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Abstract—In order to design energy efficient and energy
harvesting (EEH) cooperative spectrum sensing (EEH-CSS),
four fundamental constraints must be considered: 1) collision
constraint to protect primary users (PUs) from the collision
with secondary users (SUs), 2) energy-causality constraint which
states that the energy harvested by a time instant must be
greater than or equal to the consumed energy until that time
instant, 3) energy half-duplex (EHD) constraint which prevents
the batteries from charging and discharging at the same time,
and 4) correlation constraint which limits the information about
the primary channel (PC) state of next time slot can be extracted
from the current PC state. In this regard, we consider a
hybrid energy harvesting SU (EH-SU) model which can harvest
energy from both renewable sources, e.g., solar, and ambient
radio frequency signals. A heterogeneous EEH-CSS scheme is
first proposed to handle EH-SUs with non-identical harvesting,
sensing, and reporting characteristics by permitting them to sense
and report at different sensing accuracy. Formulating the energy
state evolution of EH-SUs with and without EHD constraint, we
analyze the asymptotic activity behavior of a single EH-SU by
deriving the theoretical upper bound for the chance of being
active to sense and transmit. Thereafter, we develop a convex
framework to find maximum achievable total throughput by
optimizing the asymptotic active probability, sensing duration,
and detection threshold of each SU subject to above constraints.
Given a potential set of SUs, determining the optimal subset
of cooperating EH-SUs is of the essence to achieve maximum
achievable total throughput. Since EH-SU selection is inherently
a combinatorial problem, a fast yet high performance solution is
proposed based on SUs’ energy harvesting, sensing and reporting
attributes. Finally, a myopic access procedure is developed to
determine the active set of EH-SUs given the best subset of SUs.

Index Terms—Wireless Powered Communications, Myopic Pol-
icy, Poisson-Binomial, RF Energy Harvesting, Energy Half-Full
Duplex, Correlation Constraint, Energy Causality Constraint.

I. INTRODUCTION

To fulfill the ambitious demands of the next generation
wireless communication networks, e.g., 1000 times the data
traffic and 100th of the energy consumption per bit [1],
researchers in both academy and industry focus on energy
and spectrum efficient solutions. CRNs have already received
a great attention from both communities to mitigate the
inefficient fixed spectrum allocation policy with the novel idea
of utilizing idle licensed spectrum in an opportunistic and non-
intrusive manner. However, a substantial portion of the above
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demands has recently migrated to mobile wireless networks
and devices with limited energy resources. Considering the
fact that 30% of the energy expenditure of mobile devices
is caused by wireless networking and computing modules [2],
energy efficient (EE) CRNs play a vital role to provide portable
devices with more spectrum for less energy consumption.
Because approximately 2% of the worldwide CO2 emissions
is caused by the communications and information technologies
[3], EE policies are becoming more important to achieve green
communication standards.

In this regard, recent studies focus on energy harvesting
(EH) communications to obtain significant advantages over
traditional grid-powered and non-rechargeable and/or battery-
powered wireless devices. By harvesting required energy from
alternative natural sources such as solar, vibrational, thermo-
electric, and radio frequency (RF) signals etc., EH-SUs can
achieve self-sustaining green communications. For a given
amount of energy, conventional EE-CRNs aim to minimize the
total sensing energy consumption subject to the fundamental
collision constraint which prevents unlicensed users, i.e., SUs,
from interfering with the licensed users, a.k.a primary users
(PUs). In EH systems, on the other hand, energy needed for
sensing and data transmission arrives intermittently and in
random magnitudes of energy because of the random nature
of EH sources. Then, the ultimate goal of EEH-CRNs would
be, not only to minimize the over-all energy consumption, but
to also maintain sensing and transmitting tasks under random
and intermittent energy arrivals. Such a goal dictates an extra
fundamental limit on the capacity of traditional CRNs: energy-
causality constraint which states that the energy harvested by
a time instant must be greater than or equal to the consumed
energy until that time instant [4]. When the primary channel
(PC) traffic is modeled as a Markov process, the information
about the next spectrum occupancy state can be extracted
from the current state is determined by the channel transition
probabilities of the Markov process, which dictates correlation
constraint as an additional design consideration [5].

