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Abstract—Cooperative spectrum sensing (CSS) has been ex-
tensively studied in the literature to mitigate the weakness
of spectrum sensing against hostile propagation phenomenon.
Especially for large networks, clustered CSS is preferred to
alleviate the energy efficiency, delay and overhead problems.
In this study, reporting and sensing channels are first modeled
with the consideration of path loss and fading. Then, CSS is
divided into three phases: 1) In sensing phase, optimal sensing
time is obtained for each local user subject to local detection and
false alarm probability thresholds, 2) In reporting phase, adopting
Dijkstra’s algorithm, multi-hop paths with the maximum success
rate and cluster head (CH) selection which gives the mimimum
total error rate within each cluster is computed, and 3) In decision
phase, collecting independent but unidentically distributed (i.u.d.)
member decisions, the CH decides on channel occupancy based
on an optimal voting rule for i.u.d. reports. Next, following the
phases above, a multi-objective clustering optimization (MOCO)
is formulated to select SUs into cluster seeking energy and
throughput efficiency goals subject to global detection and
false alarm probability constraints. Finally, the Non-dominated
Sorting Genetic Algorithm-II (NSGA-II) is employed to solve
MOCO. Results based on our approach are presented and the
merits of this approach are demonstrated.

I. INTRODUCTION

The rapid growth of wireless communications and the
demand for high quality of service (QoS) has strained the
current fixed spectrum regulation policies. Recent studies
by the Federal Communications Commission (FCC) show
that temporal and geographical spectrum utilization range
from %15 to %85 [1]. The limited availability and under-
utilization of the radio spectrum has therefore led FCC to
propose the opening of licensed bands to the public. These
necessitate a Dynamic Spectrum Access strategy in which
unlicensed/secondary users (SUs) opportunistically utilize the
licensed/primary user’s (PUs) spectrum insomuch that it does
not cause performance degradation to PUs. As a key tech-
nology to realize opportunistic spectrum access techniques,
Cognitive Radios (CRs) were developed with the ability of
periodically sense the licensed spectra for PU’s occupancy, and
utilize unused spectrum by adjusting their radio parameters to
accommodate surrounding environmental variations [2].

For spectrum sensing, signal processing community has
proposed a variety of methods, many of which either re-
quire a priori knowledge of PU signals or an infeasible
computational power. Energy detection (ED) is considered to
be the simplest and most common technique which works
well for any kind of signal shape and does not require any
prior knowledge about PUs [3]. Denoting the absence and
the presence of a PU by the binary hypotheses H0 and
H1, respectively, detection performance is subject to two

types of error probabilities: false alarm (Pf = P [H1|H0]) and
misdetection (Pm = P [H0|H1]). While higher Pf results in
reduced spectrum utilization, higher Pm causes more collision
between PUs and SUs.

However, in practical scenarios, many channel impairments
such as path loss, shadowing, multipath fading, and the re-
ceiver uncertainty may severely affect the ED performance.
Under fading and shadowing, a low signal-to-noise ratio
(SNR) signal reception does not necessarily imply PU absence,
since SUs may be receiving multiple copies of attenuated
PU signal or may be blocked by obstacles. An SU may
also experience receiver uncertainty problems due to un-
awareness of PU transceivers, if it resides outside of the PU
network transmission range [4]. Furthermore, ED performance
is susceptible to noise power estimation errors, hence, SNR
must be above a certain threshold to deal with the noise
uncertainty, especially in heavily noisy environments [5]. Even
though employing highly sensitive and expensive receivers
with the capability of sensing weak signals may temper the
performance degradation, this relief is limited by hardware
limitations. Particularly, if SNR is under a certain threshold,
neither enhancing sensitivity nor prolonging the sensing time
can improve ED performance at all [6].

