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Abstract—In this paper we consider heterogeneous cognitive
radio networks (CRNs) comprising primary channels (PCs) with
heterogeneous characteristics and secondary users (SUs) with
various sensing and reporting qualities for different PCs. We
first define the opportunity as the achievable total data rate
and its cost as the energy consumption caused from sensing,
reporting and channel switching operations and formulate a joint
spectrum discovery and energy efficiency objective to minimize
the energy spent per unit of data rate. Then, a mixed integer
non-linear programming problem is formulated to determine: 1)
the optimal subset of PCs to be scheduled for sensing, 2) the SU
assignment set for each scheduled PC, and 3) sensing durations
and detection thresholds of each SU on PCs it is assigned to
sense. Thereafter, an equivalent convex framework is developed
for specific instances of the above combinatorial problem. For
comparison, optimal detection and sensing thresholds are also
derived analytically under the homogeneity assumption. Based
on these, a prioritized ordering heuristic (POH) is developed
to order channels under the spectrum, energy and spectrum-
energy limited regimes. After that, a scheduling and assignment
heuristic (SAH) is proposed and is shown to perform very close
to the exhaustive optimal solution. Finally, the behavior of the
CRN is numerically analyzed under these regimes with respect
to different numbers of SUs, PCs and sensing qualities.

Index Terms—Energy and throughput efficient, cooperative
spectrum sensing, multi-channel sensing scheduling, Poisson-
Binomial, channel switching.

I. INTRODUCTION

A. Motivation and Background

The motivation behind the CRNs is rooted in the insuf-
ficiency of the current inflexible spectrum allocation policy
to meet the ever-increasing demands of today’s wireless
communication networks. Cognitive radios (CRs) are intro-
duced to detect and utilize unused spectrum bands in an
opportunistic manner such that primary users (PUs), who
are incumbent licensees, are protected against performance
degradation caused by CRs which are also known as secondary
users (SUs). Furthermore, a substantial part of this demand
has recently migrated to mobile wireless networks and devices
with limited energy resources. Considering the fact that 30% of
the energy expenditure of mobile devices is caused by wireless
networking and computing [1], energy efficient (EE) cognitive
radio networks play a vital role to provide portable devices
with more spectrum for less energy consumption. Optimizing
energy utilization not only leads to a more affordable network
with reduced cost, but also an environmentally friendly net-
work [2]. Because approximately 2% of the worldwide CO2

emissions is caused by the communications and information
technologies [3], energy efficient policies are becoming more
important to achieve green communication standards.

Nonetheless, modeling an EE-CRN is not trivial since it
involves designers in many tradeoffs to be balanced and
many real life challenges to be taken care of. In particular,
the detector performance of individual SUs is substantially
degraded by the channel impairments such as path loss,
multipath fading and shadowing etc. To surmount this issue,
cooperative spectrum sensing (CSS) is addressed to be an
effective method which achieves more reliable detection by
exploiting the spatio-temporal diversity of SUs. However,
cooperation is not free of energy overhead and there are three
leading energy consumptive factors in a multi-channel CSS
scheduling (CSSS) framework: 1) channel switching energy, 2)
sensing energy, and 3) reporting energy. The sum of those can
be referred to as the opportunity cost. Defining the achievable
total data rate as a commodity and the opportunity cost as
currency, we will deal with minimization of the currency
expenditure per earned commodity under a heterogeneous
CRN scenario where PCs have different probabilities of being
idle and SUs have different reporting errors and sensing
qualities (i.e. signal-to-noise-ratio (SNR)) for different primary
channels (PCs).

B. Related Work

Some of recent research efforts can be exemplified as
follows: By successively activating a subset of sensors to sense
the spectrum and putting others into a sleep mode, an energy
efficient CSS with an optimal scheduling method is considered
for sensor aided CRNs [4]. Zhang and Tsang prove the energy
efficiency optimality of the myopic policy using the framework
of partially observable Markov decision process in [5]. Sun
et al. consider a heterogeneous CRN scenario and develop
a CSSS framework using a discrete-convex formulation in
three steps. They use the OR voting rule in their analysis to
maximize a utility function as a weighted sum of capacity and
energy expenditure [6]. Eryigit and others try to minimize total
sensing and reporting energy consumption using OR voting
rule in an error-free cooperation environment. They provide
efficient heuristic methods after solving the combinatorial
problem via outer linearization methods [7]. Even though all
these previous studies have important contributions, they lack
the generality of exploitation different voting rules and energy
efficiency by assuming AND/OR voting rule for the sake
of tractability. However, the majority voting rule is already
pointed out to be the best voting rule in the context of addi-
tional SNR requirement to achieve ideal performance [8] and
to be the most energy efficient to achieve the energy efficiency
of ideal cooperation scheme [9]. This is recently re-validated



by [10] where the authors use discrete-convexity tools to
maximize the achievable throughput in both homogeneous and
heterogeneous scenarios. Another shortcoming of the works
in [5] - [7], [10] is the assumption of the perfect reporting
environment. However, the existence of a reporting error wall
is clearly demonstrated in [8]- [9] such that after this error wall
no reliable cooperation is possible regardless of how much
energy is spent.

Channel switching delay and energy is another practical
concern in multi-channel CSSS, which is not considered in
above references. In [11] and [12], channel switching factor
is taken into account in the realm of resource allocation
scheduling. In [13], the authors propose a scheduling method
which minimizes the energy cost caused by sensing, reporting
and channel switching actions under the assumption that the
number of SUs is much more than the number of PUs while
employing the OR fusion rule under perfect reporting channel
conditions. The authors in [14] propose a framework to
minimize the ratio of summary of sensing-reporting-switching
cost and the discovered spectrum under erroneous reporting
and generalized voting rules.

C. Main Contributions

Our main contributions can be summarized as follows:
1) We couple the energy and spectrum efficiency as a single

objective such that the energy spent per achieved data
rate is minimized subject to global detection and false
alarm constraints to protect PUs from SU interference
and ensure a certain spectrum utilization, respectively.
Assuming SUs have different sensing and reporting
characteristics, a mixed integer non-linear programming
(MINLP) problem is formulated to determine: a) the
optimal subset of PCs to be scheduled for sensing, b)
the SU assignment set for each scheduled PC, and c)
sensing durations and detection thresholds of each SU
on PCs it is assigned to sense. Assuming that switching
time satisfies the linearity and triangularity properties
[11] - [12], we also formulate the optimal sensing order
to minimize the channel switching latency and energy
as a linear function of the total frequency distance .

