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Abstract—Due to the increasing bandwidth demand of mobile
users and their devices with energy hungry wireless networking
modules, attention of research efforts has been recently shifting
to find answers to the paradox of achieving more spectrum for
less energy consumption. In this paper, cognitive radios have
been employed to obtain more spectrum by utilizing unused
licensed spectrum in an opportunistic manner. Defining the
opportunity cost as the consumed energy per achieved unit of
free spectrum, we propose a cooperative sensing scheduling
framework to optimize the cost with the consideration of the
sensing, reporting and channel switching costs in terms of energy
expenditure subject to a licensed user protection threshold. In
the proposed scheme, all primary channels are scheduled to be
cooperatively sensed within a cycle which consists of rounds. In
every round, secondary/unlicensed users (SUs) are first assigned
to cooperatively sense the scheduled primary/licensed user (PU)
channels. Consequently, SUs report their local sensing results to
a fusion center for a global decision. Finally, SUs assigned to
sense other PU channels perform channel switching for the next
round. This scheme not only provides a feasible network set up
in case there does not exist a sufficient number of SUs to satisfy
the PU protection in a single round, but also offers an apparent
reduction in the opportunity cost.

Index Terms—Green Cooperative Sensing, Rounds, Cycles,
Green Scheduling, Energy Efficient Cognitive Radio Networks,
Green Communications.

I. INTRODUCTION

The motivation behind the cognitive radio technology is
rooted in the insufficiency of the current inflexible spectrum
allocation policy to meet the ever-increasing quality of service
(QoS) demands of today’s wireless communication networks.
Conventionally, radio spectrum resource is allocated for long-
running time periods and exploited merely by licensees. Re-
cent studies by Federal Communications Commission (FCC),
however, have revealed that this limited resource is consider-
ably underutilized in the spectral, spatial and temporal dimen-
sions [1]. Therefore, cognitive radios (CRs) are introduced to
detect and utilize unused spectrum bands in an opportunistic
manner such that primary users (PUs), who are incumbent li-
censees, are protected against performance degradation caused
by CRs which are also referred as secondary users (SUs).

To fulfill the appeal of new emerging technologies for more
bandwidth, early studies within the literature has mainly fo-
cused on maximizing the discovered unused spectrum without
considering the energy restrictions. However, a substantial
part of this demand has been recently emigrated to mobile
wireless networks and devices with limited energy resources.
Considering the fact that 30% of the energy expenditure

of mobile devices is caused by wireless networking and
computing [2], energy efficient CRNs play a vital role to
provide portable devices with more spectrum for less energy
consumption. Optimizing energy utilization not only leads
to a more affordable network with reduced cost, but also
an environmentally friendly network [3]. Because approxi-
mately 2% of the worldwide CO2 emissions is caused by
the communications and information technologies [4], energy
efficient policies are becoming more important to achieve
green communication standards. If we define the discovered
available spectrum in cognitive radio networks (CRNs) and
the energy consumption as commodity and currency, respec-
tively, an energy efficient CRN should maximize the earned
commodity per spent currency.

Nonetheless, modeling such an optimal system is not trivial
since it involves designers in many tradeoffs to be balanced
and many real life challenges to be taken care of. First of all,
the wireless propagation medium is a challenging environment
due to channel impairments such as path loss, multipath fading
and shadowing etc. Hence, spectrum sensing techniques are
subject to two detection errors: probabilities of misdetection
(Pm = P [H0|H1]) and false alarm (Pf = P [H1|H0]) where
H0 and H1 denote hypotheses for channel vacancy and
occupancy, respectively. While minimizing the former result
in a higher level of PU protection from SU interference, mini-
mizing the latter is the key part to maximize unused spectrum
utilization. Therefore, unlicensed users are obligated to satisfy
PU protection thresholds determined by regulatory bodies. A
decision taken with the consideration of these constraints does
not necessarily imply the absence of the PU since the SU
may be positioned in a place which is blocked from receiving
existing PU signals. This phenomenon is also known as the
hidden terminal problem. To surmount this issue, cooperation
among SUs is proposed to get benefit from geographical
diversity of individual SUs. In cooperative spectrum sensing
(CSS), individual SUs report their local results to a decision
maker which collects all sensing information and feed the
global conclusion back to SUs. In practice, local result reports
are subject to channel errors which are needed to be taken
into account to assure whether the global detection error
probabilities are met.