Fortunately, cooperative spectrum sensing (CSS) can miti-
gate the deficiency of local SUs by taking advantage of spatial
diversity of SUs because it is highly unlikely that the spatially
distributed SUs simultaneously suffer from the same channel
impairments. CSS can be divided into two categories based on
data sharing method (centralized and distributed) and data type
(soft data fusion and hard decision fusion). Although employ-
ing soft data fusion yields a superior performance, sharing that
massive amount of observation data results in communication
overhead which cannot be sustained by a bandwidth limited
CC. Thus, hard decision fusion stays a step ahead with its low
reporting overhead. Nevertheless, as the number of wide-area
distributed cooperating SUs increases, CC still experiences
bandwidth insufficiency along with reporting unreliability and
delay due to long distances. To overcome these issues, dividing
SUs into clusters is an attractive and efficient method to reduce
cooperation range and overhead [7], [8], [9], [10]. Considering
certain objectives and constraints, planning SU selection is
a nontrivial task, especially when geoposition information is
unavailable. If there exists multiple channels, assignment of
SUs into clusters is a more challenging problem which has
not been fully investigated in the literature yet.

The objective of the CR technology is to achieve the
highest spectrum utilization while protecting PUs from SU



interference. Besides, when the mobility and the limited power
resource of SUs are taken into account, an energy efficient
clustering method plays a vital role for extending the battery
life of SUs. If the spectrum utilization and energy consumption
are defined as currency and commodity, respectively, ultimate
design goal would be clustering SUs within the network in
such a way that commodity per currency is maximized subject
to a PU protection threshold. Additionally, fairness is another
design metric to be considered since an SU would naturally
like to get a fair benefit while spending energy for others.
An energy efficient clustering may be fulfilled by minimizing
the intra-cluster energy consumption and balancing the inter-
cluster total sensing times because energy consumption is
proportional to sensing duration. Since a cluster head (CH),
which plays the FC’s role in the cluster, would not diffuse
back the final decision until it collects all the local decisions
from cluster members, minimizing the intra-cluster and bal-
ancing the inter-cluster maximum sensing times is equivalent
to maximizing and balancing the remaining intra-cluster and
inter-cluster achievable throughput, respectively.

Similar to sensing channels, CC is also subject to chan-
nel impairments which may result in an imperfect reporting
environment. In such a case, instead of using a single-hop
reporting technique in which cluster members directly reports
to CHs, employing a multi-hop path with the minimum
error rate among all other paths results in a better reporting
performance in terms of robustness, delay and communication
range. Moreover, selecting the CH which yields the maximum
multi-hop success rate among all cluster members is another
necessity for a reliable reporting among SUs. In contrast with
existing works dealing with the independent and identically
distributed (i.i.d.) SUs, a decision fusion rule with the ability
of handling i.u.d. SU reports is required for i.u.d. path errors.

In this paper, considering the realistic and practical issues
pointed out above, we proposed CSS process that consists
of three phases: 1) Sensing phase, in which optimal sensing
time is obtained for local users subject to local detection
and false alarm probability thresholds; 2) Reporting phase, in
which employing Dijkstra’s algorithm, multi-hop paths with
the minimum error rate and CH which gives the maximum
success rate within each cluster is calculated; and 3) Decision
phase, in which reported i.u.d. decisions are gathered, and
CH decides on channel occupancy based on an optimal voting
rule for i.u.d. reports. For selecting SUs into clusters, Multi-
Objective Clustering Optimization (MOCO) is formulated to:
1) minimize and balance intra-cluster and inter-cluster total
sensing energy, respectively; and 2) to maximize and balance
intra-cluster and inter-cluster achievable throughput, respec-
tively. MOCO is also subject to constraints which guarantee
protection of PUs from spectrum collisions with SUs.

The rest of this paper is organized as follows: Section II
introduces the system model. Section III gives the details of
CSS phases. Then, Section IV develops MOCO and explains
its solution with NSGA-II. Next, simulation results and anal-
ysis are presented in Section V. Finally, Section VI concludes
the paper with a few remarks.

II. SYSTEM MODEL

In this section, the details of sensing and control channel
propagation environment, as well as ED performance metrics
will be provided.