2) A heterogeneous K-out of-N rule is first proposed in
order to allow SUs to have different detection accuracy
according to their sensing and reporting qualities. For
given specific instances of the above combinatorial prob-
lem and real valued number of samples, an equivalent
convex framework is then developed for the proposed
K-out of-N rule. As a comparison, we derive the closed
form expressions for optimal detection and sensing
thresholds of the traditional homogeneous K-out of-N
rule which equivalently treats each SU regardless of their
sensing and reporting features by enforcing them to have
identical local detector performances.

3) Exploiting the proposed convex framework, prioritized
ordering heuristic (POH) is developed in order to order
channels under spectrum, energy and spectrum-energy
limited regimes. Based on POH, a scheduling and as-
signment heuristic (SAH) is proposed and shown to have

a very close performance to the exhaustive solution. The
behavior of the CRN is then studied under these regimes
with respect to different numbers of SUs, PCs and SNR
distributions.

D. Paper Organization

The rest of this paper is organized as follows: Section-II in-
troduces the system model. After that, section III provides the
details of CSS under heterogeneity and homogeneity modes.
Section IV derives the coupled energy and spectrum efficiency,
and then formulates the problem. Section V develops the POH
and SAH algorithms. Finally, simulation results and analysis
are presented in Section VI and Section VII concludes the
paper with a few remarks.

II. SYSTEM MODEL

We consider a large scale CRN scenario where the sensing
scheduling of PCs and the assignment of SUs to sense sched-
uled PCs are determined by a central cognitive base station
(CBS). The numbers of PCs and SUs are denoted by M and
N , respectively. Similarly, the set of scheduled PCs and the
set of assigned SUs are denoted as M and N , respectively.
The subset of N assigned to sense the same PC is referred
to as a cluster and SUs can join more than one cluster at
a time. We assume that the CBS has the information about
the sensing and reporting qualities of SUs and chooses a
cluster head (CH), which undertakes the role of fusion center,
for each cluster. After the determination of CHs, report and
control signaling between the SUs and CBS are exchanged
over an erroneous common control channel (CCC) via the
CHs. We assume that SUs operate in a time-slotted fashion
and experience flat fading such that PC states do not change
within a time slot duration, which is necessary in practice for
tractability of the performance analysis. Time-slotted operation
of the secondary network is depicted in Fig. 1 where each
timeslot of duration T is split into two stages: 1) channel
search to discover spectrum holes and 2) channel utilization
for secondary data transmission.

Fig. 1: Demonstration of a scheduling timeslot consisting of
switching-sensing-reporting cycles and secondary data transmission.

In the former, channel searching proceeds in switching-
sensing-reporting cycles where an SU n first performs channel
switching to adjust its operating frequency to the assigned
PC m, then executes sensing for a required duration, and
finally reports its local decision to the CH in order to receive



a global decision feedback regarding the PC state. After
collecting and fusing all local hard decisions, the CH reports
its global hard decision about the channel occupancy state to
the CBS. Accordingly, the channel search time of SU n, Tns , is
determined by the summation of sensing cycles of all assigned
PCs. We note that the duration of the channel search stage, thus
the residual time for the channel utilization, is determined by
the slowest SU since the CBS needs to wait for the arrival of all
decisions to make the global decisions and resource allocation
policy which is beyond the scope of this paper. Therefore,
channel search duration is given by

Ts = max
n∈N

(Tns ) (1)

In the latter part of the slot, discovered free channels are
utilized by SUs in the remaining available time, T − Ts,
according to a certain resource sharing strategy. In case an
SU completes all necessary cycles before Ts, it puts itself
into a sleep mode to save energy until it is allowed to utilize
the discovered channels. Furthermore, if an SU has undesir-
able sensing and reporting characteristics which degrades the
overall secondary network performance, optimal scheduling
policy may put it into sleep mode to save energy. Intuitively,
there exists a fundamental tradeoff between channel search
and channel utilization duration such that while sensing more
channels for longer durations results in the discovery of more
bandwidth with higher accuracy, this degrades the throughput
of the secondary network as it reduces the time left for channel
utilization. This fundamental tradeoff is also a way of limiting
the energy cost of SUs since the channel search duration is
jointly minimized to decrease and increase the opportunity and
its cost, respectively. For the remainder of the paper, we define
the following matrices and vectors to formulate the scheduling
problem in a more compact way:
• y ∈ {0, 1}M is a vector of binary variables ym which

indicates that the PC m is scheduled to be sensed or not.
• X ∈ {0, 1}M×N is a binary PU↔SU assignment matrix

with entries xnm ∈ {0, 1} which indicates that SU n is
committed to sense PC m if it is non-zero.

• S ∈ N+M×N is a positive real matrix with entries Snm
which defines the number of samples of SU n on PC m.

• E ∈ RM×N is a real matrix with entries εnm which defines
the detection threshold of the SU n on PC m.

• Γ ∈ R+M×N is a positive real matrix with entries γnm
which represents the SNR of SU n on PC m.

• P ∈ RM×N is the reporting bit error rate matrix with
entries pnm ∈ [0, 1] which represents the reporting error
between SU n and the CH.

• f ∈ R+M is a vector with entries f cm which represents
the carrier frequency of the PC m.

III. COOPERATIVE SPECTRUM SENSING (CSS)

A. Heterogeneous Mode

Since the focus of this paper is the scheduling aspects of
the CSS, a generic sensing method like energy detection is
adequate for this purpose. Energy detectors (EDs) have been
extensively exploited as the ubiquitous sensing technique in
the literature due to its simplicity, compatibility with any signal

type, and low computational and implementation complexity
[15]. To detect primary signals, ED of SU n ∈ N measures
the received signal energy on PC m ∈ M for a number of
samples Snm and compares it with a detection threshold εnm
to make a local decision on binary hypotheses H0

m and H1
m

which represent the absence and presence of PUs, respectively.
For a large Snm and normalized noise variance, the probability
of false alarm, P fm,n = P[H1|H0], and the probability of
detection, P dm,n = P[H1|H1], are respectively given by [16]

P fm,n (Snm, ε
n
m) = Q

[
(εnm − 1)

√
Snm

]
(2)

P dm,n (Snm, ε
n
m, γ

n
m) = Q

[
(εnm − γnm − 1)

√
Snm

2γnm + 1

]
(3)

where γnm 6= γn
′

m′ ,∀m 6= m′,∀n 6= n′ is the SNR of SU n
on the PC m, which is obtained by the combined path loss
and shadowing model [17], and Q (x) = 1√

2π

∫ +∞
x

e−y
2/2dy

denote the right-tail probability of a normalized Gaussian
distribution, respectively.