Although SUs obtain more reliable sensing decisions against
channel uncertainties, cooperative gain is not free of cooper-
ation overhead and costs. In reality, there exists multiple PU
channels within a network at the same time. Thus, the selection



of SUs to sense PU channels lead to a combinatorial problem.
Furthermore, to enforce global detection probabilities to follow
predetermined thresholds, there is usually need for more than
one SU in cooperation. This is also an inherent requirement
of cooperation that we seek for spatial diversity of SUs.
Accordingly, denoting the number of PUs, SUs and minimum
number of SUs per PU channel byM,N and ρ, respectively, a
feasible network setting would require N ≥ ρM SUs to sense
all PU channels subject to the reliability constraints. In the case
of N < ρM, sensing M PU channels may be divided into
R ≥ dρMN e rounds, so that we can not only attain a feasible
network setup but also more selection variety for SU↔PU
assignment. For instance, if an SU is in a good choice for
multiple PUs due to its good channel quality, and hence its
less sensing duration, it could be assigned to these PUs in
different rounds with the additional cost of channel switching.
The proposed scheme in this study, however, still offers an
apparent reduction in opportunity cost in case of N ≥ ρM
due to the SU selection diversity attained by rounds. Assuming
we have statistical information about a priori probabilities
of being idle through long term observations, such kind of
behavior model could be represented by radio environment
maps (REM) [5], we can schedule the sensing order of PU
channels such that the probability of finding idle PU channels
are maximized throughout the rounds.

In [6], Sun et. al. develop a three step approach to the non-
linear binary programming nature of the multi-band coopera-
tive sensing scheduling problem. In [7], an energy efficient
cooperative sensing with an optimal scheduling method is
considered for sensor aided CRNs which suffers from bat-
tery limitation of sensors. Another energy efficient spectrum
sensing is studied based on an optimal periodic scheduling
framework in [8]. In [9], authors propose a scheduling method
which minimizes the energy cost caused by sensing, reporting
and channel switching actions under the assumption that
N >> M employing the OR fusion rule under perfect
reporting channel.

In multi channel cooperative sensing scheduling methods,
there are three leading energy consumptive factors to be dealt
with : sensing energy, reporting energy and channel switching
energy. In a similar manner to economics jargon, we define
the opportunity cost as the total energy consumption triggered
from sensing, reporting and switching throughout a scheduling
scheme among other alternatives in return for achieved free
spectrum. In this paper, deriving the benefit of rounds, we
contribute to the literature by modeling an optimal cooperative
sensing scheduling framework with minimum opportunity cost
for sensing multiple primary channels given a limited number
of SUs, which gives favorable results for both cases, N >>
M and N <M.

The rest of the paper is organized as follows: Section
II introduces local and cooperative sensing procedures. In
Section III, opportunity cost is formulated in terms of sensing,
reporting and channel switching factors. Then, Section IV
explains optimal optimization algorithm details. Simulation
results and analyses are presented in Section V. Finally,

Section VI concludes the paper with a few remarks.

Table of Notations
Notation Description
M Number of PU channels with indexing 1 ≤ m ≤M
N Number of SUs with indexing 1 ≤ n ≤ N
R Number of Rounds with indexing 1 ≤ r ≤ R
H0

m,r Hypothesis for being idle on channel m at round r
H1

m,r Hypothesis for being busy on channel m at round r
π0
m,r Probability of channel m being idle at round r
π1
m,r Probability of channel m being busy at round r
τr
m,n Sensing time of SU n on channel m at round r
f0
m Carrier frequency of PU channel m
Nr

m,n Time-bandwidth product of SU n on channel m at round r
λr
m,n Detection threshold of SU n on channel m at round r
γr
m,n Received SNR at SU n on channel m at round r

Kr
m Voting rule for channel m in round r

Pb Reporting error rate of the common control channel
Pd,r

m,n Local detection probability of SU n on channel m at round r
P f,r

m,n Local false alarm probability of SU n on channel m at round r
P̃d,r

m,n Reported detection probability of SU n on channel m at round r
P̃ f,r

m,n Reported false alarm probability of SU n on channel m at round r
Qd

m,r Global detection prob. of channel m with voting rule k̄m
Qf

m,r Global f. alarm prob. of channel m with voting rule k̄m
P̄d Local detection probability constraint
P̄f Local false alarm probability constraint
Q̄d Global detection probability constraint
Q̄f Global false alarm probability constraint
ur
m,n Local hard decision of SU n on PU channel m in round r
ũr
m,n Reported local hard decision of SU n on PU channel m in round r

