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Abstract—In this study, we address energy efficient (EE)
cooperative spectrum sensing (CSS) policies for large scale het-
erogeneous cognitive radio networks (CRNs) which consist of
multiple primary channels (PCs) and large number of secondary
users (SUs) with heterogeneous sensing and reporting chan-
nel qualities. We approach this issue from macro and micro
perspectives; Macro perspective groups SUs into clusters with
the objectives: 1) Total energy consumption minimization, 2)
Total throughput maximization, and 3) Inter-cluster energy and
throughput fairness. We adopt and demonstrate how to solve
these using the Non-dominated Sorting Genetic Algorithm-II
(NSGA-II). The micro perspective, on the other hand, operates
as a sub-procedure on cluster formations decided by the macro
perspective. For the micro perspectives, we first propose a
procedure to select the cluster head (CH) which yields: 1) The
best CH which gives the minimum total multi-hop error rate,
and 2) the optimal routing paths from SUs to the CH. Exploiting
Poisson-Binomial distribution, a novel and generalized K-out-of-
N voting rule is developed for heterogeneous CRNs to allow
SUs to have different local detection performances. Then, a
convex optimization framework is established to minimize the
intra-cluster energy cost by jointly obtaining the optimal sensing
durations and thresholds of feature detectors for the proposed
voting rule. Likewise, instead of a common fixed sample size
test, we developed a weighted sample size test for quantized soft
decision fusion to obtain a more EE regime under heterogeneity.
We have shown that the combination of proposed CH selection
and cooperation schemes gives a superior performance in terms
of energy efficiency and robustness against reporting error wall.

I. INTRODUCTION

A. Background and Motivation

The motivation behind the cognitive radio (CR) technology
is rooted in the deficiency of the current rigid spectrum alloca-
tion policy to meet the high quality of service (QoS) demands
of today’s wireless communication networks. With traditional
spectrum allocation policies, radio spectrum is allocated for
long-running time periods and exploited merely by licensees,
such that spectrum is usually underutilized [1]. CRs have
been introduced to detect and utilize unused spectrum bands
in an opportunistic and non-intrusive manner, such that, pri-
mary (licensed) users (PUs) are protected against performance
degradation caused by CRs which are also referred to as
secondary users (SUs).

Since a substantial proportion of mobile and wireless net-
work devices have limited energy resources, energy efficiency
of CRNs led itself into being an inevitable design con-
sideration. Moreover, considering the fact that 30% of the
energy expenditure of mobile devices is caused by wireless
networking and computing hardware [2], energy efficient (EE)
cognitive radio networks (CRNs) play a vital role to provide
portable devices with more spectrum for less energy con-
sumption. Since approximately 2% of the worldwide CO2

emissions is caused by the communications and information

technologies [3], optimizing energy consumption leads to not
only a more affordable network with reduced cost, but also an
environmentally friendly network. Therefore, EE policies are
now at the forefront of CRN research due to environmental
and operational energy costs.

Nevertheless, detection performance of individual SUs is
severely affected by channel impairments, therefore, coop-
erative spectrum sensing (CSS) has been exploited to take
advantage of the spatial diversity of SUs to detect the primary
channel (PC) activity with higher confidence [4]. In a cluster
based CSS, members of an SU cluster report local results via
an erroneous common control channel (CCC) to a cluster head
(CH) which fuses local reports to obtain a global decision and
feeds it back to the cluster members. In this regard, EE-CSS is
a favored sensing method due to its performance in trading off
the domains of QoS, PU interference and network complexity
[5]. However, considering certain objectives and constraints,
formation of clusters and achievement of EE-CSS is a non
trivial task in a large scale heterogeneous network which is
defined as follows: A large scale heterogeneous CRN consists
of large number of PCs and SUs with heterogeneous signal-to-
noise-ratios (SNRs), i.e., sensing qualities, on different primary
channels (PCs). SUs also experience heterogeneous CCC
errors, i.e., reporting qualities, among themselves.

B. Related Work
Some of the recent research effort addressing the EE-CSS

can be exemplified as follows: By use of amplify-and-forward
relaying, Huang et al. consider an EE-CSS scheme with the
goal of minimizing the total energy consumption subject to
detection performance constraints [6]. In [7], Deng et al.
divide the sensing nodes into a number of nondisjoint feasible
subsets which satisfy the detection requirements. Then, they
extend the network lifetime by successively activating each
subset while keeping others in a sleep mode. Reference [8]
considers a single SU and multiple primary channels (PCs) and
optimizes the average energy cost of spectrum sensing, channel
switching, and data transmission subject to some sensing
reliability, delay and throughput constraints. In [9], the authors
provide a theorem along with the closed-form expression for
determining the optimal number of CRs to obtain an EE-CSS.
Authors of [10] propose a convex optimization framework to
minimize the energy consumption by deriving a closed form
expression for SU priority and detection thresholds. From a
different perspective, [11] achieves EE-CSS by reducing the
total number of reports exchanged between the SUs and the
CH, which is an efficient approach where the reporting energy
is dominant.

Since data fusion requires extensive amount of bandwidth
for the CCC, quantized SDF is considered to be a practical
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yet an efficient method in [12] and [13]. Employing auto-
correlation based feature detector, authors in [12] study the
effect of CCC errors and clearly show the existence of an
error wall at which successful detection is not possible. On
the other hand, [13] uses an energy detector with a Lloyd-Max
(LM) quantizer and shows that it gives a better performance
than the Maximum-Output entropy quantizer in [12]. However,
studies in [13] and [12] do not consider the heterogeneity,
energy efficiency, clustering, multihop reporting, and the CH
selection.

The study in [14] is first to address the energy efficiency
in cluster based CSS. They first propose a voting scheme
based on SUs’ own confidence then develop a cluster-collect-
forward scheme to save energy spent on vote-collection and
information exchange. In [15], to reduce reporting time and
bandwidth requirement, a dynamic CH selection scheme is
proposed based on the sensing qualities of SUs. Kozal et al.
propose a multi-hop reporting scheme to reduce the reporting
power consumption. [16].

C. Main Contributions and Novelty
We consider clusters as groups of SUs dedicated to sense

a single PC, therefore, there is one to one correspondence
between a PC and the cluster of SUs sensing this PC. We then
approach the fair energy and throughput optimization of cluster
formations from macro and micro perspectives. In this respect,
the macro perspective primarily tackles the SU and cluster
association issue with the following goals: 1) Minimization
of total energy consumption of clusters, 2) Maximization
of total throughput of clusters, and 3) Inter-cluster energy
cost and throughput fairness. Accordingly, we formulate a
multi-objective clustering optimization (MOCO) as a mixed-
integer non-linear programming (MINLP) problem. Then, we
adopt and demonstrate how to use the Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) to heuristically solve the
MOCO.