After the local sensing process, SU n sends its hard re-
sult unm to the CH over a binary symmetric CCC. Defin-
ing the error probability as pnm = P [ũnm = 1|unm = 0] =
P [ũnm = 0|unm = 1] where ũnm is the hard decision received
by the CH, the local false alarm and detection probabilities
received at the CH side are given by

P̃ fm,n
(
P fm,n

)
= pnm

(
1− P fm,n

)
+ (1− pnm)P fm,n (4)

P̃ dm,n
(
P dm,n

)
= pnm

(
1− P dm,n

)
+ (1− pnm)P dm,n (5)

Denoting the cluster set for PC m as Cm with the cardinality
Cm =

∑
n∈N x

n
m, the CH collects ũnm’s and make the global

decision using the following test

Km =
∑
n∈Cm

ũnmx
n
m

H1
m

R
H0
m

κm (6)

which follows the Poisson-Binomial distribution with the fol-
lowing conditional probability density functions [18]

p (κm|H0) =
∑

A∈Fκm

∏
j∈A

P̃ fm (j)
∏
j∈Ac

(
1− P̃ fm (j)

)
(7)

p (κm|H1) =
∑

A∈Fκm

∏
j∈A

P̃ dm (j)
∏
j∈Ac

(
1− P̃ dm (j)

)
(8)

where P̃ fm = {P̃ fm,n|xnm = 1,∀n}, P̃ fm (j) = P̃ fm,j , P̃
d
m =

{P̃ dm,n|xnm = 1,∀n}, P̃ dm (j) = P̃ dm,j , and Fκm is the set
of all subsets of κm integers that can be selected from Cm.
Substituting (4) and (5) in (7) and (8), respectively, the global
false alarm and detection probabilities are given in the form
of the conditional cumulative distribution function as

Qfm(P̃ fm) = 1− P
[
Km ≤ κm − 1|H0

m

]
=

Cm∑
i=κm

p
(
i|H0

m

)
(9)

Qdm(P̃ dm) = 1− P
[
Km ≤ κm − 1|H1

m

]
=

Cm∑
i=κm

p
(
i|H1

m

)
(10)
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Fig. 2: Comparison of heterogeneous (proposed) and homogeneous (traditional) modes.

which can expeditiously be calculated from polynomial coef-
ficients of the probability generating function of Km in order
of O (Cm log2 Cm) [19].

B. Homogeneous Mode

As a special and traditional case, homogeneous mode
imposes the condition that SUs must satisfy P̃ fm,n =

P̃ fm, P̃
d
m,n = P̃ dm, ∀n regardless of their non-identical SNRs

and reporting errors. This yields the well-known K-out of-
N rule with Binomially distributed Km which is not always
energy and throughput efficient. In order to compare pro-
posed heterogeneous CSS scheme with the traditional ho-
mogeneous CSS in existing studies, we consider an exam-
ple heterogeneous cluster consisting of 5 SUs with SNRs
[0,−5,−15,−20,−25] dB. Since we are interested in a com-
parison of sensing cost of the traditional and proposed ap-
proaches, we assume pnm = 10−3,∀m. Using majority voting
rule (κm = 3) and global false alarm (detection) probability
targets of Qfth = 0.01 (Qdth = 0.99), Fig. 2 demonstrates
the results for homogeneous and heterogeneous modes. In
Fig. 2.a-b, while traditional approach enforces SUs to report
with identical local detection and false alarm probabilities
of 0.9 and 0.1, respectively, proposed method enforces SUs
with relatively high SNRs to have near perfect detection and
false alarm probabilities. For the values in Fig. 2.a-b, Fig.
2.c demonstrates the sensing duration in terms of the number
of samples where it clearly reveals the fact that traditional
approach especially requires large Snm for the slowest SU
with the lowest SNR. However, proposed method alleviate the
negative effect of the slowest SU by relaxing its local detector
performance. Accordingly, Fig. 2.d demonstrates superiority
of the proposed method in terms of the total sensing duration
(thus sensing energy) and available room for secondary data
transmission after the sensing period within a time frame.

IV. CSS SCHEDULING OPTIMIZATION

The ultimate design goal of an energy and spectrum efficient
CSS scheduling scheme would be minimizing the energy
expenditure per transmitted bit, i.e, [Joules/bit]. On the one
hand, such a purpose requires minimization of the opportunity
cost via joint optimization of SU assignment along with the de-
termination of sensing durations and detection thresholds with
the consideration of distinctive sensing and reporting qualities
of SUs subject to collision constraint regulations. On the other
hand, it necessitates the maximization of the achievable total

throughput by scheduling optimal set of PCs and maximization
of the available time left for SU transmission, T − Ts.

A. Energy and Spectrum Efficiency
Energy and spectrum efficiency of the CSS scheduling prob-

lem can be coupled into a single objective by minimizing the
energy cost per obtained opportunity which can be formulated
as the number of bits transmitted on discovered free PCs.
The opportunity cost is primarily induced from three factors:
channel switching cost, sensing cost, and reporting cost.

1) Channel Switching Energy: To execute sensing assign-
ments, SUs have to switch its operating frequency to desired
channel’s parameters in the beginning of corresponding cycles.
We assume that the switching time satisfies the triangularity
and linearity properties, i.e., τsw = β × |f cm−1 − f cm| where
β is a switching factor that depends on parameters such as
power consumption and used technology [11]- [12]. Based on
the initial channel state, ordering the assigned PCs and starting
to sense from the closest channel is the optimal policy as it
is the shortest path. To formulate the optimal total switching
time of the SU n, Tnsw, we define the following vectors: the
initial channel state of SU n, x0

n ∈ {0, 1}M with zero entries
except at the intitial frequency, the nth column vector of X ,
xn, fn = xn ◦ f , and f0

n = x0
n ◦ f where (◦) denotes the

Schur product. Based on optimal Tnsw formulated in (12), the
total switching energy expenditure is given by

ESW (X) = PswTsw = Psw
∑
n∈N

Tnsw (xn) (11)

where Psw and Tsw denote the channel switching power and
total channel switching time, respectively.