Ps Sensing Power
Ts
m,r Total sensing time of SUs on channel m at round r

Es
m,r Total sensing energy of SUs on channel m at round r

Px Reporting Power
Tx
m,r Total reporting time of SUs on channel m at round r

Ex
m,r Total reporting energy of SUs on channel m at round r

Psw Switching Power
Tsw
m,r Total switching time of SUs on channel m at round r

Esw
m,r Total switching energy of SUs on channel m at round r
xr
m,n Binary variable for assigning SU n for sensing channel m at round r
yrm Binary variable for assigning channel m to be sensed at round r

TABLE I: Table of Notations

Fig. 1: Illustration of rounds and a cycle.

II. SYSTEM MODEL

We consider a CRN scenario in which the assignment of
SUs to sense PU channels is determined by a central cognitive
base station (CBS). The numbers of time synchronous SUs and
PUs are denoted by N and M, respectively. Time is divided
into cycles in each of which all available PU channels are
scheduled to be sensed by centrally committed SUs at most
once. As depicted in Fig. 1, every cycle is further split into



R rounds in each of which an SU is assigned to at most one
PU channel. A PU channel is sensed in exactly one round
during the cycle, and by at least one SU. Multiple SUs may
cooperatively sense a PU channel, and then report their hard
decision of the sensing operation to a fusion center (FC) which
implements a K-out-of-N voting rule to decide on the status
of the channel. For their convenience, we refer readers to
notation list given in Table I where energy, time and frequency
parameters are in units of joule, second and Hz, respectively.

A. Local Spectrum Sensing

Since we concern ourselves more about scheduling aspects
of CRNs, a generic sensing method like energy detection
is adequate. Energy detectors (EDs) have been extensively
exploited as the ubiquitous sensing technique in the literature
due to its simplicity, compatibility with any signal type,
and low computational and implementation complexity [10],
[11]. To detect primary signals, EDs measure the received
signal energy for a time interval and compares it with a
predetermined threshold to decide on the PU activity status.

Let us consider PU channel m with carrier frequency f0
m,

and bandwidth Wm. The ith sample of the received primary
signal taken by SU n during the sensing period τ rm,n on
channel m at round r is given as

yrm,n (i) ∼

{
vm (i) ,H0

m,r

αrm,ns
r
m (i) + vm (i) ,H1

m,r

(1)

where vm (i) is additive white Gaussian noise (AWGN), srm (i)
is the primary signal, and αrm,n is a deterministic constant
due to path loss effect. Using samples defined in Eq. (1), ED
calculates the test statistics and compares it with a threshold
to decide on PU presence/absence as follows

T rm,n(y) =

Nr
m,n∑
i=1

|yrm,n(i)|2
H1

m,r

≷
H0

m,r

λrm,n (2)

where T rm,n(y) is the test statistic, the time-bandwidth product
is denoted by Nr

m,n = τ rm,nWm which is the number of
samples taken during the sensing duration, |yrm,n(i)|2 is the
energy measured on sample i, and λrm,n is the detection
threshold.

In his early work, Urkowitz has shown that T rm,n(y) have
central and non-central chi-square distribution under H0

m,r

and H1
m,r, respectively [12]. Both distributions have 2Nr

m,n

degrees of freedom. If γrm,n =
P r

m,n

N0Wn
is defined as the

instantaneous signal to noise ratio (SNR) of SU n on channel
m, one can express the non-centrality parameter of the latter
distribution in terms of SNR as 2Nr

m,nγ
r
m,n where P rm,n is

the received signal power at SU n on channel m and N0 is
the noise power spectral density. Exploiting the aforestated
distributions’ cumulative distribution functions, local false

alarm and detection probabilities are given by [13]

P f,rm,n = P
(
T rm,n > λrm,n|H0

m,n

)
=

Γ
(
Nr
m,n, λ

r
m,n/2

)
Γ
(
Nr
m,n

) (3)

P d,rm,n = P
(
T rm,n > λrm,n|H1

m,n

)
= QNr

m,n

(√
2Nr

m,nγ
r
m,n,

√
λrm,n

)
(4)

where Γ (·) is the gamma function, Γ (x, a) =
∫∞
x
e−tta−1dt

is the incomplete gamma function, and Qm (x, a) is the
generalized Marcum-Q function defined as Qm (x, a) =

1
am−1

∫∞
x
tm exp−

t2+a2

2 Im−1 (at) dt where Im−1 is the
(m− 1)

th order modified Bessel function of the first kind.