On the other hand, the micro perspective is a sub-routine
of the macro perspective to evaluate the performance of a
candidate solution which is simply a single instance of all
possible cluster formations. That is, given a cluster formation,
the following tasks are performed at the micro level: 1)
Selection of CHs along with the optimal reporting paths with
minimum reporting error between cluster members and CHs,
2) Determination of optimal sensing parameters (ie. sensing
durations and detection thresholds) of each SU to minimize
the energy consumption of each cluster subject to PU protec-
tion and spectrum utilization constraints. Our contributions in
micro perspective are detailed as follows:

Instead of using common single-hop reporting links between
SUs and CHs, employing multi-hop path diversity might result
in a superior reporting performance in terms of robustness, de-
lay and communication range. Hence, we propose a procedure
to select the CH which yields: 1) The best CH which gives the
minimum total multi-hop error rate, and 2) the optimal routing
paths from SUs to the CH using Dijkstra’s algorithm. Obtained
results show that the multihop diversity has a superior robust
reporting and a potential to alleviate the bit error probability
(BEP) wall phenomenon in [12].

Exploitation of commonly studied Binomial based K-out
of-N rule would not yield an EE-CSS in a heterogeneous
environment since it treats each SU equivalently by enforcing
them to have identical local detector performance. To illustrate,
enforcing heterogeneous SUs to sense with identical detection
performances will make SUs with relatively low SNRs to sense
longer. In this case, while the total energy cost increases,
the available time left for secondary transmission decreases
since the CH will wait for the slowest SU to announce the
global decision. Therefore, a novel hard decision fusion (HDF)
based CSS scheme is proposed to tolerate SUs to report with
various local detection accuracy according to their sensing
and reporting quality. We further develop a convex framework
which jointly optimizes detection threshold and sensing du-
ration of each SU to minimize the total energy consumption
of the cluster. Numerical results clearly demonstrate that the
taking the heterogeneity into account yield a lower total energy
consumption and higher throughput.

For the quantized soft decision fusion (SDF), commonly
studied fixed sample size test (FSST) also has significant
disadvantages since it requires heterogeneous SUs to have
identical sensing durations. After deriving the distributions of
the test statistic over the optimal multihop reporting path, we
propose a weighted sample size test (WSST) to obtain a more
EE regime by assigning sensing duration of SUs proportional
to their SNRs. Results revealed that the achieved performance
of proposed scheme is superior to FSST.

The rest of this paper is organized as follows: Section-II
introduces the system model. Then, Section-III describes the
best CH selection procedure. Section-IV gives the details of
HDF-based and SDF-based CSS. Section-V develops MOCO
and explains its solution with NSGA-II. Finally, simulation
results and analysis are presented in Section-VI and Section-
VII concludes the paper with a few remarks.

II. SYSTEM MODEL

We consider a cluster based heterogeneous CSS with N SUs
and M PCs and assume N >> M . Each cluster is responsible
for sensing only one channel at a time. Time is divided into
fixed-length slots, T , in each of which a PC is either in the
busy or idle state for the whole slot. SUs can join at most
one cluster during a time slot. Assuming that PCs and CCC
experience slow and block fading, we adopt the simplified path
loss model which inherits necessary design parameters from
an empirical model for the path loss [17]. Albeit its simplicity
and popularity, energy detector (ED) operates on a perfect
noise variance knowledge which results in a poor detection
performance under estimation errors. Also, noting that ED
is subject to an SNR wall under which accurate detection
is impossible, exploiting known features of primary signals
can provide SUs with an improved detection performance and
robustness [18].

Accordingly, we prefer to use an auto-correlation based
feature detector (FD) which detects PUs using the second-
order statistics of primary signals.

For instance, orthogonal frequency-division multiplexing
(OFDM) inserts a cyclic prefix (CP) to each data block.
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Denoting the number of symbols in a CP and data block as
Tc and Td, respectively, the autocorrelation coefficient of SUn
on PCm is given as [19]

ρmn =
Tc

Tc + Td

γmn
1 + γmn

(1)

where γmn = σ2
n,m/σ2 is the SNR of SUn on PCm, σ2

n,m

is the received primary signal power by SUn on PCm, and
σ2 is the noise power. Please note that Tc and Td can either
be estimated by SUs and recorded for different bands or be
obtained from technical standardizations. As a case study, we
consider commonly exploited OFDM based primary signals
in Section VI and obtain Tc and Td values from IEEE 802.11
standard [20]. The fundamental objective of detector design
is to choose the test statistic Kmn and determine the detection
threshold εmn and number of samples Smn which is proportional
to sensing duration and the primary channel bandwidth, Wm.
In this respect, we employ log-likelihood ratio (LLR) of the
received complex PU signal vector, r ∈ CSm

n , as our test
statistic which is given as

Λmn = log

(
f (r|H1)

f (r|H0)

)
(2)

where f (r|H1) and f (r|H0) are the conditional probability
distribution functions (pdf) of r. Accordingly, LLR test can be
expressed as

Kmn = Λmn
H1

m

≷
H0

m

εmn (3)

Accordingly, conditional distributions of Λmn are given by

Λmn |H0
m ∼ CN

(
0,

2Smn (ρmn )2

[1− (ρmn )2]2

)
(4)

Λmn |H1
m ∼ CN

(
2Smn (ρmn )2

1− (ρmn )2
, 2Smn (ρmn )2

)
(5)

where CN (·) denotes circularly symmetric complex Gaussian
distribution [19]. Based on (4) and (5), the probabilities of
false alarm and detection of SUn on PCm are given by

P fn,m (Smn , ε
m
n ) =

1

2
erfc

(√
Smn ηmn

)
(6)

P dn,m (Smn , ε
m
n , ρ

m
n ) =

1

2
erfc

(√
Smn

ηmn − ρmn
1− (ρmn )2

)
(7)

where ηmn =
1−(ρmn )2

2Sm
n ρ

m
n

(
εmn + Smn log

(
1− (ρmn )2

))
+ ρmn [19].

Although the autocorrelation function is spread due to
the time dispersion in a multipath fading channel, averaging
the second-order statistics over multiple OFDM symbols can
alleviate the impact of multipath fading to achieve a detec-
tion performance close to the that of AWGN channel [18].
Hence, P fn,m and P dn,m under the multipath fading can be
calculated from (6) and (7) by substituting γmn with its average
γ̄mn = γmn

∑
i E
[
|hin,m|2

]
where hin,m is the ith channel tap

coefficient. Without loss of generality, we will address these
two scenarios together by assuming

∑
i E
[
|hin,m|2

]
= 1.