2) Sensing Energy: Denoting the time spent per sample as
τs, the total energy expenditure for sensing is given by

ES(X,S) = PsTsns = Psτses
T (S ◦X) ẽs (13)

where Ps is the sensing power and Tsns is the total sensing
duration of SUs. In (13), es and ẽs are unit vectors with sizes
M and N , respectively.

3) Reporting/Controlling Energy: Similarly, denoting the
time spent for reporting as τr and assuming it is the same for
all SUs, the total energy expenditure for reporting is given by

ER(X) = PrTr = Prτr es
TXẽs (14)

where Pr is the sensing power and Tr is the total report-
ing/controlling duration of SUs. Hence, the opportunity cost
can be expressed as

E(X,S) = ESW (X) + ES(X,S) + ER(X) (15)



Tnsw (xn) = β ×
[
max (fn)−min (fn) + min

{∣∣max (fn)−max
(
f0
n

)∣∣ , ∣∣min (fn)−max
(
f0
n

)∣∣}] (12)

Denoting the apriori probability of idle and busy states of the
PC m as π0

m = P
[
H0
m

]
and π1

m = P
[
H1
m

]
, respectively,

the maximum achievable data rate for a normalized noise and
transmission power is given by

R(y,X,S) =
T − Ts
T

∑
m∈M

ymπ
0
m

(
1−Qfm

)
Wm (16)

where Ts = max
n

(
Tnsw(xn) + τses

T (xn ◦ sn) + τres
Txn

)
and Wm is bandwidth of the mth PC.

We explore different scenarios and objectives to develop
effective solutions with regard to various network conditions.
For instance, SUs may not have enough energy resources
and prefer to minimize E to save remaining battery life for
future bursty traffic conditions, which will be referred to as
energy limited regime (ELR). Alternatively, SUs may require
the maximization of R in heavy traffic conditions, which will
be referred to as spectrum limited regime (SLR). For energy
and spectrum limited regimes (ESLR), on the other hand, the
objective could be obtained by coupling E and R to minimize
the unit energy spent per transmitted bit as follows

η (y,X,S) =
E (X,S)

R (y,X,S)
[Joules/bit/s] (17)

In the sequel, we consider η as our objective function since
ELR and SLR can be considered as a special case of ESLR
by treating R and E as constants in η, respectively.

B. Problem Formulation

We formulate the optimal CSS scheduling problem which
will be exploited as a benchmark for the performance of the
proposed heuristic methods as follows

P1: CSSS min
y,X,S,E

η (y,X,S)

1: s.t. Qdth ≤ Qdm
(
P̃ dm

)
, ∀m ∈ {m| ym = 1}

2: Qfm

(
P̃ fm

)
≤ Qfth, ∀m ∈ {m| ym = 1}

3: xnm ≤ ym, ∀m;∀n

4: δym ≤
∑
n

xnm, ∀m

5: 0 ≤
∑
m

xnm ≤M, ∀m

6: 30 ≤ Snm ≤ S̄, ∀m;∀n
7: 0 ≤ T − Ts
8: xnm, ym ∈ {0, 1} , Snm ∈ N+, εnm ∈ R, ∀m;∀n

which is an MINLP problem whose mixed-integer nature is
due to the variables y,X and S. Lines 1 and 2 of the CSSS are
the collision and spectrum utilization constraints, respectively.
Line 3 simply states that if the PC m is not scheduled to be
sensed then any SU cannot be assigned to sense the PC m.
SUs are allowed not to sense or to sense more than one PCs
in line 5 which enables SUs with low sensing and reporting

attributes to save energy in sleep mode and encourages SUs
with desirable attributes to discover more free PCs. Line 4, on
the other hand, requires the cooperation of at least δ SUs if the
PC m is scheduled to be sensed. If an SU is assigned to sense
any channel, line 6 sets the lower bound of 30 on the required
number of samples to invoke the central limit theorem to
ensure the assumptions hold for (2) and (3) and sets the upper
bound S̄ = T/τs which is the maximum number of samples
possible within a timeslot duration, T . Line 7 simply limits the
searching stage duration Ts to the timeslot duration T . Finally,
line 8 defines the domain of the optimization variables.

Assumption 1: As a practical approach, we assume S ∈
RM×N to relax problem by unintegerizing the number of
samples, Snm. Therefore, closest upper integer value can be
obtained from the optimal real valued solution, which does
not violate the problem constraints and has a negligible impact
on the system performance since Snm >> 1 and τs << 1 in
general.

However, CSSS is still an MINLP problem due to y
and X and it requires impractical time complexity even for
moderate sizes of the problem. Thus, developing fast and high-
performance heuristics are necessary to achieve satisfactory
sub-optimal results for practical purposes. In order to develop
a heuristic solution, we will focus on CSSS for a given pair
of y and X , CSSS(ȳ, X̄) which is non-convex due to non-
definite Hermitian matrix. In other words, CSSS(ȳ, X̄) is a
single instance of all possible combinations for real valued S.

P2: CSSS(ȳ, X̄) min
S,E

η(ȳ, X̄,S)

1: s.t. Qdth ≤ Qdm
(
P̃ dm

)
, ∀m ∈ {m| ym = 1}

2: Qfm

(
P̃ fm

)
≤ Qfth, ∀m ∈ {m| ym = 1}

3: 30 ≤ Snm ≤ S̄, ∀m;∀n
4: 0 ≤ T − Ts
5: Snm ∈ R+, εnm ∈ R, ∀m;∀n

In the sequel, we convert the CSSS(ȳ, X̄) into an equivalent
convex problem based on the following remark and lemmas
since it will be exploited to develop heuristic solutions in the
next section.

Remark 1: For a composite function, a = b ◦ c, convex
composition rules are given as [20]

1) a is convex if b is convex and non-increasing, and c is
concave.

2) a is concave if b is concave and non-increasing, and c
is convex.

Lemma 1 (Decoupled Convexity): Denoting the inside expres-
sions of (2) and (3) as g and h, respectively, and assuming
P fm,n ≤ 0.5, P dm,n ≥ 0.5, ∀m,n, Q (g) ≤ 0.5 (Q (h) ≥ 0.5)
is a decreasing convex (concave) function. Moreover,

1) For a feasible Snm, S̄nm, g and h are both increasing



and linear functions of εnm. Thus, P fm,n
(
P dm,n

)
is a

decreasing convex (concave) function of εnm.
2) For a feasible εnm, ε̄nm, g (h) is an increasing (de-

creasing) concave (convex) function of Snm. Thus, P fm,n(
P dm,n

)
is a decreasing (increasing) convex (concave)

function of Snm.