B. Cooperative Spectrum Sensing (CSS)

EDs rely upon the underlying assumption of perfect noise
power estimation. As a consequence, the uncertainty in noise
power evokes SNR wall and high false alarm probability.
Moreover, implications because of radio propagation char-
acteristics such as receiver uncertainty and hidden terminal
problem are other challenging issues which arise from using
EDs [14]. Since it is highly unlikely that the spatially dis-
tributed SUs concurrently experience similar channel impacts,
CSS exploits the spatiotemporal diversity of SUs to alleviate
the aforementioned problems.

In this paper, we consider a centralized CSS in which
SUs report binary local decisions over a dedicated common
control channel (CC) to the fusion center which combines and
diffuses the final decision back to SUs. Sensing proceeds in
rounds, such that in each round a subset of PU channels are
sensed, and all SUs are involved in a sensing round. All rounds
constitute a cycle in which all PU channels are sensed. At the
end of each round, discovered available channels are used by
SUs according to a certain resource sharing strategy, which is
beyond the scope of this paper.

In the case that SU n is assigned to sense PU channel m
in round r, SU n runs a local optimization which is given in
Algorithm 1 to find the minimum sensing duration τ rm,n such
that local detection and false alarm probabilities, P d,rm,n and
P f,rm,n, satisfy the local thresholds P̄d and P̄f , respectively.

Algorithm 1 : Optimal local sensing time of the SU n

1: Min τ rm,n

2: s.t. P d,rm,n ≥ P̄d
3: P f,rm,n ≤ P̄f

Following the local sensing process, assigned SUs send
their hard results urm,n to the FC over an binary symmet-
ric CC. Denoting the reporting error probability as Pb =
P
[
ũrm,n = 1|urm,n = 0

]
= P

[
ũrm,n = 0|urm,n = 1

]
where

ũrm,n is the hard decision received by the FC, local false alarm



and detection probabilities at the FC side are given by

P̃ f,rm,n = P
[
ũrm,n = 1|urm,n = 0

]
P
[
urm,n = 0|H0

m,r

]
+ P

[
ũrm,n = 1|urm,n = 1

]
P
[
urm,n = 1|H0

m,r

]
= Pb

(
1− P f,rm,n

)
+ (1− Pb)P f,rm,n (5)

P̃ d,rm,n = P
[
ũrm,n = 1|urm,n = 0

]
P
[
urm,n = 0|H1

m,r

]
+ P

[
ũrm,n = 1|urm,n = 1

]
P
[
urm,n = 1|H1

m,r

]
= Pb

(
1− P d,rm,n

)
+ (1− Pb)P d,rm,n (6)

It is noteworthy that local decisions are not equal for all
PUs, SUs and round pairs, that is, decision maker receives
independent but unidentically distributed (i.u.d) probabilities.
Thus, this prevents the use of binomial distribution which
requires independent and identically distributed (i.i.d) reports.
Consequently, the random variable Kr

m
∆
=
∑
n ũ

r
m,nx

r
m,n

follows the Poisson-binomial distribution. Using equations (5-
6) in Poisson-binomial distribution, the FC obtains the global
false alarm and detection probabilities by fusing the local
reports as follows

Qfm,r = P
[
Kr
m ≥ K̄r

m | H0
m,r

]
=

∑
A∈FK̄r

m

xrm,n
∏
n∈A

P̃ f,rm,n

∏
n∈Ac

(
1− P̃ f,rm,n

)
(7)

Qdm,r = P
[
Kr
m ≥ K̄r

m | H1
m,r

]
=

∑
A∈FK̄r

m

xrm,n
∏
n∈A

P̃ d,rm,n
∏
n∈Ac

(
1− P̃ d,rm,n

)
(8)

where FK̄r
m

is the set of all subsets of K̄r
m integers that can be

selected from {1, 2, 3, . . . , Nr
m} and Nr

m =
∑
n x

r
m,n is the

total number of SUs assigned to sense PU channel m in round
r. Since FK̄r

m
has

(Nr
m

K̄r
m

)
elements, using an efficient method

to calculate Eq. (7-8) is very important, especially when Nr
m

is very large. For this purpose, the discrete Fourier Transform
(DFT) method in [15] will be used in simulations. Deciding
on an optimal voting rule is still a design issue since a fixed
K̄r
m does not result in an optimal value in all cases. Hence, we

will employ the optimal voting rule which minimizes the total
error rate of the global decisions, QTm,r = Qfm,r+(1−Qdm,r),
with imperfect reporting channel [16].