III. CLUSTER HEAD SELECTION

Assuming cluster members are given by the macro perspec-
tive, we will first consider the micro perspective and omit

Table of Notations
Notation Description
M Number of clusters/PCs with indexing 1 ≤ m ≤M
N Number of SUs with indexing 1 ≤ n ≤ N
T Timeslot duration

Tc/Td Cyclic prefix/data block duration of primary signals

Wm Bandwidth of PCm

Sn
m Number of Samples of SUn on PCm

εmn Local detection threshold of SUn on PCm

γm
n SNR of SUn on PCm

ρmn Auto-correlation coefficient of SUn on PCm

Λm
n /Λ̂m

n /Λ̃m
n Observed/quantized/received LLR of SUm

n on PCm

Km
n Local test statistic of SUn on PCm

H0
m/H

1
m Binary hypotheses for idle/busy state of PCm

P f
n,m/Pd

n,m Local false alarm/detection prob. of SUn on PCm

P̃ f
n,m/P̃d

n,m Received false alarm/detection prob. of SUn by CHm

C Cluster set with cardinality, i.e., |C| = C

Kopt/Khd/Ksd Global test statistic for ideal/HDF/SDF schemes

κopt/κhd/κsd Global thresholds for ideal/HDF/SDF CSS schemes

Eopt
m /Ehd

m /Esd
m Energy cost of cluster m for ideal/HDF/SDF based schemes.

Es/Ps/τs Energy/power/duration per sample

Ex/Px/τx Energy/power/duration per reported bit

Qf/Qd Global detection/false alarm probabilities

Qf
th/Q

d
th Global detection/false alarm thresholds

L Number of quantization levels, i.e., L = 2b

`in ith quantization level of SU n, 1 ≤ i ≤ L
n k An arbitrary routing path from SUn to SUk with Hk

n hops.

n→ k Optimal routing path from SUn to SUk

Th L× L Channel transition matrix of hop h, 1 ≤ h ≤ Hk
n .

chn Transmitted codeword of length b = log2 L

Tn k End-to-end channel transition matrix from SUn to SUk

tn k
i,j (i,j) entry of Tn k , ie. tn k

i,j = P(Λ̃n = `in|Λ̂n = `jn)

Table I: Table of Notations

cluster indices m until Section V for the sake of tractability
and without loss of generality. Even though single-hop re-
porting links between SUs and CHs are extensively studied,
this may not always result in a reliable and energy efficient
cooperation, especially when SUs with limited maximum
transmission power are spread over a wide area. Alternatively,
exploiting a multi-hop diversity does not only alleviate the
communication range limitation and poor reporting channel
quality but also gives a chance to save energy [21] and exploit
an algorithm which finds the best CH and optimal multi-hop
paths with minimum error rate from SUs to CHs. However, it
is worth noting that the multi-hop reporting requires extra time
overhead which is considered in the formulation of available
throughput in Section V.

A. Cluster Topology and Path Characterization

The graph representing a cluster, G(C, E ,Ω), is defined
by the set of SU nodes C with cardinality C, the set of
edges E with cardinality E, and the set of edge weights
Ω. We first denote the neighboring set of SUn ∈ C as
Φn = {k| γkn ≥ γth, ∀k ∈ C} where γkn and γth are the
received signal SNR by SUk from SUn and the SNR threshold
for the communication range, respectively. Please note that
Φn and γkn can be estimated via pilot and hello signaling
mechanisms. Then, En = {ekn | n, k ∈ C, n 6= k, k ∈ Φn}
represents the direct edge/hop from SUn to SUk.
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We assume link symmetry between SU pairs; however, the
proposed scheme can easily be generalized to asymmetric
links since the shortest path algorithm used in this paper is
applicable to both directed and undirected graphs, and the
undirected graph is used to capture link asymmetry. In this
section, we will generalize our previously proposed single-
bit multi-hop reporting and CH selection procedure [22] to
support multi-bit reporting (quantized SDF) methods.

Figure 1: Multihop Reporting from SUn to SUk

Assuming SUs employ L − level LM quantizers, Fig. 1
illustrates the multi-bit reporting between SUn and SUk over
an arbitrary multi-hop path, n  k, which consists of Hk

n

independent hops. SUn first quantize the observed local LLR
Λn such that Λ̂n = q(Λn) = `jn, 1 ≤ j ≤ L. Then, the
encoder maps `jn into a b = log2(L)-bit binary codeword,
c0n = g(`jn). SUs operate on these codewords using a decode
and forward (DF) protocol in a bit-by-bit basis over the path
from SUn to the SUk. Each hop is modeled as a binary
symmetric channel (BSC) and is characterized by its L × L
channel transition matrix, Th, 1 ≤ h ≤ Hk

n . The entry in
the jth row and ith column of Th, thi,j , is the probability of
detecting cin given that cjn is transmitted from the previous
node, which is given by

thi,j = Ph(cin|cjn) = (1− εh)b−δ(i,j)ε
δ(i,j)
h (8)

where δ(i, j) is the Hamming distance between cin and cjn,
1 ≤ i, j ≤ L and εh is the crossover probability of the hth

hop that could be measured via plot signals.
Exploiting Th matrices, the end-to-end multihop transition

matrix can be calculated as

Tn k =

Hk
n∏

h=1

Th (9)

which follows from the independent hop assumption and
Markov property. Consequently, the i, j entry of Tn k pro-
vides us the probability of receiving `in given that the SUn
transmitted `jn,

tn ki,j = P(Λ̃n = `in|Λ̂n = `jn) (10)

B. The Best Cluster Head Selection

In an erroneous CCC, SUs have to perform more accurate
local detection to achieve a target performance. However,
CCC imperfection can not be mitigated by spending more

energy after the BEP wall. Therefore, following a routing
path with minimum reporting error is crucial to mitigate this
wall and to reduce the additional energy cost induced from
CCC imperfections. Accordingly, we weight the direct edges
from any SUa ∈ C to any SUb ∈ C with the symbol success
probability (SSP) wba which is any main diagonal element of
Th. Depending upon this edge weighting1, SSP of n  k is
given by Ω(n k) =

∏
a,b∈n c w

b
a. In fact, the optimal path

which maximizes the Ω(n  k) is the one which minimizes
the negative sum of logarithms of Ω(n k) as follows

n→ k = argmin
n k

− ∑
a,b∈n c

log(wba)

 (11)

By transforming the multiplication into a summation, Dijk-
stra’s algorithm can be employed to calculate the reporting
route with minimum path cost. Defining Ωkm as the total
reporting error probability induced from selecting SUk to be
the CH, Ωkm = −

∑
n∈C log (Ω (n→ k)), the SU with the

minimum total reporting error is chosen to be the best CH as

CH = argmin
k∈C

Ωkm (12)

IV. COOPERATIVE SPECTRUM SENSING

A. Ideal CSS

We first introduce the ideal case since the performance
evaluation of the HDF and SDF schemes will be based on
the energy difference between the proposed and ideal cases.
In the ideal case, CH knows the observed LLRs exactly and
exploits the global summary test statistic as follows

Kopt =

C∑
n=1

Λn
H1

R
H0

κopt (13)

Using (4) and (5), conditional distributions of the global test
statistic are given as

Kopt|H0 ∼ CN

(
0, 2

C∑
n=1

Snρ
2
n

[1− ρ2
n]2

)
(14)

Kopt|H1 ∼ CN

(
2

C∑
n=1

Snρ
2
n

1− ρ2
n

, 2

C∑
n=1

Snρ
2
n

)
(15)

which reduces to the fixed sample size test (FSST) in
[19] if we set Sn = S, ∀n. Following from (14) and
(15), global false alarm and detection probabilities, Qf =
P (Kopt > κopt | H0) and Qd = P (Kopt > κopt | H1), can
be derived similar to (6) and (7). Accordingly, we refer to the
ideal total energy consumption of the cluster as

Eopt = min
Sn,κopt

n∈C

{∑
n

Sn | Qdth ≤ Qd, Qf ≤ Q
f
th

}
(16)

which can be equivalently written as a convex problem due to
the linearity of the objective function and the log-concavity of

1We ignore the case in which a symbol may be corrupted in an even
number of hops, hence resulting in correct reception of the symbol, since
the probability of this occurrence is very small
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the constraints using similar steps followed in Appendix A.