Table of Notations
Notation Description
M Number of SUs with indexing 1 ≤ m ≤M
N Number of clusters/PU channels with indexing 1 ≤ n ≤ N
Cn Set of SUs within cluster n with cardinality Cn
Tm,n Sensing time of SU m at channel n
εm,n Sensing energy of SU m at channel n
Nm,n Time-bandwidth product of SU m at channel n
λm,n Detection threshold of SU m at channel n
k̄n Voting rule for cluster n with optimal value k∗n
P dm,n/P fm,n Local detection/f. alarm prob. of SU m at channel n
Qdn
(
k̄n
)

Global detection prob. of cluster n with voting rule k̄n
Qfn
(
k̄n
)

Global f. alarm prob. of cluster n with voting rule k̄n
P̄d / P̄f Local detection / f. alarm prob. constraints
Q̄d / Q̄f Global detection / f. alarm prob. constraints
pi,j /qi,j BER/BSR of the single hop between SUs i and j
qi j BSR of the path i j between SUs i and j
qi→j BSR of the Dijkstra path between SUs i and j
Γin Set of SUs can reach SU i within cluster n
In (m) Indicator function for membership to cluster n
F, G, H Objective vectors for inter-cluster energy minimization, th-

roughput maximization, and intra-cluster balance, respectively.

TABLE I: Table of Notations

A. Channel Propagation Model

The wireless propagation channel is a challenging medium
for an SU energy detector since it is not only vulnerable
to noise and interference from other communicating radios
but also sensitive to other channel impairments such as path-
loss and multipath fading. Therefore, wherever the energy
detector is employed for sensing PU signal existence, channel
characteristics of the surrounding environment of SUs must be
considered. Based on the model in [11], received signal power
by SU m on PU channel n is given by

P rm,n
P tn

= kn

[
d0

dm,n

]θn
(1)

where P tn and P rm,n represent the transmitted signal power by
PU n and received signal power by SU m on PU channel
n, respectively; kn is a unitless constant that depends on
signal wavelength, antenna parameters, and other factors of
PU channel n; d0 is a reference distance; θn is the path-loss
exponent that represents the rate of PU channel n at which
the path loss increases with the distance between SU m and
PU n, dm,n. With slight index changes, the same argument
follows for received signal power at CC for reporting SUs.

B. Energy Detector

For sensing the activities of PUs, we will employ energy
detection due to its low computational complexity and applica-
bility to any signal shape without requiring a priori knowledge.
Let us consider a frequency band with carrier frequency f0

n,
and bandwidth Wn for PU channel n. The kth sample of the



received primary signal taken by SU m during the sensing
period Tm,n on channel n is given as

ym,n (k) ∼

{
vn (k) ,H0

hm,n (k) sn (k) + vn (k) ,H1

(2)

where the time-bandwidth product is denoted by Nm,n =
Tm,nWn which is the number of samples taken during the
sensing duration, vn (k) is additive white Gaussian noise
(AWGN), sn (k) is the primary signal, and hm,n is the convex
envelope of the channel gain. Assuming the sensing time
is smaller than the channel coherence time, hm,n (k) can
be viewed as time-invariant during the sensing interval i.e.
hm,n (k) = hm,n, . Then, ED measures energy of received
signal and compares it with a threshold to decide on PU
presence/absence as follows

Tm,n(y) =

Nm,n∑
k=1

|ym,n(k)|2
H1

≷
H0

λm,n (3)

where Tm,n(y) is the test statistics, |ym,n(k)|2 is the energy
measured on sample k, and λm,n is the detection threshold. In
[12], Tm,n(y) has been shown to have central and non-central
chi-square distribution under H0 and H1, respectively. Both
distributions have 2Nm,n degrees of freedom and the latter has
non-centrality parameter P rm,nTm,n

N0/2
where N0 is the noise

power spectral density. Defining the instantaneous SNR of SU
m at channel n as γm,n =

P rm,n
N0Wn

, non-centrality parameter can
be shown in terms of SNR as P rm,nTm,n

N0/2
=

2P rm,nTm,nWn

N0Wn =
2Nm,nγm,n. In the case of deterministic hm,n, using the cu-
mulative distribution functions of the aforestated distributions,
probabilities of false alarm, and detection are given as [13]

P fm,n = P (Tm,n > λm,n|H0) =
Γ (Nm,n, λm,n/2)

Γ (Nm,n)
(4)

P dm,n = P (Tm,n > λm,n|H1)