Proof: Please see Appendix A.

Lemma 2: Monotonicity and parameterized convexity (con-
cavity) of P fm,n (P dm,n) also holds for the reported false alarm
and detection probabilities P̃ fm,n (P̃ dm,n). Proof: Please see
Appendix A.

Lemma 3: η
(
ȳ, X̄,S

)
is a monotonically increasing function

of the number of samples, Snm, ∀m,n. Proof: Please see
Appendix A.

Exploiting the convex composition rules in Remark 1,
Lemmas 1 and 2 are first introduced to show the monotonicity
and decoupled convexity of the reported local false alarm
and detection probabilities. Please note that the conditions of
P fm,n ≤ 0.5 and P dm,n ≥ 0.5 do not conflict with the practical
range of interest as discussed in Section VI-A. Consequently,
exploiting the decoupled convexity of the problem, Theorem
1, and the log-concavity of the Poisson-Binomial distribu-
tion (also the Binomial distribution as a special case) [9] ,
CSSS(ȳ, X̄) can equivalently be written as a convex problem
as follows

P3: min
Sm,Em

η
(
ȳ, X̄,S

)
1: s.t. log

(
Qdth

)
≤ log

(
Qdm

(
P̃ dm

))
2: log

(
Qfm

(
P̃ fm

))
≤ log

(
Qfth

)
3: 1 ≤ εnm ≤ γnm + 1, ∀n
4: 30 ≤ Snm ≤ S̄, ∀n
5: 0 ≤ T − Ts
6: Snm ∈ R+, εnm ∈ R, ∀n

where Sm and Em are the mth row vectors of S and E ,
respectively. Taking the logarithm of global detection and
false alarm probabilities is to ensure the convexity of the
objective, Line 1, and Line 2 using the log-concavity of the
Poisson-Binomial distribution. Line 3 satisfies the requirement
P fm,n ≤ 0.5, P dm,n ≥ 0.5, ∀m,n. P3 can be solved using
primal decomposition methods, that is, P3 is separated into two
levels of optimization. At the lower level, we have a convex
problem of ε by fixing S. At the higher level, on the other
hand, we have a master convex problem of S by fixing ε.
Since η

(
ȳ, X̄,S

)
is a differentiable objective function, then

the master problem can be solved with a gradient method [21].
Based on Theorem 1, optimal values of sensing duration

and detection thresholds under the homogeneous mode can be
calculated using the closed form expressions as in Theorem 2.

Theorem 1: For a feasible detection threshold ε̄nm, the optimal
η
(
ȳ, X̄,S

)
that satisfies the constraint Qdm ≥ Qdth is attained

at Snm which satisfies Qdm = Qdth. For a given S̄nm, on the other
hand, the optimal η

(
ȳ, X̄,S

)
that satisfies the constraint

Qfm ≤ Q
f
th is attained at εn which satisfies Qfm = Qfth. Proof:

Please see Appendix B.

Theorem 2: Contingent upon Theorem 1, required local false
alarm and detection probabilities for a given SU assignment
matrix X̄ is expressed as

P f
?

m,n =
P̃ f

?

m − pnm
1− 2pnm

(18)

P d
?

m,n =
P̃ d

?

m − pnm
1− 2pnm

(19)

where P̃ f
?

m = {P̃ fm | Qfm = Qfth, C} and P̃ d
?

m =
{P̃ dm | Qdm = Qdth, C} are target false alarm and detection
probabilities of each SU for a given cluster size, C. Accord-
ingly, optimal Snm and εnm under the homogeneous mode are
given by

S?m,n =

[
Q−1

(
P d

?

m,n

)√
2γnm + 1−Q−1

(
P f

?

m,n

)
γnm

]2
(20)

ε?m,n = 1 +
Q−1

(
P f

?

m,n

)√
S?m,n

(21)

Proof: Please see Appendix B.

V. ENERGY & SPECTRUM EFFICIENT HEURISTICS

A. Prioritized Ordering Heuristic (POH)

We first begin with a channel ordering heuristic which
prioritizes channels according to the regime type as shown
in Algorithm 1. POH provides us with an optimistic channel
prioritization such that how solely scheduling a single PC
can perform if we greedily assign the best δ SUs to it. For
every PC, Algorithm 1 first orders SUs with respect to their
SNR values on PC m and record this sorting in the list γ̄m.
Thereafter, it forms ȳ with zero entries except at the mth

position and X̄ with zero entries except the first δ SUs of γ̄m.
We denote the performance metrics of PC m as 〈ηm, Em, Rm〉
where ηm = Em/Rm, Em, and Rm respectively represent the
induced energy efficiency, total energy consumption and the
total achievable data rate from scheduling the PC m to be
sensed. 〈ηm, Em, Rm〉 is then calculated under the hetero-
geneity or homogeneity mode using P3 and (20), respectively.
Finally, PCs are sorted with respect to Rm, Em and ηm under
the SLR, ELR and ESLR, respectively.

Algorithm 1 POH
Input: P , Γ, δ
Output: Prioritized channel vectors and descending sorted Γ
1: for m = 1 to M do
2: γ̄m ← Sort SUs in descending order wrt γnm
3: ȳ ← Schedule only channel m to be sensed
4: X̄ ← Assign the best δ SUs to channel m from γ̄m.
5: S ← Compute 〈ηi, Ei, Ri〉 by P3 (Theorem 2) in heterogeneous

(homogeneous) mode.
6: end for
7: Γ̄ ← Form ordered Γ from γ̄m, ∀m.
8: cR ← Sort channels in descending order wrt Rm.
9: cE ← Sort channels in ascending order wrt Em.

10: cη ← Sort channels in ascending order wrt ηm.
11: return cη , cE , cR, Γ̄.