B. Single-bit HDF-Based CSS

Suppose that SUk is determined as the CH by (12), each
SUn ∈ C reports final binary decision un ∈ {0, 1} to the CH.
If we denote the received decision bit by the CH as ũn ∈
{0, 1}, local false alarm and detection probabilities received
by the CH are given by

P̃ dn = tn→k1,0

(
1− P dn

)
+ tn→k1,1 P dn (17)

P̃ fn = tn→k1,1 P fn + tn→k1,0

(
1− P fn

)
(18)

where P fn and P dn are given in (6) and (7), respectively. We
define the test statistic for the global decision employed in CH
as

Khd =
∑
n∈C

ũn
H1

R
H0

κhd (19)

which is known as the K-out-of-N rule where CH decides on
H1 if at least κhd of SUs report 1. Under the homogeneity
assumption, i.e., P̃ dn = P̃ d, P̃ fn = P̃ f ,∀n, Khd is a Binomial
random variable. This assumption yields an optimal result
if SUs have identical SNRs and the same reporting errors,
which is hardly the case. However, we propose a general HDF
scheme which employs the heterogeneity of SUs to achieve a
more EE-CSS framework. In this case, Khd has a Poisson-
Binomial distribution and we have

Qd =

C∑
i=κhd

∑
A∈Fi

∏
j∈A

P̃ dj
∏
k∈Ac

(
1− P̃ dk

)
(20)

Qf =

C∑
i=κhd

∑
A∈Fi

∏
j∈A

P̃ fj
∏
k∈Ac

(
1− P̃ fk

)
(21)

where Fi is the set of all subsets of i integers that can be
selected from {1, 2, 3, . . . , C} where C is cardinality of C
[23]. Since Fi has

(
C
i

)
elements, using an efficient method

to calculate Qf and Qd is very important, especially when C
is very large. For this purpose, probability mass function (pmf)
and cumulative distribution function of Poisson-Binomial ran-
dom variables can be expeditiously calculated in order of
O(C log2 C) from polynomial coefficients of the probability
generating function of Khd [24].

HD-GP (S,E) :

1: min
S,E

Ehd = Es1
TS + Ex1

TH

2: s.t. Qdth ≤ Qd
3: Qf ≤ Qfth

Regardless of the type of detector employed in SUs, de-
tection performance is a function of the observation duration
and sensing channel characteristics. Although obtaining more
samples from the primary signal yields more accurate results,
it is extravagant with the power consumed in Analog to
Digital Conversion (ADC) and fast Fourier transformation
(FFT) which are known to be the two major energy demanding
components of the receiver [25]. We assume the energy spent
for sensing and processing per sample is identical for each

SU, i.e., Esn = Es = Psτs where Ps and τs denote the sensing
power and sample duration. We also assume that SUs transmit
with identical reporting energy per bit, Exn = Ex = Pxτx
where Px and τx denote the reporting power and reporting
duration. To reduce the notational complexity, the variables
and parameters is represented in a vectorized form, for in-
stance, S = [S1, . . . , SC ]T . Then, the total energy cost of the
cluster is given by

Ehd = Es1
TS + Ex1

TH (22)

where 1 and H represent vector of ones and number of hops
from SUs to the CH.

Accordingly, Hard Decision based General Problem (HD-
GP) formulate the problem of minimizing the total energy
consumption induced from sensing and reporting activities of
cluster members for a given voting rule κhd and the number of
hops H calculated from Section III. In HD-GP, the objective
in Line 1 is a linear function of S which needs to be minimized
with respect to S and E . Lines 2 and 3 are PU protection and
spectrum utilization constraint, respectively. HD-GP is not in a
convex optimization problem form since the error functions in
(6) and (7) are not jointly convex in (Sn, εn). To alleviate this
issue, we transform HD-GP into a bilevel optimization with
convex upper level problem (ULP) and lower level problem
(LLP) based on the convexity (concavity) of erfc(·) ≤ 0.5
(erfc(·) ≥ 0.5) and the following parameterized nature of HD-
GP. For a fixed ε̄n and increasing (Sn, Ehd, P dn , P̃ dn , Qd)
increase, ∀n ∈ C. Hence, optimum Ehd is attained at the point
Qd = Qdth. For a fixed S̄n and decreasing εn, on the other
hand, (P fn , P dn , P̃ fn , P̃ dn , Qf , Qd) increase. Noting that Ehdm
is not a function of εn, increase of Qf is bounded by Qfth,
thus, the minimum feasible εn is attained at Qf = Qfth. In this
fashion, we obtain the E by parameterizing S in the LLP and
achieve the minimum Ehd by parameterizing E in the ULP.

HD-ULP (S | Ē) :

1: min
S

Ehd = Es1
TS + Ex1

TH

2: s.t. − log(Qd) ≤ − log(Qdth)

3: − Pd � −0.5

4: 3AĒ/B � S � 3AĒ/B−ρm

HD-LLP (E | S̄) :

1: min
E

∣∣∣log(Qfth)− log(Qf )
∣∣∣

2: s.t. Pf � 0.5

where A =
1−ρ2

n

2ρn
, B = A log(1 − ρ2

n) + ρn, and � denotes
element wise non-equality. In HD-ULP, the total energy cost
is minimized for a given Ē which is obtained by exploiting the
optimal solution set of HD-LLP for a given S̄. The constraint
in Line 2 is the standard convex form of the first constraint in
HD-GP. Constraints in Line 3 and 4 are introduced to preserve
the convexity of the problem. In HD-LLP, the minimum
feasible E is obtained for given S̄ at the point of Qf = Qfth.
We refer interested readers to Appendix A for a more detailed
convexity analysis.
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C. Multi-bit SDF-Based CSS

As a remedy for the communication overhead which stems
from reporting the raw LLR values directly to the CH, quan-
tization is an attractive tool to achieve more accurate sensing
yet a reasonable CCC overhead. An LM quantizer divides the
support of the probability distribution functions (pdf) of Λn
into non-overlapping intervals and determines the correspond-
ing quantization levels of each intervals. Therefore, quantizer
converts the pdf into a pmf pΛ̂n

(Λ̂n = `jn), 1 ≤ j ≤ L,
which is calculated by integrating the pdf over corresponding
intervals of `jn.