= QNm,n
(√

2Nm,nγm,n,
√
λm,n

)
(5)

where Γ (·) is the gamma function, Γ (x, a) =
∫∞
x
e−tta−1dt

is the incomplete gamma function, and Qm (x, a) is the
generalized Marcum-Q function defined as Qm (x, a) =

1
am−1

∫∞
x
tm exp−

t2+a2

2 Im−1 (at) dt where Im−1 is the
(m− 1)

th order modified Bessel function of the first kind.
On the contrary of deterministic channel gain assumption, if
hm,n follows a certain distribution, P dm,n given in Eq. (4) is
the conditional probability detection for a given instantaneous
SNR, γm,n. Therefore, one needs to average this conditional
probability over all possible instants as follows

P dm,n =

∫
γ

QNm,n
(√

2Nm,nx,
√
λm,n

)
fγ (x) dx (6)

where fγ (x) dx is the fading distribution. In the case of
Rayleigh fading, γm,n is exponentially distributed and the
closed form expression for Eq. (6) is derived as [14]

P dm,n =
Γ (Nm,n − 1, λm,n/2)

Γ (Nm,n − 1)
+ e

λm,n
2(1+Nm,nγ̄m,n)

(
Nm,nγ̄m,n + 1

Nm,nγ̄m,n

)Nm,n−1

×

1−
Γ

(
Nm,n − 1,

λm,nNm,nγ̄m,n

2(1+Nm,nγ̄m,n)

)
Γ (Nm,n − 1)

 (7)

where γ̄m,n is the average SNR.

III. COOPERATIVE SPECTRUM SENSING

We consider a cluster based centralized CSS with M time
synchronous SUs and N PUs. Each cluster is responsible for
sensing and utilizing only one channel. Time is divided into
fixed-length slots, τs, in each of which PU channel is at either
busy or idle state for the whole slot. SUs can join at most one
cluster during a time slot. In the following subsections, CSS
phases will be explained in detail.

A. Sensing Phase

During the sensing phase, based on received SNR γm,n
and corresponding threshold λm,n, each SU can locally find
its own optimal sensing time subject to a PU protection
and spectrum utilization threshold. Assuming sensing power
is constant for every PU and SU pair, i.e., P sm,n = P s,
∀m,n, then the optimal energy consumed by SU m for
sensing channel n is given by εm,n = P sTm,n. Accordingly,
the optimal local sensing energy εm,n is calculated using
Algorithm 1 where P̄d and P̄f are required thresholds for
detection and false alarm probability, respectively. The con-
straints in Lines 2 and 3 protect PUs from SU interference,
and ensure adequate spectrum utilization by SUs, respectively.
If the expression in Eq. (4) is defined as F (λm,n|Nm,n),
for a given time-bandwidth product Nm,n and false alarm
constraint, the required threshold λm,n can be derived as
λm,n = F−1

(
P̄ f |Nm,n

)
. Substituting λm,n and Nm,n into

Eq. (5), the corresponding P dm,n can be computed.

Algorithm 1 : Optimal sensing energy of the SU m at channel n

1: Min εm,n

2: s.t. P dm,n ≥ P̄d
3: P fm,n ≤ P̄f

B. Reporting Phase

In the reporting phase, SUs report their local decisions over
a noisy CC to CH and receive decision and control feedback
from CHs. Even though many studies in the literature have
only focused on a direct single-hop reporting link between
SUs and CHs, this may not always result in a reliable and
energy efficient cooperation between SUs and CHs, especially
when SUs with limited maximum transmission power in a
cluster are spread over a wide area. In this case, the limited
communication range of CHs/SUs may cause some SUs/CHs
to lie outside the communication range of each other, and
SUs/CHs will not be able to reliably get information from
CHs/SUs due to the channel impairments over relatively large
distances. Alternatively, exploiting a multi-hop method for the



reporting phase does not only alleviate the communication
range limitation but also gives a chance to employing an
algorithm which finds the multi-hop path with maximum
success probability from cluster member to a specific CH.
Based on this idea, we can decide on the SU to act as an CH
such that the total minimum error rate among other members
is achieved. Taking all of these into consideration results in a
better reporting performance in terms of robustness, reporting
delay and communication range.