One of the key features of the proposed heuristic is the
assignment of exactly δ SUs which is the minimum require-
ment for the cluster size. The underlying reason is that the
total number of samples to meet the global detection and
false alarm probabilities increases as the cluster size increases
even if the required individual number of samples decreases
because of the increase (decrease) in P̃ f

?

m (P̃ d
?

m ) by adding
one more SU. Although it is not trivial to show this behavior
analytically due to the lack of closed form Q-function ex-
pression, variations in total number of samples, P̃ f

?

m , and P̃ d
?

m

are numerically evaluated in Section VI. Likewise, reporting
and switching energy consumption also increase with the
cluster size since the number of reports and possible channel
switching may occur with additional SUs. While the outer
loop takes O [M ] steps, sorting operations in Line 2 and
Lines 12-14 are O [N logN ] and O [M logM ], respectively.
Denoting the number of iterations for P3 by I , the computa-
tion of performance metrics between lines 5-9 takes O [Mδ]
(O [MI]) steps in the homogeneous (heterogeneous) mode.
Therefore, the overall complexity of POH in homogeneous
(heterogeneous) mode is O [M(N logN + δ) +M logM ]
(O [M(N logN + I) +M logM ]), and since we assume
that N ≥ M , the complexity is O [M(N logN + δ)]
(O [M(N logN + I)]).

B. Scheduling and Assignment Heuristic (SAH)
Exploiting the POH outputs and following the initialization

process, SAH schedules the first i channels from cR / cη /
cE under the SLR / ELR / ESLR, and greedily assigns the
best δ SUs from Γ̄. Afterwards, based on the heterogeneity or
homogeneity mode preference, 〈ηm, Em, Rm〉 is calculated
using P3 and (20), respectively. Based on the difference in
the objective function between successive iterations, ∆, the
algorithm determines if there is a decrease (increase) in η
and E (R) by scheduling ith PC from the prioritized channel
vector and updates the best solution space. The termination
condition of the while loop is satisfied if either there is no
performance enhancement by the addition of the ith PC, or
there is no PC left to schedule. In the SLR, SAH will run
at most M iterations since it seeks the largest possible data
rate without being concerned about the opportunity cost. Since
scheduling more channels will increase the opportunity cost,
the best case is not scheduling any PC so that the optimal total
energy consumption is zero under the ELR. However, SAH
mitigates this best but impractical case by scheduling only the
most energy efficient PC. Thus, while the time complexity
under the ELR is constant, that under other regimes is O[Mδ]
(O[MI]) in homogeneous (heterogeneous) modes.

VI. RESULTS AND ANALYSIS

All simulation results were obtained and plotted using
Matlab. Throughout the simulation, the values in Table I are
employed, unless it is explicitly stated otherwise. These values
are adopted from the references shown in the table.

A. Relationship among Cluster Size, Energy, P ?f , and P ?d
In Fig. 3, total number of samples of SUs versus the

cluster size ranging from 1 to 100 is depicted along with the

Algorithm 2 SAH
Input: P , Γ̄, δ, cη/cE/cR
Output: The best solution with the corresponding ȳ and X̄ .
1: ∆ ← 0
2: i ← 1
3: η0 ← ∞ / E0 ← ∞ / R0 ← −∞
4: S? ← 〈η0, E0, R0〉
5: while ∆ ≤ 0 && i ≤M do
6: ȳ ← Schedule the best i channels in cη
7: X̄ ← Assign the best δ SUs to channels from Γ̄.
8: S ← Compute 〈ηi, Ei, Ri〉 by P3 (Theorem 2) in heterogeneous

(homogeneous) mode.

9: ∆ ←


ηi − ηi−1, under ESLR
Ei − Ei−1, under ELR
Ri−1 −Ri, , under SLR

10: if ∆ ≤ 0 then
11: S? ← 〈ηi, Ei, Ri〉
12: end if
13: i ← i+ 1
14: end while
15: return S?, ȳ, X̄

Par. Value Par. Value Par. Value

Ps 1 W [7], [13], [22] τs 1 µs Qfth 0.01

Px 1 W [7] , [13], [11], [22] τr 1 ms [7], [13] Qdth 0.99

Psw 1 W [7] , [13], [11] β 0.1 ms/MHz [7] , [13], [11] T 2 s

θnm 2, σϕnm 5 d0 10 m

Table I: Default parameters used for obtaining results

corresponding P̃ ?f and P̃ ?d values which ensure Qfth and Qdth,
respectively. Curves with diamond, square and circle shaped
markers show homogeneous clusters which consist of SUs
with identical SNRs of −5, −10 and −15 dB, respectively.
The curve with the star shaped markers, on the other hand,
considers a heterogeneous cluster which consists of non-
identical SUs such that the cluster size C on the x-axes
composed of the best C SUs among 100 SUs with SNRs range
from−20 and 0 dB. In both cases, the total number of samples,
hence the total sensing energy, increases with the cluster size.
This increase is much more significant in the heterogeneous
case that asymptotically approaches its mean value (−10 dB)
and −10 dB homogeneous case with diamond shapes. Since
the total sensing energy cost increases with the cluster size
under both modes, the optimal energy cost is obtained by
assigning exactly δ SUs for each scheduled PC. As can be
seen from below subplot, enforcing SUs to have P fm,n ≤ 0.5
and P dm,n ≥ 0.5 does not contradict with practicality since
P ?f and P ?d are still far away from those limits even for an
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impractically large cluster sizes.

B. Comparison Between Optimal and Heuristic Solutions

Fig. 4 shows the comparison between the optimal exhaustive
benchmark and heuristic solutions for an average of 30 CRN
scenarios each of which comprises of 4 PCs and 8 SUs with
SNRs which follows the following combined path loss and
shadowing model [17]

P rm,n = P tmKm

[
d0
dnm

]θm
ϕnm (22)

where Ptm and Prm,n represent the transmitted signal power by
PU m and the received signal power by SU n on the PC m,
respectively; Km is a unitless constant that depends on the
primary signal wavelength and the reference distance d0; θm
is the path-loss exponent that represents the rate at which the
path loss increases with the distance between the SU n and the
PU m, dnm; and ϕnm is the log normal shadowing component
which follows normal distribution in dB scale, N

(
0, σ2

ϕnm

)
,

respectively.
The solid blue and red curves draw the optimal homo-

geneous (Binomial) and heterogeneous (Poisson-Binomial)
modes, respectively. Similarly, the dashed curves with di-
amond and square shapes show the heuristic performance,
which minimizes η using SAH with the given prioritized
channel order cη returned from POH, for homogeneous and
heterogeneous modes, respectively. While the subplot (a) de-
picts the objective itself, subplot (b) and (c) demonstrate the
corresponding opportunity cost (E) and the remaining time
(T − Ts) for the secondary data transmission, respectively. It
is clear from the figure that the proposed heuristic approach
performance is very close to that of the benchmark in both
modes. Taking heterogeneity into account gives a superior
performance over using homogeneity assumption for δ ≥ 3.
This is because the homogeneous assumption requires SUs
with relatively low SNRs to obtain exact local detection
performance of SUs with relatively high SNRs. In other words,
if cluster members have a broad range of SNRs, heterogeneous
mode shows superior performance than the homogeneous
mode. On the contrary, if SUs have identical SNRs (i.e.
cluster is homogeneous in reality and range of SNRs is zero)
considering heterogeneity will not make any difference.