III. OPPORTUNITY COST

There are three main sources of energy consumption which
contribute to the spectrum opportunity cost: sensing cost,
reporting cost and channel switching cost. For the problem
formulation, we define the following optimization variables:

• xrm,n ∈ {0, 1} is a binary variable which indicates that
SU n is committed to sense PU channel m in round r.

• yrm ∈ {0, 1} is a binary variable which indicates that PU
channel m is scheduled to be sensed at round r.

In the following subsections, spectrum opportunity cost will
be expressed in terms of optimization variables.

A. Sensing Energy

Total sensing duration spent by SUs which sense scheduled
PU channels within round r is given by

Trs =

M∑
m=1

N∑
n=1

τ rm,nx
r
m,n (9)

Then, denoting the sensing power as Ps, the total energy spent
for sensing is given by

ES =

R∑
r=1

Ers =

R∑
r=1

PsTrs (10)

B. Transmission Energy

Total reporting duration spent by SUs which report local
results for scheduled PU channels within round r is given by

Trx =

M∑
m=1

N∑
n=1

txx
r
m,n (11)

where tx is the reporting duration. Then, denoting the sensing
power as Ps, the total energy spent for reporting is given by

EX =

R∑
r=1

Erx =

R∑
r=1

PxTrx (12)

C. Switching Energy

Suppose that SU n is assigned to sense PU channels m− 1
and m in rounds r − 1, and r, respectively. To implement
these sensing assignments, the SU has to switch its operating
frequency to desired channel’s parameters in corresponding
rounds, which can be done by adjusting the voltage level of the
voltage controlled oscillator (VCO) of the phase locked loop
(PLL) circuit. We assume that the switching time satisfies the
triangularity and linearity properties, tsw = β× |f0

m−1− f0
m|,

where β [s/Hz] is a switching factor that depends on pa-
rameters such as power consumption, error rate, and used
technology. Accordingly, the total switching time of SUs
switching their frequencies at the beginning of the round r
is given by

Trsw = tsw

N∑
n=1

∣∣∣∣∣
M∑
m=1

fmx
r
m,n −

M∑
m=1

fmx
r−1
m,n

∣∣∣∣∣ (13)

Thus, denoting the sensing power as Ps, the total energy spent
within a cycle for switching is given by

ESW =

R∑
r=0

Ersw =

R∑
r=0

PswTrsw (14)

where r = 0 represents the initial frequency adjustments of
SUs. Therefore, the accumulated energy consumption within
a cycle due to these three factors is given by

ET = ES + EX + ESW (15)



IV. SCHEDULING OPTIMIZATION

In this section, we will formulate our optimization prob-
lem which minimizes the opportunity cost overall possible
channel sensing order permutations such that PU protection
and spectrum utilization thresholds are satisfied along with
other defined system constraints explained at the beginning of
Section II. Until now, we have not considered the achieved
spectrum opportunity in return for the total energy spent
throughout the rounds, ET . For this purpose, we can use the
probability that the FC decides that PU channel is idle while
it is indeed idle. That is,

π0
m,r = P

[
H0
m,r

]
P
[
H0
m,r|H0

m,r

]
= P

[
H0
m,r

] [
1−Qfm,r

]
(16)

where P
[
H0
m,r

]
is the a priori probability that channel m

is idle at round r. Thus, the overall opportunity cost for the
entire scheduling frame work is given by

η =
ET
π0

=
ET∑

m,r π
0
m,ry

r
mWm

(17)

which is nothing but the inverse of the energy efficiency in met-
rics [Joule/Hz]. Based on the discussion above, we formulate
the optimization problem which minimizes the opportunity
cost (or equivalently maximizes the energy efficiency) in
Algorithm 2