A. Related Work

In his early work, Sultan considers a non-cooperative spec-
trum sensing scheme where a single EH-SU tries to maximize
its throughput while making decision on being either dormant
or active to sense the PC based on a Markov decision process
(MDP) [6]. In [5], [7], [8], the authors investigate the effects
of energy arrivals on spectrum sensing and access policies of



a single EH-SU. In accordance with the energy arrival rate,
they also define energy-limited and spectrum-limited regimes
for a fixed sensing duration. Nevertheless, these studies merely
address the non-cooperative spectrum sensing. Moreover, they
optimize the energy consumption of the SU by adjusting the
detection threshold for a fixed sensing duration. However, joint
optimization of sensing durations and detection thresholds of
SUs is necessary for an EEH-CSS.

Yin et al. studies the fundamental tradeoffs among harvest-
ing, sensing, and transmission duration in CSS [9]. Based on
homogeneous signal-to-noise-ratio (SNR) and perfect common
control channel (CCC) assumption, they develop the theoret-
ical basis of CSS under the collision and EHD constraints.
Likewise, for a homogeneous EH-CSS scenario where SUs
harvest energy from RF signals, the optimal sensing probabil-
ity and harvesting duration of each SU is obtained to maximize
the throughput while satisfying the energy causality and PU
collision constraints in [10]. Similarly, authors of [11] consider
a homogeneous CSS setting to find the optimum balance
between average probability of global detection, probability
of false alarm and probability of having an active SU to
transmit with the available harvested energy. Finally, a finite-
horizon partially observable MDP (POMDP) is considered to
obtain the optimal cooperation among the SUs for sensing and
access to maximize throughput with the available energy while
satisfying the collision constraint [12].

B. Main Contributions and Novelty
We summarize the main contributions of the paper as

follows:
1) We first propose a hybrid EEH-CSS scheme of SUs

which can harvest energy from renewable sources, e.g.
solar, and ambient RF signals. This hybridization espe-
cially provides a general framework which is applicable
to wireless and/or non-wireless EH-SUs with different
size, power needs, and energy harvesting rate, etc. In
order to mitigate the EHD limitation of ultra-capacitors,
which prevents SUs from charging and discharging at the
same time, Luo et al. proposed the simple and yet novel
idea of using two different capacitors [13]. Based on our
previous work [14], we also generalize their model to
investigate the performance of a hybrid EEH-CSS with
and without the EHD constraint.

2) Traditional K-out of-N rule treats SUs equivalently
by enforcing each SU to report with identical local
detector performances regardless of their sensing and
reporting channel characteristics, which may not yield
an optimal performance if SUs do not have identical
sensing qualities. In order to obtain an optimal EEH-
CSS scheme under heterogeneous conditions, we em-
ploy a heterogeneous K-out of-N rule by permitting
SUs to report with different detector performance levels
according to their sensing qualities. Demonstrating the
differences in the time slotted operation of SUs due
to the heterogeneity, we then develop the energy state
evolution of EEH-CSS with and without EHD constraint.

3) Energy arrival rates, sensing durations and energy detec-
tion thresholds of EH-SUs are key factors in EEH-CSS

since they are inextricably interwoven with the collision
and energy-causality constraints. For the proposed hy-
brid model, we obtain the theoretical upper bound for
the chance of being active subject to the energy causality
and correlation constraints. Contingent upon the derived
upper bound, we develop a convex framework to find
maximum achievable total throughput by optimizing
the active probability, sensing duration and detection
threshold of each SU subject to the collision, energy
causality, and correlation constraints.

4) Given a potential set of SUs, determining the optimal
subset of cooperating SUs is of the essence to achieve
maximum achievable total throughput. Selection of SUs
inherently leads us into a combinatorial problem which
has infeasible time complexity even for a moderate size
of secondary networks (SNs) [15], [16]. Therefore, we
propose a fast and high performance EH-SU selection
heuristic based on SUs’ energy harvesting, sensing and
reporting attributes.