Furthermore, the reasoning behind the assignment of exactly
δ SU is now more obvious due to the increasing trend of
η with regard to δ. This is because of increasing sensing
energy (as shown in Fig. 3), reporting+switching energy since
since involving more SUs in sensing requires more reports
and possibly more channel switches. Another significance of
considering heterogeneity is revealed in subplot (c) where
available time left for the secondary transmission is dramat-
ically reduced in the homogeneous case as the slowest SU
is enforced to have identical performance with others, which
directly reduces the achievable throughput. Subplots (d), (e)
and (f) detail the cost factors of the opportunity cost. As can
be seen, reporting and switching energy consumption is very
close to the sensing energy for the heterogeneous mode for all
δ values. However, sensing energy becomes more significant

in the homogeneous mode for higher δ values since we enforce
low SNR SUs to sense with identical detection performance.
Moreover, reporting and switching energy consumption in-
crease with δ because the number of channel switches and
reports increase with the number of assigned SUs.

Likewise, Fig. 5 shows the comparison between the optimal
exhaustive benchmark and heuristic solutions for an average
of 30 CRN scenarios each of which consists of 8 PCs and
4 SUs with SNRs randomly selected between 0 and −10 dB.
Even though we will not go over the underlying reasons of the
curves, we will point out the following: The proposed heuristic
still gives very close performance to the optimal approach
and follows the same trend. Since the average SNR values is
−5dB and the SNR range is tight, the difference between the
heterogeneous and homogeneous modes is not as significant
as in Fig. 4. However, we note that opportunity cost factors
shows very close values due to the relatively high SNR values
in comparison to these in Fig. 4.

C. Numerical Results for SAH

Fig. 6 demonstrates the behavior of η, E and R under
different regimes with respect to different numbers of SUs
and PUs, and SNR distributions in subplots (a), (b) and
(c), respectively. While the solid green, blue and red lines
correspond to the homogeneous mode under the ESLR, ELR,
and ESR, respectively, the dashed lines with the corresponding
colors are used for heterogeneous mode. We first note that
the best η performance is always obtained under the ESLR
regime using cη . Similarly, the best E and R performance is
always observed under the ELR and ESR regimes using cE
and cR, respectively. On the other hand, the worst case of
E (R) occurs under the SLR (ELR) since it does not care
about energy (spectrum) during the channel ordering and SU
assignment phases. However, η gives a middling E and R
performance all the time since it couples both of them.

Fig. 6-(a) shows the changes with respect to the number of
SUs ranging from 8 to 160 for M = 20 and random SNRs
between −30 dB and 0 dB. As the number of SUs increases,
R under the SLR increases in every δ = 8 steps since having
a new set of δ SUs allows SAH to schedule one more PC.
E under the SLR first decreases until N = 20 and then it
starts to increase. This is primarily because small increments
in the number of SUs have more significant SU diversity if
the number of channels is relatively high in comparison to
number of channels. However, heterogeneity modes have a
slight impact for N ≥ 20 because network has more SU
diversity and SNR range of the best δ SUs is tight due to
the ordering. The increase of E under the SLR after N = 20
is directly related to the greedy demand for scheduling more
channels. Therefore, η under the SLR is a result of the
behavior of E and R and it gives the worst performance among
the three schemes. E under the ELR is the best case and has
a decreasing nature with respect to N , which is because of
increasing SU assignment diversity and high chance of finding
high SNR SUs to sense the most energy efficient channel. On
the contrary, R under the ELR follows a mean value of 0.5
Mbps since it only schedules the most energy efficient channel
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Fig. 4: Comparison between the optimal and heuristic solutions for an average of 30 CRN scenarios with 4 PCs and 8 SUs with SNRs
randomly selected between 0 and −30 dB for different values of δ: (a) η, (b) E, (c) T − Ts, (d) ES , (e) EX , and (f) ESW .
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Fig. 6: SAH results over 100 CRN scenarios with M = 20, N = 100, SNRs range from −30 to 0 dB and δ = 8. Behaviors of η, E and
R under different regimes with respect to (a) number of SUs, (b) number of PUs and (c) mean SNRs.

and PCs have an average apriori probability of 0.5, which is
the worst case among others. As stated earlier, E and R under
the ESLR regime provide a middling performance since it is
not greedy either for E or R. As expected, it gives the best η
performance since ordering and SU assignment is made based
on η.

Fig. 6-(b) shows the performance for the number of PCs
ranging from 1 to 40 for N = 100 and random SNRs between
−30 dB and 0 dB. Under the SLR, R monotonically increases
with the number of PCs which is because of the increasing
chance of finding PCs with higher apriori probabilities. Ac-

cordingly, E under the SLR increases with the R since more
SUs are involved to sense more PCs, so does η. However, R,
E, thus η remain almost constant under the ELR since the
number of SUs is fixed and ELR only selects the most energy
efficient channel which yields an average of 0.5 Mbps data
rate. Although E and R slightly increases with the number
of PCs under the ESLR, η slightly decreases since R has a
higher increasing peace than the E.

For M = 20 for N = 100, Fig. 6-(c) shows the changes
with respect to SNR scenarios where SNR distribution follows
a normal distribution with variance 10 dB and mean values on



x-axes. Although R does not experience a significant change
until 28−30 dB, E significantly increases with mean SNR of
SUs. Despite of the decrease in the mean SNR and thus the
increase in total number of samples, SAH is able to find some
PCs with low opportunity cost. After 28 − 30 dB, however,
most of the PCs become infeasible to schedule due to the poor
sensing quality of the entire SUs. Accordingly, SAH tends to
schedule very few number of PCs due to SUs’ infeasibly high
sensing cost, that is why R and E start to decrease. Behavior
of η is simply a natural outcome of the underlying reasons we
gave for E and R.