Initially, SUs transmit pilot signals to recognize which
SUs are in their communication range by identifying the
channel quality metrics among themselves. Consider a cluster
for PU channel n as a set of SUs denoted by Cn with
cardinality, |Cn| = Cn. We denote the set of SUs which
reside in the transmission range of SU i in cluster n as Γin =
{j| γj,i ≥ γ̄, ∀j ∈ Cn} where γi,j and γ̄ are the received pilot
signal SNR by SU j from SU i and the SNR threshold for
communication range, respectively. Following the pilot tone,
SUs arbitrarily and temporarily select an SU among them to
be CH and share the channel metrics measured during the pilot
tone. Then, the temporary CH run an algorithm which yields
the best CH with maximum success rate multi-hop routes.
Based on the result of this algorithm, temporary CH announce
the new CH to SUs and devolve its responsibilities. Next, we
explain the algorithm which will be exploited by CHs.

The cluster graph Gn(Cn,Ln) is defined with the set of
vertices Cn representing SU nodes and the set of links
Lc =

{
lni,j | i, j ∈ Cn, i 6= j, i ∈ Γjn, j ∈ Γin

}
representing

the direct hop between SU nodes i and j. Even if the path
loss for the links lni,j and lnj,i may be the same, it is highly
probable to experience a different fading effect due to channel
randomness. Therefore, we do not assume link symmetry
between SU pairs within the clusters. We further assume
that CC is subject to Rayleigh Fading and employs binary
phase shift keying (BPSK) modulation in order to facilitate
a fair comparison to existing reporting methods. Thus, bit
error probability from SU i to SU j under Rayleigh fading
is denoted by pij . Then, the bit success probability (BSP)
from SU i to SU j is qi,j = 1− pi,j . Denoting any multi-hop
path from SU i to SU j as i  j, BSP of the path i  j
is given by qi j =

∏
k,l∈i j qk,l. Indeed, maximizing qi j

is equivalent to minimizing the negative sum of logarithm of
qi j as follows

max (qi j) = max (log (qi j)) = min

− ∑
k,l∈i j

log (qk,l)


where terms log (qi,j) ≤ 0 since 0 < qi,j ≤ 1, by transforming
the computation of qi j from a multiplication operation into a
summation operation, Dijkstra’s algorithm can be employed to
calculate the route with minimum path cost from SU i to SU
j. Denoting the route from SU i to SU j with minimum error
and its cost calculated by Dijkstra’s algorithm as i → j and
Di→j , respectively, the SU which yields the minimum total
cost, i.e. the maximum total success rate, is selected to be the

CH as follows

CHn = argmin
j∈Cn

∑
i∈Cn
i6=j

Di→j (8)

C. Decision Phase

After the final CH assignment, each SU within cluster n
reports its final binary decision uni = {0, 1} to CH over the
route i → j. Defining the random variable kn

∆
=
∑
i∈Cn u

n
i ,

under perfect reporting channel and i.i.d. SUs (P di,n = P̄d and
P fi,n = P̄f , ∀i ∈ Cn), kn is binomially distributed, which is
a.k.a. k-out-of-N rule. Under the k-out-of-N rule, CH decides
on H1 for PU n if at least k̄n of SUs reports 1, i.e. kn ≥ k̄n.
Although all local observations are i.i.d. before the reporting
phase, since each multi-hop path has a different success rate,
CH receives non-identical observations as follows

P̃ di,n = qi→jP̄
d + (1− qi→j)

(
1− P̄ d

)
(9)

P̃ fi,n = qi→jP̄
f + (1− qi→j)

(
1− P̄ f

)
(10)

where SU j is selected to be CH. For i.u.d. SUs, kn has
Poisson-Binomial distribution which is given by [15]

Qdn
(
k̄n
)

=
∑

A∈Fk̄n

∏
i∈A

P̃ di,n
∏
i∈Ac

(
1− P̃ di,n

)
(11)

Qfn
(
k̄n
)

=
∑

A∈Fk̄n

∏
i∈A

P̃ fi,n
∏
i∈Ac

(
1− P̃ fi,n

)
(12)

where Fk̄n is the set of all subsets of k̄n integers that can be
selected from {1, 2, 3, . . . ,Cn} . Since Fk̄n has

(Cn
k̄n

)
elements,

using an efficient method to calculate Eq. (11-12) is very
important, especially when Cn is very large. For this purpose,
discrete Fourier Transform (DFT) method in [16] will be used
in simulations.