However, the pmf of the received quantization levels,
pΛ̃n

(`in), 1 ≤ i ≤ L, does not follow the the same distribution
any more because of the imperfect reporting. That is, a
quantization level received/reconstructed at the CH may result
from any transmitted level at the source. Taking all possibilities
into account, the pΛ̃n

(`in) can be written in terms of the end-
to-end transition matrix entries as follows

pΛ̃n
(`in) =

L∑
j=1

P(Λ̂n = `jn) tn ki,j (23)

After collecting all reports, the CH sums Λ̃ns and compare
the global test statistic as follows

Ksd =

C∑
n=1

Λ̃n
H1

R
H0

κsd (24)

We note that the global test statistic is the summation of Cm
independent discrete random variable, hence, its pmf can be
derived using convolution sum of marginal pmfs given in (23)
[26]. Thus, the support values of global pmf is the Cartesian
product of reporting SUs’ quantization levels, i.e., L = L1 ×
· · · × LC .

Accordingly, the Soft Decision based General Problem (SD-
GP) formulate the minimization problem of the total energy
consumption of the cluster for a given number of quantization
levels, L. Exploiting the FSST which assumes Sn = S, ∀n,
SD-GP can be formulated as

SD-GP (S, κsd|L) :

1: min
S,κsd

Esd = CSEs + Exb1
TH

2: s.t. Qdth ≤ Qd
3: Qf ≤ Qfth

where Qf and Qd are monotonically decreasing with κsd
while Qd is monotonically increasing with S for a given
κsd, κ̄sd. Then, by parameterizing the detection threshold
as κ̄sd = min

x∈L
{P(Ksd > x | H0) ≤ Qfth} , the best Esd is

attained at S = min{S | Qd ≥ Qdth}. Due to the linearity
of the objective and monotonically increasing Qd, SD-GP can
simply be solved by Golden Section Method. Under the venue
of heterogeneous cluster, we propose a weighted sample size
test (WSST) as follows

Sn = CS
ρn∑
n∈C ρn

(25)

In other words, instead of sharing the total CS number of

samples equally as in FSST, SUs share it proportional to their
sensing quality, i.e., ρn. Even if it may not be the optimal
solution, numerical results will show a significant performance
enhancement.

V. MULTI-OBJECTIVE CLUSTERING OPTIMIZATION

For a given sensing period, if there exists N SUs available
to help with sensing and there exists M potential PCs to
sense, a clustering of the SUs is required with the following
objectives: 1) Total energy cost minimization of the clusters,
2) Total throughput maximization of clusters, and 3) Inter-
cluster energy cost and throughput fairness. Accordingly, we
formulate these objectives as follows:

F1 =
∑
m

Em, F2 =
∑
m

Tm =
∑
m

max
n∈Cm

(Snmτs + τxbH
n
m)

F3 = max
m

Em −min
m

Em, F4 = max
m

Tm −min
m

Tm

where Em represents the energy cost of the cluster m and can
be substituted by Eoptm , Ehdm and Esdm according to preferred
CSS schemes. Tm is the sensing+reporting duration of the
slowest SU in cluster m, which determines the available time
left for the secondary transmission. Therefore, minimizing Tm
is equivalent to maximizing the transmission time. F3 and F4

close the gap between the maximum and minimum of Em
and Tm to achieve fairness in energy cost and throughput
gain among the clusters, respectively. Defining Im (n) as
the indicator for the membership of SUn in cluster m, we
formulate MOCO as in Algorithm 1 where lines 2 and 3
are global PU protection and spectrum utilization constraints.
Since, an SU can sense at most one channel during a sensing
period,

∑M
m=1 In(m) in Line 2. Moreover, Line 3 makes sure

that each PC is sensed by at least one SU. The constraint in
Line 6 on the sensing time is especially beneficial to take SUs
with unnecessarily low sensing quality out of consideration.

Algorithm 1 : MOCO

1: Min F = [F1, F2, F3, F4]

2: s.t. Qdth ≤ Qdm,∀m
3: Qfm ≤ Q

f
th,∀m

4:
∑M
m=1 In(m) ≤ 1,∀n

5:
∑N
n=1 In(m) ≤ C̄,∀m

Algorithm 1 is an NP-hard multi-objective MINLP problem
which requires impractical time complexity even for moderate
size of problems with a single objective. Due to the conflicting
objectives, there may exists a set of nondominated solutions
by which none of the objective functions can be improved
without degrading some of the other objective values. There-
fore, employing meta-heuristic methods to obtain a sufficient
solution within a reasonable time frame is preferable in prac-
tice. Multi-objective genetic algorithms (MOGA), which are
generic population based meta-heuristic approaches inspired
by biological evolution, were shown to be performing well
for many problems if it is adapted and applied carefully.

Hereupon, we will use the Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) [27] which is O

(
OP2

)
where O
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and P are number of objectives and populations, respectively.
Encoding is the first step of the implementation, which can be
described as determination of the form in which a candidate
solution (chromosome) translated into a genetic string. Based
on the encoding scheme, NSGA-II first creates a random
parent population P0 for the initial generation and the genetic
operators such as crossover, mutation, and selection are used
to create an offspring population Q0. Crossover is a way
of introducing variations into the population of designs by
mixing two different populations. Mutation operation, on the
other hand, is introduced for maintaining the genetic diversity
from one generation to the next. Selection involves choosing
the chromosomes from current generation to be employed
in the next generation based on the fitness values of the
solutions which are calculated using the methods explained
in Sections III and IV. For other generations 1 ≤ g ≤ G, a
combined population Rg = Pg ∪ Qg of size 2P is formed
by merging Pg and Qg and the population Rg is sorted
according to non-domination. Then, the best P members of the
current generation are selected to be the parents of the next
generation, Pg+1, using the crowded-distance operator. After
that, selection, crossover and mutation operators are executed
on Pg+1 to create the offspring population of the (g + 1)th

generation, Qg+1.
Since SUs may not always have good sensing quality on all

PCs, the potential candidacy of SUs for clusters is one of the
practical issues which affects the convergence of the Algorithm
1. Therefore, for a predetermined cluster size upper bound C̄,
we can sort SUs with respect to γmn , ∀n and select best C̄
SUs as candidates. C̄ can be determined using the ’OR’ rule
under homogeneity assumption as

C̄ = max
0.5≤Pd≤1
0≤Pf≤0.5

(⌈
log(1−Qfth)

log (1− Pf )

⌉
,

⌊
log
(
1−Qdth

)
log (1− Pd)

⌋)

Since ’OR’ rule under the traditional HDF scheme is shown
to be the one of the less EE case in Section VI, other
schemes already satisfy the Qfth and Qdth with C̄ for less
energy expenditure. Denoting N̄ as the number of SUs which
are candidates for at least one cluster and Mn as the set
of PCs/clusters for which SUn is a candidate, chromosome
design is shown in Table II.