VII. CONCLUSIONS

In this paper, we considered a multi-channel CSS scheduling
framework to minimize the induced sensing, reporting and
channel switching energy per obtained opportunity subject
to the global detection and spectrum utilization constraints.
Different from previous works, we factor the reporting error
in and provide a general scheme which can be applied to any
voting rule. After formulating an optimal MINLP problem,
we develop an equivalent convex framework for specific
instances of combinatorial solution space. In this way, we
were able to develop very efficient, yet fast heuristics for
different regimes regarding the energy limitations and data
rate demands the performance of which is compared to the
exhaustive benchmark solution. We have also illustrated the
impact of heterogeneity and homogeneity assumption under
different network scenarios. Results show that the taking the
heterogeneity into account yield a low total sensing cost
and high time left for SU transmission since the proposed
heterogeneous mode also decreases the sensing duration of
the slowest SU.

APPENDIX A
DECOUPLED CONVEXITY ANALYSIS OF CSSS

(
ȳ, X̄

)
Proof of Lemma 1: Throughout the appendices, we omit

cluster and SU indices, m and n, for the sake of nota-
tional convenience without loss of generality. Q(·) is a non-
increasing convex (concave) function in the case of Q(·) ≤ 0.5
(Q(·) ≥ 0.5), respectively. This can be easily satisfied by
constraining the detection threshold as

1 ≤ ε ≤ γ + 1 (23)

which follows from the fact that S is non-negative. To meet
the composition requirements of P f = Q(g) (P d = Q(h))
as in Remark 1, g (h) is still required to be jointly concave
(convex) in (S, ε). Unfortunately, this is not the case since the
Hessian matrix of g in (24) and that of h in (25) are neither
positive nor negative semi-definite as follows

52g(S, ε) =

[
(1−ε)
4S3/2

1
2
√
S

1
2
√
S

0

]
(24)

52h(S, ε, γ) =

 (γ+1−ε)
4S3/2

√
2γ+1

1

2
√
S(2γ+1)

1

2
√
S(2γ+1)

0

 (25)

Therefore, local probabilities P f (g) and P d(h) are neither
convex nor a concave function of (S, ε). As a consequence, this
result directly affects the convexity (concavity) of Qfm (Qdm),
and CSSS(ȳ,X̄). For a fixed (parameterized) feasible number
of samples S̄, however, g and h are both linear functions of ε
due to the zero terms in (24)-(25) and decreasing functions due
to (23). Based on Remark 1, P f (g) (P d(h)) is a decreasing
convex (concave) function of ε for a given S̄. On the other
hand, g (h) is an increasing concave (decreasing convex)
function of S for a parameterized feasible detection threshold
ε̄ since (1−ε)

4S3/2 ≤ 0
(

(γ+1−ε)
4S3/2

√
2γ+1

≥ 0
)

if (23) is satisfied.
According to Remark 1, P f (g) (P d(h)) is an decreasing
convex (increasing concave) function of S for a given ε̄

Proof of Lemma 2: The parameterized convexity in
Lemma 2 can be further applied to the received local prob-
abilities P̃ f and P̃ d since (4) and (5) are nothing but the
non-negative weighted summation of P f (P d).

Proof of Lemma 3: We first note that E
(
X̄,S

)
, is a

linear function of number of samples since Tsns is the summa-
tion of number of samples while Tsw and Tr are both constant
with respect to S. As a consequence, E

(
X̄,S

)
increases as

the S increases. R
(
ȳ, X̄,S

)
is a concave decreasing function

of S as per the piece-wise maximization of convex functions
is convex [20], T is a constant, and Ts is negated in T−Ts

T .
1 For an increase in S, R

(
ȳ, X̄,S

)
either decreases, if the

SU n is the slowest SU which determines the Ts, or stay
unchanged. Therefore, η

(
ȳ, X̄,S

)
monotonically increases as

S increases.

APPENDIX B
PROOF OF THEOREM 1 AND THEOREM 2

Proof of Theorem 1: As stated in Lemma 2, P̃ f (P̃ d)
is a decreasing (increasing) convex (concave) function of S
for a given ε̄. Thus, for a feasible detection threshold ε̄ and
increasing S, while P f and Qf decrease, P d, Qd, and η
increase. Since increasing the S causes increase in η

(
ȳ, X̄,S

)
according to Lemma 3, optimal η

(
ȳ, X̄,S

)
attained once Snm

satisfies Qd ≥ Qdth, i.e., Qd = Qdth. Similarly, P̃ f (P̃ d) is a
decreasing convex (concave) function of ε for a given S̄. For a
given S̄ and decreasing ε, on the other hand, P d, Qd, P f , and
Qf increase, which is upper-bounded by Qf ≤ Qfth. Thus, the
optimal value of εnm is attained at Qf = Qfth.

Proof of Theorem 2: Under the homogeneous mode,
SUs are enforced to provide identical local false alarm and
detection probability reports, i.e. P̃ fm,n = P̃ fm and P̃ dm,n =

P̃ dm, ∀n ∈ Cm. In such a case, there is no need to solve P3 nu-
merically since distinguishing sensing durations and detection
thresholds of each SU is unnecessary. Therefore, Qfm (Qdm)
directly becomes a function of P̃ fm (P̃ dm) whose optimal value,
P̃ f

?

m = {P̃ fm | Qfm = Qfth}
(
P̃ d

?

m = {P̃ dm | Qdm = Qdth}
)

could simply be computed using the bisection method. As
shown in Fig. 3, there is also a close relationship between
the cluster size and P̃ f

?

m (P̃ d
?

m ) such that as the cluster size

1We assume that the Qf
m is constant since it is Qf

th at the optimal point
as explained in Theorem 1.



increases P̃ f
?

m (P̃ d
?

m ) increases (decreases). Rewriting (4) and
(5) as

P̃ f
?

m = pnm

(
1− P f

?

m,n

)
+ (1− pnm)P f

?

m,n (26)

P̃ d
?

m = pnm

(
1− P d

?

m,n

)
+ (1− pnm)P d

?

m,n, (27)

assuming pnm < 0.5, ∀m,n, and solving (26) and (27) for
P f

?

m,n and P d
?

m,n, required local false alarm and detection
probabilities can be found as in (18) and (19), respectively.
Indeed, pnm ' 0.5 has already shown to be the imperfect
reporting error wall beyond which the reliable CSS is not
possible no matter how much energy is spent on sensing [9].
Finally, substituting (18) and (19) into the right hand side of
(2) and (3), and then solving (2) and (3) for Snm and εnm,
the optimal number of samples and detection thresholds are
derived as in (20) and (21), respectively.
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