line 2. Moreover, Line

3 makes sure that each PU channel is sensed by at least
one SU. Lines 4-5 are global decision probability constraints
which are needed to be satisfied for reporting and decision
phase reliability. The constraint in Line 6 on the sensing time
is especially beneficial to take SUs with unnecessarily long
sensing duration out of consideration.
C. Results and Analysis

Algorithm 3 is a multi-objective mixed-integer combinato-
rial optimization problem which is NP-hard, therefore, em-
ploying meta-heuristic methods to obtain a sufficient solution
within a reasonable time frame is preferable in practice.
Hereupon, we will use the Nondominated Sorting Genetic
Algorithm-II (NSGA-II) [16] for solving MOCO. Fig. 2 shows
the error performance enhancement which comes with the
method proposed in the reporting phase, where the green
dashed line, red dashed line and red solid line show the total
reporting error of proposed multi-hop technique, the worst and
the best case of single-hop technique, respectively. As we ex-
pect, a superior performance is obtained through the proposed
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Fig. 2: Comparison between single-hop and multi-hop approach

method. For the population size of 50 and generation size of
20, the results for MOCO objective functions and clustering
topology of the network using NSGA-II are shown in Fig. 3(a)
and Fig. 3(b), respectively. At the bottom of the Fig. 3(a),
colorbar ranges from 1 to 50 represents the populations of
generations. In Fig. 3(b), the amoeba-like shapes represent the
clusters in each of which square shape represents the PU with
the number inside, diamond shapes represent cluster members
with SNR values in dB, and hexagon shapes represents CH
selected by the proposed technique.

Fig. 3: (a) MOCO Results for different objectives and (b) Final
clustered network topology

VI. OPEN RESEARCH ISSUES

Although the problem of spectrum sensing has been exten-
sively studied in the literature, there are still open issues that
need to be dealt with. We outline some of these research issues
here:
• Under CSS, SUs are expected to participate in the sensing

process, and they find channels which may then be used
by other SUs, which requires a motivation or incentive.
Game theory has been used in the literature to facilitate
participating in cooperative sensing, e.g., [17], and it was
shown that this can result in improving SUs’ throughput.
However, there are still open issues when applying incen-
tives to facilitate CSS. These include the sensing energy
consumption, especially when SUs are battery operated,
and how this affects their participation in sensing. These
also include the level of traffic that each of the SUs
generates, and how this will be related to its participation
in sensing.

• Another issue is the dynamic channel sensing and
scheduling of sensing. In our framework in Section V,
we considered the case of the SUs being allocated to
sense a group of PUs’ channels. In reality, there may
be a very large number of channels and the cluster
formations may not be able to cover all channels while
guaranteeing effective sensing. In particular, under the
scarcity of available SUs to cooperate, there may not be

sufficient SUs to search PU channels. Hence, assigning
SUs with better channel qualities to different clusters
in different sensing rounds would result in a feasible
and more energy efficient scheduling scheme. Therefore,
assignment of SUs to clusters and scheduling the clusters
to perform sensing is another hard open problem.

• Related to the above problems is the problem of the
trust of sensor nodes. If a sensor node, that is involved
in CSS, has been compromised, then this node may
send incorrect sensing information which may change the
sensing outcome. Therefore, strategies to detect and filter
out sensing results from compromised nodes need to be
developed.

• Channel sorting discussed above only considered from
a single SU’s perspective. With cooperative sensing,
however, the sorting order may be different for different
SUs. Hence, a sorting criterion for cooperative sensing is
required to be developed and applied together with the
CSS.
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