Another important decision phase design parameter is the
optimal voting rule selection for clusters. The OR rule (k̄n =
1) works best if Cn is large. Likewise, The AND rule (k̄n =
Cn) works best if Cn is small. For intermediate size clusters,
Majority rule (k̄n ≥ Cn/2) can provide better results. Since
there is no single value which minimizes the detection errors
for all cases, deciding on a proper k̄n value for cluster n is
important. In [17], an optimum voting rule which minimizes
the total error rate, QTn

(
k̄n
)

= Qfn
(
k̄n
)

+
(
1−Qdn

(
k̄n
))

,
is given for i.i.d. SUs under perfect reporting channels, i.e
qi→j = 1. Using the average multi-hop success rate within
a cluster, we modify the optimal voting rule provided by
[17] for CSS with identical SUs under imperfect reporting
channel conditions. Let us denote the average success rate
within cluster n as qn, identical probability of detection and
false alarm are given by

P̂ dn = qnP̄
d + (1− qn)

(
1− P̄ d

)
(13)

P̃ fn = qnP̄
f + (1− qn)

(
1− P̄ f

)
(14)

Then, the optimal voting rule for imperfect channel will be

k∗n = min

(
Cn,

⌈
Cn

1 + α

⌉)
(15)



where α = ln
P̂ fn
P̂dn
/ ln

1−P̂dn
1−P̂ fn

. In the results section, we show

that although QTn changes for different route success rates, the
optimal voting k∗n does not change for a given cluster size.

IV. MULTI-OBJECTIVE CLUSTERING OPTIMIZATION

Even though the clustered cooperative spectrum sensing
paradigm is highly exploited in the literature for sensing a
single channel, the multi-channel case, which requires clus-
tering potential SUs to sense multiple PU channels with the
consideration of energy-throughput efficiency objectives along
with sensing reliability constraints, has not been studied in
depth yet. For a given sensing period, if there exists M SUs
available to help with sensing and there exists N potential PU
channels to sense, a clustering of the SUs is required such
that minimizing/maximizing the intra-cluster and balancing
the inter-cluster energy expenditure/throughput is optimized
subject to cooperation reliability constraints. We define the
indicator function In (m) which indicates the membership of
SU m in cluster n. For each cluster, three types of objective
vectors are defined to be minimized: F ∈ RN , G ∈ RN , and
H ∈ R2 with elements

Fn =
∑
m∈Cn

εm,n , Gn = max
m∈Cn

(Tm,n) ,

H1 = max
n

(Fn)−min
n

(Fn) , H2 = max
n

(Gn)−min
n

(Gn)

where Fn is for intra-cluster total energy consumption min-
imization within cluster n, Gn is for intra-cluster maximum
sensing time minimization within cluster n, such that the time
available after sensing phase is maximized for maximizing
the achievable throughput. H1 and H2 handle the inter-cluster
total energy consumption and throughput balance, respectively.
Based on these objectives, we formulate Algorithm 2 which
clusters the network as follows:

Algorithm 2 : MOCO

1: Min F, G, H
2: s.t.

∑N
n=1 In(m) ≤ 1,∀m

3:
∑M
m=1 In(m) ≥ 1,∀n

4: Qdn (k∗n) ≥ Q̄d,∀n
5: Qfn (k∗n) ≤ Q̄f ,∀n
6: Tm,n ≤ τ,∀m,n

Since, an SU can sense at most one channel during a sensing
period,

∑N
n=1 In(m) ≤ 1 in Line 2. Moreover, Line 3 makes

sure that each PU channel is sensed by at least one SU.
Line 4-5 are global decision probability constraints need to
be satisfied for reporting and decision phase reliability. The
constraint in Line 6 on the sensing time is especially beneficial
to take SUs with unnecessarily long sensing duration out of
consideration.