PCs M1 M3 M8 · · · Mn · · · MN̄−1 MN̄

SUs 1 3 8 · · · n · · · N̄ − 1 N̄

Table II: A random chromosome representation for solution s
Using the coding scheme given in Table II, the constraint in

Line 2 which requires an SU can be assigned at most one PU
is already satisfied. For the constraint in Line 3, chromosomes
are checked at the end of every genetic operation and genes
violating these constraints are replaced with a proper value
randomly. Constraints in Line 4 and 5 are handled directly by
the method proposed in NSGA-II.

VI. RESULTS AND ANALYSIS

Since orthogonal frequency-division multiplexing (OFDM)
is a key technique with a broad range of employment in con-
temporary wireless systems, we assume that primary network

communicates using OFDM technology. Due to the practical
and theoratical considerations, we will use a symbol and the
cyclic prefix length of 32 and 8, respectively. Thereupon, a
single OFDM block will be enough to invoke the central
limit theorem to keep results consistent with the theory.
All simulation results are obtained and plotted using Matlab
running on a PC with 2.7 GHz Intel Core i5 processor. We
note that simplified path loss model with free space path loss
exponent is used throughout the simulations.

Parameter Value Parameter Value Parameter Value

Ps 1 W/sample [25] Wm 1 MHz σ2 1

τs 1 µs/sample T 2 s G 10

Px 0.7 W/bit [25] Tc 8 [20] P 50

τx 0.1 ms/bit Td 32 [20] M 16

Qd
th 0.99 Qf

th 0.01 N 250

Table III: Default parameter values used for simulations.

A. Cluster Head Selection

We assume that SUs use the CSMA/CA protocol for report-
ing and controlling purposes. Since we assume that DF oper-
ates on a bit by bit basis, crossover probabilities of each hop is
calculated using BPSK modulation under Rayleigh fading. To
compare the proposed multi-hop based proposed scheme with
the common single-hop reporting, we consider two different
geographical areas: 25 m × 25 m and 50 m × 50 m with
three different cluster sizes, C = (5, 10, 20). Averaging over
5000 different network scenarios, cluster’s average number of
edges, average number of hops, the average maximum number
of hops and average multi-hop gain are shown in Table IV,
where the multi-hop gain is defined as the ratio of single-
hop total error rate to multi-hop total error rate. All values
in Table IV increase with cluster size and area as a result
of the increasing number of nodes and the distance among
themselves. In particular, the effect of multi-hop diversity on
reporting accuracy becomes more significant as the cluster size
and the coverage area increase in size. In (12), sorting and
computing Ωkms take O (C logC) and O (C (E + C logC)),
respectively. The average number of edges given in Table IV
shows that O(E) ≈ O(C) in practical network scenarios,
therefore, overall complexity of the CH selection procedure
can be given as O

(
C2 + C2 logC

)
≈ O

(
C2
)

since C̄ = 10
for Qthd = 0.99 and Qthf = 0.01. Furthermore, partial path
calculation property of the Dijsktra’s algorithm eliminates the
recalculation of all routes in case of an SU inclusion/exclusion.

Distance # Edges # Hops Max. # Hops Multi-hop Gain
25 m× 25 m (5.1, 7.3, 9.1) (1.1, 1.8, 3.2) (1.7, 3.8, 6.5) (1.9, 4.5, 5.6)

50 m× 50 m (0.9, 2.2, 4.3) (1.2, 1.9, 3.3) (1.9, 3.9, 6.6) (2.2, 4.8, 10.5)

Table IV: Averaged multi-hop results for different areas and sizes
of clusters. The 3 numbers between parentheses correspond to

cluster sizes of 5, 10 and 20, respectively.

B. CSS with Hard Decision Fusion

To analyze the inherited features of the proposed HDF-based
CSS, we first consider an example heterogeneous cluster which
consists of 5 SUs with SNRs [0,−5,−15,−20,−25] dB. We
are interested in a comparison of the proposed K-out of-
N rule and traditional K-out of-N rule which treats each
SU equivalently and employs the Binomial distribution by



8

enforcing them to report with identical local detection and
false alarm probabilities. Using traditional and proposed HDF
with majority voting rule and global detection and false
alarm probability targets of Qdth = 0.99 and Qfth = 0.01,
respectively, obtained results are demonstrated in Fig. 2 where
the FD and the proposed HDF scheme always give better
energy and throughput efficiency with respect to the ED and
traditional HDF scheme.
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Figure 2: A simple heterogeneous cluster instance to compare EDs
and FDs under traditional and proposed HDF-based CSS.

Local Prob. 0 dB -5 dB -15 dB -20 dB -25 dB
Trad. Pd

n 0.8944 0.8944 0.8944 0.8944 0.8944

Prop. Pd
n 0.9999 0.9993 0.9547 0.5622 0.5057

Trad. P f
n 0.1056 0.1056 0.1056 0.1056 0.1056

Prop. P f
n 0.0001 0.0007 0.0391 0.5000 0.5000

# Samples ×105 0 dB -5 dB -15 dB -20 dB -25 dB
ED Trad. 0.0003 0.0008 0.0645 0.6313 6.2702

ED Prop. 0.0010 0.0055 0.1229 0.0023 0.0003

FD Trad. 0.0003 0.0005 0.0332 0.3188 3.1450

FD Prop. 0.0008 0.0033 0.0633 0.0013 0.0003

Table V: P d
n , P f

n and number of samples values for Fig. 2.

We note that the FD values are obtained using the false
alarm and detection probabilities given in (6) and (7), re-
spectively. Similarly, the ED values are obtained based on the
false alarm and detection probabilities given in [28, (5), (10)].
While the superiority of FD is a result of the exploitation
of known features of OFDM signals, the advantage of the
proposed HDF scheme is resulted from enforcing SUs with
relatively low and high SNRs to sense higher and lower local
confidence, respectively, as can be seen from Table V. We
note that the energy and throughput loss of traditional HDF is
mainly because of enforcing the slowest SU with the lowest
SNR value to achieve Pnd = 0.8944 and Pnf = 0.1056, which
results in more energy loss and less time left for secondary
transmission.