5) Optimal access policy of the EH-CRNs is typically
formulated and studied using the POMDP framework.
However, existing solution methods of POMDP are
computationally intractable even for a single EH-SU
because of continuous and uncountable state, action and
observation spaces. Hence, we consider a myopic access
policy by ignoring the effects of the current actions on
the future rewards and focus only on the maximization
of immediate reward of current time slot. In order to
evaluate the performance of proposed methods under
myopic access policy, we develop a myopic access
procedure to determine the active set of EH-SUs since
the energy cost of an EH-SU changes with different set
of active EH-SUs.

The rest of this paper is organized as follows: Section II
models the primary channel traffic and heterogeneous EEH-
CSS model. Section III introduces the proposed hybrid EEH-
CSS and energy state evolution of SUs. After that, Section
IV analyzes the asymptotic behavior of the EEH-CSS and
develop the proposed convex framework. Section V then
explains the EH-SU selection heuristic and myopic access
policy. Numerical results are presented in Section VI. Finally,
we conclude the paper in Section VII with a few remarks. For
their convenience, we refer interested readers to Table I for
frequently used notations along with descriptions.

II. HETEROGENEOUS EEH-CSS MODEL

We consider a single PC and an SN comprised of S self-
powered EH-SUs each of which is synchronized with the
primary network (PN) slot structure, and has different sensing,
reporting, and energy harvesting characteristics. Denoting M
by the set of M SUs chosen among S SUs to cooperatively
sense the PC, Fig. 1 demonstrates a simple network scenario
with M = 5 and S = 10. Our goal is to maximize achievable
sum rate of the SN by selecting the optimal selection of
M EH-SUs (i.e., EH-SU cluster) according to cooperative
asymptotic behavior of the cluster which is mainly determined
by cluster members’ individual and distinctive sensing, har-
vesting, and reporting attributes. Given a cluster selection, it



Table of Notations
Not. Description
S Total number of EH-SUs
M Number of EH-SUs within the cluster, 1 ≤ m ≤M
T Duration of a single time slot
H Time horizon with indices, 1 ≤ t ≤ H
H0/H1 Binary hypothesis for idle/busy PC state
Zt,x

m Zt
m = x, x ∈ {0, 1}

Ct Actual PC occupancy state at time t: C0
t (idle), C1

t (busy)
p, q State transition probabilities, i.e., p (H0 → H0), q (H1 → H1)
π0/π1 Apriori prob. of being idle/busy
atm Mode indicator of SU m at time t: at,1m (active), at,0m (passive)
δtm Local decision of SU m at time t: δt,0m (H0), δt,1m (H1)
φt
m Global decision of the FC: φ0

t (H0), φ1
t (H1)

θtm Acknowledgment for SU m at time t: θt,0m (NACK), θt,1m (ACK)
γm Observed SNR by SU m on the PC
Nm Number of samples taken by SU m

εm Detection threshold of SU m

τm Sensing duration of SU m

Γm Sensing duration of the slowest SU, i.e., Γ = maxm(τm)

P f
m/P

d
m Local false alarm/detection probability of SU m

bcm CCC error between SU m and the FC
P̃ f

m/P̃
d
m Received false alarm/detection probability from SU m

K, κ Global test statistic (K) and voting rule (κ)
Qf/Qd Global false alarm/detection probability from SU m

χt
m/χ

t,RF
m Renewable/RF energy arrival rate of SU m with mean χm/χRF

m

Bm Battery capacity of SU m with state Bt
m at time t

Rt
m Achievable throughput of SU m at time t

Rt Total achievable throughput of SUs
Es

m, Etx
m Sensing energy (Es

m) and transmission energy (Etx
m ) of SU m

Ec,t
m /Eh,t

m Consumed/Harvested energy by SU m at time t
α0

m/α1
m Prob. of being active in idle/busy states s.t.

αm Prob. of being active for sensing and transmission.
P̄ f

m/P̄
d
m Local prob. of being active and falsely/truly detecting the idle PC

Q̄f /Q̄d Global prob. of being active and falsely/truly detecting the idle PC
R̄m Asymptotically achievable throughput of SU m.
R̄ Asymptotically achievable total throughput of SUs

Table I: Table of Notations

Fig. 1: Illustration of a time instant of the considered network model.

is also necessary to develop an access policy which decides on
participation of SUs in sensing and channel utilization based
on sensing outcome and EH-SUs’ current battery level.