Algorithm 2 is a multi-objective mixed-integer combina-
torial optimization problem which is NP-hard. Since it has
conflicting objectives, there may exists a set of nondominated

solutions by which none of the objective functions can be
improved without degrading some of the other objective val-
ues. Finding nondominated solutions of such a combinatorial
problem requires infeasible computation time, especially for
large numbers of SUs and PU channels. Therefore, employing
meta-heuristic methods to obtain a sufficient solution within
a reasonable time frame is preferable in practice. Multi-
objective evolutionary algorithms (MOEA), which are generic
population based meta-heuristic approaches inspired by bio-
logical evolution, were shown to be performing well for many
problems if it is adapted and applied carefully. Hereupon,
we will use the Nondominated Sorting Genetic Algorithm-II
(NSGA-II) which is a fast and elitist multi-objective genetic
algorithm (MOGA) [18]. Due to space limitations, we skip
the details of GAs and NSGA-II and refer interested readers
to references [19] and [18]. The problem specific adaptation
of NSGA-II is explained below.

Initially, a random parent population P0 with size P is
generated, in which each solution is coded into a chromosome
vector s ∈ Z+M whose indices (genes) represent SUs and
corresponding values of the vector represent the cluster to
which SUs are assigned. Using the coding scheme given in

PUs N − 5 N 2 · · · n · · · 2 N − 1

SUs 1 2 3 · · · m · · · M− 1 M

TABLE II: A random chromosome representation for solution s

Table II, the constraint in Line 2 which requires an SU can be
assigned at most one PU is already satisfied. For the constraint
in Line 3, chromosomes are checked at the end of every
genetic operation and genes violating these constraints are
replaced with a proper value randomly. Constraints in Line 4
and 5 are handled directly by the method proposed in NSGA-
II. At each generation, we group the indices of solution s which
have common values into the same cluster, and evaluate fitness
functions and constraint values following the steps detailed in
Section III-B and Section III-C. Finally, solutions are ranked
and sorted based on their fitness value to create the next
generation. This iterative procedure is repeated until a target
generation size, G, is satisfied.

Par. Value Par. Value Par. Value

fsn ∼ 0.9MHz frn 2.1MHz Wn 1MHz

d0 100m θn 3− 6 N0 −174dBm

N 9 M 90 τ 0.15s

P̄d 0.9 P̄f 0.1 P 50

Q̄d 0.9 Q̄f 0.1 G 20

TABLE III: Default parameter values used for obtaining results

V. RESULTS AND ANALYSIS

All simulation results were obtained and plotted using
Matlab. SUs in the network were randomly distributed over
an area of 2 km× 2 km. Without loss of generality, PUs are
located in certain positions for simulation and demonstration
easiness as in Fig. 3. Throughout the simulation, the values in
Table III are employed, unless it is explicitly stated otherwise.



For Algorithm 1 in the sensing phase, we have employed the
non-linear optimization toolbox of Matlab which achieves the
optimal solution in an iterative manner. During simulation,
optimal εm,n values are obtained using at most 20 iterations.
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Fig. 1: Comparison between single-hop and multi-hop approach

Fig. 1 shows the error performance enhancement comes
with the method proposed in the reporting phase. In Fig. 1, the
green dashed line with star markers shows the total reporting
error caused by multi-hop technique for each cluster based on
the clustering topology in Fig. 3. On the other hand, the solid
red line with square markers and the dashed red lines with
diamond markers show the worst and the best case of single-
hop technique, respectively. As it is expected, with comparison
to the best case single-hop reporting, a superior performance
is obtained through the proposed method.
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Fig. 2: MOCO Results for different objectives

For the population and generation sizes given in Table
III, the results for MOCO objective values and clustering
topology of the network using NSGA-II are shown in Fig. 2
and Fig. 3, respectively. At the bottom of the Fig. 2, colorbar
ranges from 1 to 50 represents the populations of the final
generation. In Fig. 3, the amoeba-like shapes with opaque
colors represent the clusters in each of which square shape
represents the PU with the number inside, diamond shapes
represent cluster members along with SNR values in dB units,
and hexagon shapes represents CH which is selected by the
technique proposed in this paper.

VI. CONCLUSIONS

In this study, an energy and throughput efficient multi-
objective clustering algorithm is developed subject to PU
protection and spectrum utilization constraints in the existence
of multiple PU channels. The CH of each cluster along
with the maximum success rate multi-hop reporting route
jointly evaluated during the optimization process. Moreover,
an optimal voting rule is analyzed in the case of i.u.d. SU
reports.