Next, we analyze the effect of the voting rule and the
imperfection of the reporting environment on the energy loss
which is defined as any extra sensing and reporting energy cost
beyond that of the ideal case. For a cluster size of N = 5, Fig.
3 depicts the energy loss induced from the non-ideality of the
HDF-based CSS for different voting rules K = 1, . . . , 5 with
respect to average BEP of the single hop reporting case. We
note that, SUs experience different channel sensing quality of
the target PC, so that, SNRs and autocorrelation coefficients
of SUs are not identical. In this respect, there are two sets of
voting rule results in Fig. 3: one for traditional and other for
the proposed K-out of-N rule. The effect of the reporting error
on the energy loss for both cases can be observed from Fig. 3.
For K = 3, for example, energy loss of traditional approach
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Figure 3: Comparison of energy loss caused from traditional and
proposed HDFschemes using single-hop reporting.

is not significantly affected by BEP until 10−3. After that,
the energy loss notably increases with the BEP and goes to
infinity around 0.1, which is known as the BEP wall and its
existence has been shown first in [29] for SNR loss under the
traditional K-out of-N fusion rule.
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Figure 4: Comparison of energy loss caused from traditional and
proposed HDF schemes using proposed CH selection method.

We note that the majority voting rule gives the best perfor-
mance in terms of the robustness against the energy loss and
BEP wall compared to other voting rules. On the orher hand,
the proposed method, which takes the sensing and reporting
quality heterogeneity of the SUs into account, outperforms
the traditional one in terms of the energy loss and the error
wall. Therefore, the proposed method with the majority voting
rule gives the best performance as can be seen from Fig. 3.
Likewise, Fig. 4 shows the performance of the traditional and
proposed methods using multi-hop reporting and the best CH
selection algorithm given in Section III. It is obvious that the
proposed CH selection method increases the robustness of the
energy loss against the BEP wall effect from 0.1 to 0.5.

C. CSS with Soft Decision Fusion

For a cluster size of N = 5, Fig. 5 depicts the energy
loss induced from the non-ideality of the quantized SDF with
respect to average BEP of the single hop reporting case.
We again note that SUs experience different channel sensing
quality of the target PC. To put an evident comparison between
hard and soft decision fusion, we also plot the best case of the
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Figure 5: Comparison of energy loss caused from FSST and WSST
schemes for different number of bits using single-hop reporting.

HDF, which is the majority voting rule of the proposed method
in Fig. 3. For the quantized SDF, we have two different sets
of results: one for the FSST approach, and another for the
WSST where sensing duration of SUs are weighted based on
their sensing quality metrics. We first point out that single bit
LM quantizer’s FSST energy loss performance is superior to
the best case HDF. On the other hand, single bit WSST gives a
better energy efficiency than the 4−bit FSST scheme. Similar
to Fig. 4, the benefit of the proposed multihop reporting based
CH selection is apparent in terms of the BEP wall in Fig. 6
where the BEP wall is located at 0.5.
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Figure 6: Comparison of energy loss caused from different FSST
and WSST schemes using proposed CH selection method.

D. Multi-Objective Clustering Optimization

For the population and generation sizes given in Table
III, Fig. 7 shows the results of MOCO with 16 PCs and
250 SUs spread over 1 km × 1 km area. In Fig. 7, F1

represents the total consumed energy, F2 demonstrates the
total maximum sensing duration, F3 shows the difference
between the maximum and minimum energy cost of clusters,
and F4 depicts the difference between the maximum and min-
imum sensing+reporting duration of clusters. The total energy
consumed for multihop reporting is shown in red colors in F1.
We note that the F3 and F4 values are primarily determined
by the clusters with the maximum energy consumption and
the slowest sensing SU with the longest sensing duration,
respectively.
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Figure 7: MOCO results for F and H1 for different CSS schemes.

While the HDF-based micro perspective converges in an
average of I = 50 iterations, SDF-based micro perspective
converges in an average of I = 20 iterations. Neglecting the
number of objectives which is a constant, NSGA-II complexity
is O

(
P2
)
. However, for each population member we are

required to determine the CH and sensing parameters which
is O

(
PM

(
C̄2 + I

))
. Thus, the worst case complexity of the

MOCO is O
(
P2 +MP

(
C̄2 + I

))
.

However, it is worth noting that candidacy approach pro-
posed in Section V greatly reduces the implementation time
since the best SUs are set as the initial members for each
cluster. Thus, NSGA-II mainly determines the membership of
SUs which are potential candidates for more than one cluster.
Although repeating the MOCO in a fast fading environment
is not practical, the micro perspective can easily be repeated
based on sensing and reporting channel changes without
recalculating the SU↔cluster association using the MOCO. As
explained in Section VI-A, we also do not require repeating
the entire CH selection procedure in case of SU inclusion or
exclusion.

VII. CONCLUSIONS

In this paper, we have focused on energy and throughput
efficient clustered CSS from the micro and macro perspectives.
By use of the multihop diversity, we have developed a proce-
dure to find the best CH and optimal routing paths from SUs
to CH, which is shown to be better in terms of the robustness
to the reporting channel imperfection and energy cost. Results
has clearly shown that the proposed multihop reporting and
CH selection procedure mitigate the BEP wall phenomenon.
From the micro perspective, we have revealed that consider-
ation of the sensing and reporting heterogeneity under both
HDF and SDF based CSS has a significant impact on the
intra-cluster energy consumption and achievable throughput.
We have shown that the proposed novel HDF scheme tends
to enforce SUs with relatively high SNRs to have a perfect
local detection performance while the low SNR SUs’ local
detection is released. Subject to global detection and false
alarm probability constraints, this nature has been shown to
be more energy efficient than the traditional one. On the other
hand, the proposed WSST method, which decides on SUs’
sample sizes proportional to their SNRs, has been shown to
have a much more energy efficient performance than the well
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known FSST for SDF schemes. For the macro perspective,
on the other hand, we have formulated the MOCO problem
and have solved it using NSGA-II to obtain network wide fair
energy and throughput efficient partitioning of SUs.

APPENDIX A
CONVEXITY ANALYSIS OF HARD DECISION CASE

We will handle the convexity analysis of HD-LLP and
HD-ULP in two subsections: A) We prove the parameterized
concavity / convexity of P dn,m/P fn,m. B) We show that Qdm/Qfm
is a log-concave function of P̃ dn,m/P̃ fn,m, so that line 2 in HD-
LLP and lines 2-3 in HD-ULP are both convex constraints.
Throughout the appendix, we omit cluster indices m for
the sake of tractability and without loss of generality. To
distinguish from each other, we denote the inside expressions
of erfc(·) in (6-7) as follows

f(Sn, εn) =
Aεn√
Sn

+B
√
Sn

g(Sn, εn, ρn) =
1

1− ρ2
n

(
Aεn√
Sn

+ (B − ρn)
√
Sn

)
where A =

1−ρ2
n

2ρn
and B = A log(1− ρ2

n) + ρn. Since convex
composition rules will be extensively exploited in this section,
we will remind the readers of these rules as follows [30].

Remark 1: 1) a(x) = b(c(x)) is convex if b is convex and
non-increasing in each argument, and ci is concave in x.

2) a(x) = b(c(x)) is concave if b is concave and non-
increasing in each argument, and ci is convex in x.