A. Primary Channel (PC) Traffic Model

We consider a PC with bandwidth W operating in a syn-
chronous communication protocol with time-slots of duration
T . We define a general notation Ztm where Z can be different
variables with time index t and SU index m, if Z is a binary
variable Zt,xm means Ztm = x, x ∈ {0, 1}. Likewise, Zxt
simply means Zt = x, x ∈ {0, 1}. The PC occupancy state
in slot t is denoted by Ct ∈ C , {0(H0), 1(H1)} where H0

and H1 represent the binary hypotheses for idle and busy PC
states, respectively.

Fig. 2: Transition diagram of primary channel occupancy states.

Then, the PC traffic is modeled as a time-homogeneous
discrete Markov process as shown in Fig. 2 where the PC
stays in H0 (H1) with probability p (q) and switches from H0

(H1) to H1 (H0) with probability 1 − p (1 − q). Thus, state
transition probabilities can be formulated as

P
[
Cxt+1|Ct

]
=

{
Ct(1− q) + (1− Ct) p , x = 0

Ct q + (1− Ct)(1− p) , x = 1
(1)

Assuming that the state transition probabilities are known to
SUs via a long-term spectrum sensing history, the steady-state
probabilities of being idle and occupied are given by π0 =

1−q
2−p−q and π1 = 1−p

2−p−q , respectively. Please note that this
model reduces to an i.i.d. random process with π0 = p and
π1 = q if p + q = 1. Since SUs are merely interested in
the PC channel activity, energy source of PUs (i.e., powered
with/without energy harvesting) does not have any effect on
the SN performance.

B. Heterogeneous Cooperative Spectrum Sensing Model

At the beginning of each slot, cooperating SUs first de-
termine whether to be in the active mode to involve in
CSS and data transmission or to be in the passive mode to
solely harvest energy, which is denoted by atm ∈ Atm ,
{0(passive), 1(active)}. If the passive mode is chosen, SUm
utilizes the whole slot for energy harvesting. Otherwise, SUs
perform local spectrum sensing using energy detectors (EDs)
which have been extensively exploited as the ubiquitous sens-
ing technique in the literature due to their simplicity, compat-
ibility with any signal type, and low computational and im-
plementation complexity [17]. To detect primary signals, ED
of SUm measures the received primary signal energy for Nm
number of samples and compares it with an energy threshold
εm to make a local decision, δtm ∈ ∆t

m , {0(H0), 1(H1)},
on the PC state. For a sufficiently large Nm and normalized
noise variance, the probability of false alarm, P fm (Nm, εm) ,



P[δt,1m |at,1m , C0
t ] = P[δtm = 1|atm = 1, Ct = 0], and the prob-

ability of detection, P dm (Nm, εm, γm) , P[δt,1m |at,1m , C1
t ] =

P[δtm = 1|atm = 1, Ct = 1], are respectively given by [18]

P fm = Q
[
(εm − 1)

√
Nm

]
(2)

P dm = Q

[
(εm − γm − 1)

√
Nm

2γm + 1

]
(3)

where γm is the SNR of SUm and Q (x) =
1√
2π

∫ +∞
x

e−y
2/2dy is the right tail probability of a

normalized Gaussian distribution. After the local sensing
process, SUs report δtm to a fusion center (FC) over a binary
symmetric CCC. Denoting the received local decision by the
FC as δ̃tm ∈ ∆̃t

m, received P fm and P dm at the FC side are
given by

P̃ fm = bcm
(
1− P fm

)
+ (1− bcm)P fm (4)

P̃ dm = bcm
(
1− P dm

)
+ (1− bcm)P dm (5)

where bcm = P[δ̃tm = 1|δtm = 0] = P[δ̃tm = 0|δtm = 1] is
the bit error rate of the symmetric CCC between SUm and
the FC. The FC collects δ̃tm from all SUs in the cluster and
makes a global decision, ϕt ∈ Φt , {0(H0), 1(H1)}, using
the following test

K =

M∑
m=1

δ̃tm

ϕ1
t

R
ϕ0

t

κ (6)

which is summation of the independent but non-identically dis-
tributed Bernoulli random variables, thus, follows the Poisson-
Binomial distribution. Based on (2)-(6), the FC obtains the
global false alarm, Qf , P[K ≥ κ|H0] = P