Fig. 3: Clustered network topology based on results in Fig. 2

REFERENCES

[1] F. C. Commission et al., “Spectrum policy task force report, fcc 02-155,”
2002.

[2] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next
generation/dynamic spectrum access/cognitive radio wireless networks:
a survey,” Computer Networks, vol. 50, no. 13, pp. 2127–2159, 2006.

[3] J. Ma, G. Y. Li, and B. H. Juang, “Signal processing in cognitive radio,”
Proceedings of the IEEE, vol. 97, no. 5, pp. 805–823, 2009.

[4] I. F. Akyildiz, B. F. Lo, and R. Balakrishnan, “Cooperative spectrum
sensing in cognitive radio networks: A survey,” Physical Communica-
tion, vol. 4, no. 1, pp. 40–62, 2011.

[5] A. Sonnenschein and P. M. Fishman, “Radiometric detection of spread-
spectrum signals in noise of uncertain power,” Aerospace and Electronic
Systems, IEEE Transactions on, vol. 28, no. 3, pp. 654–660, 1992.

[6] R. Tandra and A. Sahai, “Snr walls for signal detection,” Selected Topics
in Signal Processing, IEEE Journal of, vol. 2, no. 1, pp. 4–17, 2008.

[7] C. Sun, W. Zhang, and K. Ben, “Cluster-based cooperative spectrum
sensing in cognitive radio systems,” in Communications, 2007. ICC’07.
IEEE International Conference on. IEEE, 2007, pp. 2511–2515.

[8] A. C. Malady and C. R. da Silva, “Clustering methods for distributed
spectrum sensing in cognitive radio systems,” in Military Communica-
tions Conference, 2008. MILCOM 2008. IEEE. IEEE, 2008, pp. 1–5.

[9] C. Guo, T. Peng, S. Xu, H. Wang, and W. Wang, “Cooperative spectrum
sensing with cluster-based architecture in cognitive radio networks,” in
Vehicular Technology Conference, 2009. VTC Spring 2009. IEEE 69th.
IEEE, 2009, pp. 1–5.

[10] J. Wei and X. Zhang, “Energy-efficient distributed spectrum sensing for
wireless cognitive radio networks,” in INFOCOM IEEE Conference on
Computer Communications Workshops, 2010. IEEE, 2010, pp. 1–6.

[11] T. S. Rappaport et al., Wireless communications: principles and practice.
Prentice Hall PTR New Jersey, 1996, vol. 2.

[12] H. Urkowitz, “Energy detection of unknown deterministic signals,”
Proceedings of the IEEE, vol. 55, no. 4, pp. 523–531, 1967.

[13] A. Ghasemi and E. S. Sousa, “Opportunistic spectrum access in fading
channels through collaborative sensing,” Journal of communications,
vol. 2, no. 2, pp. 71–82, 2007.

[14] F. F. Digham, M.-S. Alouini, and M. K. Simon, “On the energy
detection of unknown signals over fading channels,” IEEE Transactions
on Communications, vol. 55, no. 1, pp. 21–24, 2007.

[15] Y. H. Wang, “On the number of successes in independent trials,”
Statistica Sinica, vol. 3, no. 2, pp. 295–312, 1993.

[16] M. Fernandez and S. Williams, “Closed-form expression for the poisson-
binomial probability density function,” Aerospace and Electronic Sys-
tems, IEEE Transactions on, vol. 46, no. 2, pp. 803–817, 2010.

[17] W. Zhang, R. K. Mallik, and K. Letaief, “Optimization of cooperative
spectrum sensing with energy detection in cognitive radio networks,”
Wireless Communications, IEEE Transactions on, vol. 8, no. 12, pp.
5761–5766, 2009.

[18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: Nsga-ii,” Evolutionary Computation,
IEEE Transactions on, vol. 6, no. 2, pp. 182–197, 2002.

[19] K. Deb et al., Multi-objective optimization using evolutionary algo-
rithms. John Wiley & Sons Chichester, 2001, vol. 2012.