A. Concavity / convexity of P dn / P fn
Lemma 1: P fn (f) and P dn(g) are neither convex nor concave
functions of (Sn, εn), neither are Qd and Qf . Hence, HD-GP
is not a convex optimization problem.

Proof: Although erfc(·) is a non-increasing convex and
concave function for cases erfc(·) ≤ 0.5 and erfc(·) ≥ 0.5,
respectively, erfc(f)/erfc(g), f /g must be concave/convex in
(Sn, εn). However, we show that f and g are neither convex
nor concave in (Sn, εn), since the Hessian matrix of f in (26)
and that of g in (27) are neither positive nor negative semi-
definite as follows

52f = S−3/2
n

[
3Aε
4Sn
− B

4 −A2
−A2 0

]
(26)

52g =
S
−3/2
n

1− ρ2

[
3Aε
4Sn
− B−ρ

4 −A2
−A2 0

]
(27)

Therefore, P fn (f) and P dn(g) are neither convex nor a concave
function of (Sn, εn). Thus, this result directly affects the
convexity / concavity of Qf , Qd, and HD-GP.

Lemma 2: This Lemma provides the basis for convexity of
parameterized approach used in bilevel optimization.
(a) For a parameterized S, S̄n, f and g are both linear

functions of εn. Thus, P fn (f) ≤ 0.5 / P dn(g) ≥ 0.5 is
a convex / concave function of εn.

(b) For a parameterized ε, ε̄n, f is a concave function of
Sn if Sn ≥ 3Aεn/B, and a convex function of S if S ≤

3Aεn/B−ρn . Thus, P fn (f) ≤ 0.5 / P dn(g) ≥ 0.5 is a convex
/ concave function of Sn for 3Aεn

B−ρn ≥ Sn ≥ 3Aεn/B.

Proof:

(a) Because of ∂2f
∂ε2n

= ∂2g
∂ε2n

= 0, f and g are both convex
and concave functions of εn, i.e., linear. Since erfc(·) ≤
0.5 is a non-increasing convex function of f and f is a
concave function of εn, their composition P fn (f) ≤ 0.5
is also convex in εn. Similarly, since erfc(·) ≥ 0.5 is a
non-increasing concave function of g and g is a convex
function of εn, their composition P dn(g) ≥ 0.5 is also
concave in εn.

(b) By using the same composition rules in (a), we need
∂2f
∂S2

n
≤ 0 to assure the concavity of f in Sn. Noting that

the sensing duration cannot be negative (i.e., Sn ≥ 0), this
condition reduces to Sn ≥ 3Aε̄n/B. Likewise, we need
∂2g
∂S2

n
≥ 0 to assure the convexity of g. Due to Sn ≥ 0, this

condition reduces to 3Aε̄n
B−ρn ≥ Sn.

As a result of (a) and (b), line 2 in HD-LLP and lines 3-4 in
HD-ULP are convex constraints.

Lemma 3: Results of Lemma 2 also hold for P̃ fn and P̃ dn .

Proof: In (17-18), P̃ dn and P̃ fn are non-negative weighted
sum of P dn and P fn , respectively. Since non-negative weighted
summation preserves convexity, Lemma 3 is an immediate
result of Lemma 2.

B. Log-concavity of Qd and Qf

Sum of independent Bernoulli variables forms a log-concave
random variable since log-concavity is closed under convolu-
tion [31]. Consequently, Khd given in (19) is log-concave un-
der both homogeneity and heterogeneity. Since log-concavity
is preserved by integration [30], cumulative distribution func-
tion (cdf ), P(Khd ≤ κhd), and survivability function (sf ),
P(Khd ≥ κhd), of a log-concave random variable are also
log-concave functions. However, this is true with respect to
κhd which is a parameter in our case. Therefore, we need to
analyze the log-concavity of these functions with respect to
P̃ dn and P̃ fn to establish connection to concavity in (Sn, εn).

Lemma 4: Pmf of a Binomial random variable is a log-
concave function of P̃ d / P̃ f , so are its cdf and sf.

Proof: Without loss of generality, we show the proof for
P̃ d, which can be repeated for P̃ f . The logarithm of Binomial
pmf and its second derivative are given as

log (P (Khd = i)) = log

[(
C

i

)]
+i log(P̃ d)+(C−i) log(1−P̃ d)

∂2 log (P (Khd = i))

∂(P̃ d)2
= − i

(P̃ d)2
− C − i

(1− P̃ d)2
, 1 ≤ i ≤ C

where the second derivative is always non-positive since C ≥
i, hence, log(P (Khd = i)) is a log-concave function of P̃ d.
Since log-concavity is preserved by integration as indicated
above, cdf and sf of Khd are also log-concave functions.

Lemma 5: Pmf of a Poisson-Binomial random variable is a
log-concave function of P̃ d

n / P̃ f
n , so are its cdf and sf.
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Proof: Fernandez et. al. show that the distribution of
Poisson-Binomial random variable is given by the following
probability generating function [24]

A0+A1z+A2z
2+· · ·+ACzC = α(z−r1)(z−r2) · · · (z−rC)

where α =
∏C
n=1 P̃

d
n , rn = −(1 − P̃ dn)/P̃ dn , and polynomial

coefficients on the left hand side represent the pmf in terms
of the real roots on the right hand side, i.e., Ai = P(Khd =
i). First, we note that the coefficients of a polynomial with
real negative roots are log-concave functions of the roots [31],
which is the case here since rn < 0, 1 ≤ n ≤ C. Second, rn
is an increasing (non-decrasing) and strictly concave function
of P̃ dn since ∂2rn/∂(P̃ dn)2 = −2(P̃ dn)−3 is always negative
and rn increases as P̃ dn increases. Contingent upon Lemma
3 and Remark 1, rn is a concave function of P̃ dn . Third, α
is obviously a linear function of P̃ dn . Combining these three
steps proves the log concavity of the Poisson-Binomial pmf
with respect to P̃ dn . Finally, log-concavity of Poisson-Binomial
cdf and sf again follow from the integration property of log-
concave functions.

Lemma 6: Binomial and Poisson-Binomial cdf / sf is an
increasing / decreasing function of P̃ dn and P̃ fn .

Proof: In above polynomial, coefficient AC−k is the sum
of products of k roots such that

AC−k = (−1)k
∑

1≤j1,j2,...,jk≤C

rj1rj2 . . . rjk

where negative sign of roots are eliminated for both odd and
even numbers of k, thus, coefficients are decreasing functions
of P̃ dn , so are pmf s. Based on this, cdf is a decreasing function
of P̃ dn , hence, tail cdf is an increasing function of P̃ dn . Proof for
Binomial distribution is a special case of Poisson-Binomial.

Consequently, based on Lemmas 2 and 3, constraints
−Pd �− 0.5 and Pf � 0.5 are convex. Furthermore, using
Lemmas 2-5, − log(Qd) ≤ − log(Qdth) and | log(Qfth) −
log(Qf )| are also convex.
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