[
ϕ1
t |C0

t

]
,

and global detection probability, Qd , P[K ≥ κ|H1] =
P
[
ϕ1
t |C1

t

]
, by fusing the local reports as follows [19]

Qf (P̃ fm) =

M∑
i=κ

∑
A∈Fi

∏
m∈A

P̃ fm
∏
m∈Ac

(
1− P̃ fm

)
(7)

Qd(P̃
d
m) =

M∑
i=κ

∑
A∈Fi

∏
m∈A

P̃ dm
∏
m∈Ac

(
1− P̃ dm

)
(8)

where Fi is the set of all subsets of i integers that can
be selected from {1, 2, 3, . . . ,M} . Qf and Qd can be ex-
peditiously calculated from polynomial coefficients of the
probability generating function of K in O(M logM) [20].
At the end of each slot, the secondary receiver acknowledges
a successful transmission, expressed here as θtm ∈ Θt

m ,
{0(NACK), 1(ACK)}.

III. HYBRID ENERGY HARVESTING AND ENERGY STATE
EVOLUTION OF EH-SUS

A. Hybrid Energy Harvesting

We consider EH-SUs with the ability of harvesting energy
from renewable sources (e.g. solar) and ambient RF/wireless
signals (e.g., primary signals). Simultaneous wireless informa-
tion and power transfer technique has been recently proposed
where the receiver is able to use the radio frequency signal

simultaneously for information and energy harvesting [21]. On
the other hand, two main practical protocols are proposed in
the literature namely; time switching (TS) protocol and power
splitting (PS) protocol. In the TS protocol, the energy har-
vesting node switches over time between the energy harvester
equipment and the information decoder, while in PS protocol,
a portion of the received signal is used for energy harvesting
and the remaining is used for the information processing [22].
In this paper, we focus on the TS protocol such that time is
split for harvesting, sensing, and transmission tasks. We define
composite stochastic energy arrival rate from renewable/RF
energy source of SUm within a slot t as the product of amount
of received energy per time unit, i.e., [Joules/s], battery
efficiency, and energy harvester efficiency. While renewable
composite energy arrival at time t is denoted as χtm, which
is modeled as a Gamma random variable with mean χm,
composite RF energy arrival rate of slot t is denoted as χt,RFm ,
which is similarly modeled as a Gamma random variable
with the mean value of χRFm [14]. For example, χtm can be
interpreted as the net accumulated energy per time unit with
respect to received luminous intensity of a solar panel in a
particular direction per unit solid angle. When both energy
sources are simultaneously utilized, total composite energy
arrival rate is the summation of energy arrivals from both
sources, i.e., χtm+χt,RFm with mean χm+χRFm . We assume that
χtm and χt,RFm are time invariant during a slot duration. SUm
first buffers the harvested energy, then stores it in a battery
with capacity Bm. While the energy arrival information is
causally available to the SUm, residual energy from slot t,
Btm, is available at the beginning of slot t+ 1.

To store harvested energy, ultra-capacitors, a.k.a super-
capacitors, are mostly preferred due to their high power
density, good recycling ability, and near perfect storing ef-
ficiency. Albeit these favorable features, ultra-capacitors are
subject to the energy half-duplex (EHD) constraint which
prevents SUs from charging and discharging simultaneously
[13]. This constraint can be mitigated by the exploitation of
two identical ultra-capacitors such that while the first one
charges from harvested energy, the second discharges to supply
continuous power for sensing and transmission tasks [13],
[14]. Thus, we consider two different EEH-CSS schemes with
and without the EHD constraint and refer to them as energy
half-duplex systems (EHS) and energy full-duplex systems
(EFS), respectively. Time slotted operation of active EH-SUs
( at1 = atm = atM = 1) with heterogeneous SNRs (γ1 < γm <
γM ) and reporting errors (bcM < bcm < bc1) are illustrated in
Fig. 3 where Ts, τm = NmTs, and Γ = maxm (τm) represent
the sample duration, sensing duration of SUm, and sensing
duration of the slowest SU which is defined as the SU with
the longest sensing duration, respectively.