Algorithm 2 : Sensing Scheduling Optimization

1: Min η

2: s.t. Q̄d ≤ Qdm,r ∀r;∀m

3: Qfm,r ≤ Q̄f ∀r;∀m

4:
∑M
m=1 x

r
m,n ≤ 1 ∀r;∀n

5:
∑R
r=1 y

r
m = 1 ∀m

6: xrm,n ≤ yrm ∀r;∀n

7: yrm ≤
∑N
n=1 x

r
m,n ∀r;∀m

8: 0 ≤ Trs,Trx,Trsw, τ rm,n ∀r;∀m;∀n

9: xrm,n, y
r
m ∈ {0, 1} ∀r;∀m;∀n

In Algorithm 2, Line 2 and Line 3 enforce global detection
and false alarm probabilities to satisfy the requirements of
regulatory bodies. Line 4 ensures that an SU is assigned to
at most one PU channel in every round. Line 5 meets the
requirement that a PU channel is sensed once throughout the
cycle. Line 6 and Line 7 are for defining variable yrm in terms
of xrm,r by implementing logic OR function such that yrm =∨(

xrm,n
)
. Line 8 requires the time related variables to be

non-negative. Finally, Line 9 defines the variable types.

V. RESULTS AND ANALYSIS

All simulation results were obtained and plotted using
Matlab. SUs in the network were randomly distributed over an

area of 800 m × 800 m. Without loss of generality, PUs are
located in certain positions for simulation and demonstration
easiness. Unless it is explicitly stated otherwise, we employ
the parameters given in Table II where Ps and Px are taken
from [18] and Psw and tsw

Par. Value Par. Value Par. Value

Ps [18] 0.25W Px [18] 0.11W Psw [19] 4.2mW

tx 100µs tsw [19] 120µs Wm 1MHz

d0 20m θm 3 − 6 N0 −174 dBm

P̄d, Q̄d 0.9 P̄f , Q̄f 0.1 Pb 10−3

TABLE II: Default parameter values used for obtaining results

Path loss constant between PU m and SU n, αrm,n, in
Eq.(1) has been calculated based on the simplified path
loss model in [17]. Lifetimes for busy and idle period of
PU channels are sampled using gamma distribution which
is highly preferred to model many lifetime related random
variables. After generating gamma random variables for each
PU channel, the corresponding shape and scale parameters
of the corresponding probability density function is estimated
using maximum likelihood estimation.
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For Algorithm 1 in the Section II-A, we have employed
the non-linear optimization toolbox of Matlab which achieves
the optimal solution in an fast and iterative manner. For
solving Algorithm 2, we use the Solving Constraint Integer
Programs (SCIP) which is currently one of the fastest non-
commercial solvers for MINLP [20]. Proposed algorithms are
successively divided into smaller subproblems (branching) and
solved recursively, in a similar technique used for solving both
Integer Programs (IP) and Constraint Programs (CP). SCIP
is also accessible to be used in Matlab via the optimization



interface (OPTI) platform which interfaces many high-quality
optimization tools within the rapid development environment
of Matlab [21].

In Fig.2, opportunity cost, η, in units [Joule/MHz] is plot-
ted versus the number of rounds for optimal and suboptimal
algorithms for M = 4 and N = 8. A feasible solution
is found for a cycle consisting of 2 rounds and the energy
cost is dramatically reduced with 3 rounds. This dramatic
change is mostly because SUs with favorable sensing times
for more than one PU channel are assigned to the different
PU channels in different rounds. For the remaining rounds,
η keeps decreasing due to the increase in the π0 as shown
in the Fig.3 where the discovered spectrum gain attained by
proposed scheduling method is apparent.
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Fig. 4: Opportunity costs vs. rounds for 4 PUs and 16 SUs
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Fig. 5: π0 and optimization time vs. rounds for 4 PUs and 16 SUs

In Fig 4, where M = 4 and N = 16, the feasibility
of the solution is satisfied at the very beginning, that is,
1 ≥ dρMN e The advantage of using multiple rounds per cycle
is still evident, which can be seen from the reduction in η
at round 2. The explanation of this enhancement follows the
same reasoning above. The achieved free spectrum attained
via proposed scheduling method and the time complexity are
also shown in Fig.5.

VI. CONCLUSIONS

In this study, an energy efficient multi-channel cooperative
spectrum sensing scheduling framework has been proposed
with the consideration of energy spent on sensing, reporting
and channel switching. Total energy expenditure over all the
scheduling scheme is optimized to obtain maximum free
spectrum gain subject to global false alarm and detection
probabilities which are obtained over an imperfect control

channel. The idea of sensing in rounds has been shown to be
beneficial to obtain a feasible network setup in case the number
of SUs is insufficient to meet the PU protection thresholds. In
particular, this idea provides us with SU selection diversity
for SU↔PU assignments, so that, we can assign favorable
SUs with their lower sensing times to multiple PUs through
rounds.
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