In the EHS, active SUs first execute local spectrum sensing,
then they harvest and store renewable energy until the global
decision is received. On the contrary, SUs are capable of
harvesting the renewable energy for the entire slot in the EFS
where SUs go into sleep until the global decision feedback
when they do not sense. During the sleep, consumed energy
and the leakage from the battery is assumed to be negligible.
After the slowest SU reports its local decision, the FC makes



Fig. 3: TS protocol and timeslot illustration of active EH-SUs, i.e.
at1 = atm = atM = 1, with heterogeneous SNRs and reporting errors.

a global decision based on which the remaining time is used
for transmission (ϕ0

t ) or RF-EH (ϕ1
t ). As a result, the EHD

constraint intuitively causes a performance degradation in the
amount of harvested energy because SUs have to share the
available time for harvesting, sensing, and transmitting.

B. Energy State Evolution of SUs

In EEH-CSS, energy states of SUs evolve over time such
that energy state in the next timeslot depends on the energy
state (Btm), actions (atm) and decisions (δtm, δ̃

t
m, ϕt) taken in

the current timeslot. Based on Fig. 3, energy consumption of
SUm in slot t can be expressed as

Ec,tm = atm
[
Esm + ϕtE

tx
m

]
(9)

where Esm = P smτm is the sensing energy, P sm is the sensing
power, and Etxm is the energy consumption within a transmis-
sion phase which is modeled as

Etxm =

(
P cm +

ξm
ζm

P tm

)
(T − Γ) (10)

where P tm is the transmission power, ζm is the drain efficiency
of the power amplifier (PA), ξm is the peak-to-average ratio
(PAR) of PA, and P cm is the power consumed in various
transmitter and receiver circuitry except the PA power [23].
Based on the discussion in previous subsection and Fig. 3,
amount of harvested energy in EHS on slot t can be given as

Eh,tm =



(1− atm)χtmT , at,0m , Ct, ϕt for EHS
atmχ

t
m (Γ− τm) , at,1m , Ct, ϕt for EHS

atmϕtχ
t
m (T − Γ) , at,1m , Ct, ϕ

1
t for EHS

atmCtϕtχ
t,RF
m (Γ− τm) , at,1m , C1

t , ϕ
1
t for EHS

0 , otherwise
(11)

where we have the following EH event types: 1) at,0m , Ct, ϕt:
Passive mode is chosen. Regardless of Ct and ϕt, entire
timeslot is used for renewable EH, 2) at,1m , Ct, ϕt: Active
mode is chosen and CSS is being performed. Regardless of
Ct and ϕt, the SU performs renewable EH until the slowest
SU completes sensing task, 3) at,1m , Ct, ϕ

1
t : Active mode is

chosen and CSS is performed. The PC is globally decided
to be idle, thus, SUs do not transmit but perform renewable
EH until the end of slot, and 4) at,1m , C1

t , ϕ
1
t : Active mode is

chosen and CSS is performed. The PC is globally decided to
be busy while it is indeed busy. Thus, SUs harvest RF energy
from ongoing PU activity. Equation (11) can easily be adopted
for EFS which can harvest the renewable energy all the time

while it can only perform RF-EH in event type 4 as in EHS.
All of these cases can be put in a compact form as shown in
(12). Exploiting (9) and (12), available residual energy level
at the beginning of the slot t+ 1 is given by

Bt+1
m = min

(
Bm, B

t
m + Eh,tm − Ec,tm

)
(13)

Assuming that the secondary transmission is successful if and
only if the PC is in idle state and secondary transmitters
receive an acknowledgement from the secondary receivers, the
total achievable throughput of the SN is given by

Rt =

{
π0(1−Qf )

∑
mR

t
m , if C0

t , a
t,1
m , ϕ0

t , θ
t,1
m

0 , otherwise
(14)

where Rtm = T−Γ
T log2

[
1 +

P t
mh

t
m

N0W

]
is the achievable

throughput of SUm, htm is the channel gain between SUm
and its receiver, and N0 is the noise power spectral density of
the receiver.

IV. ASYMPTOTIC ANALYSIS OF ENERGY HARVESTING
COOPERATIVE SPECTRUM SENSING (EEH-CSS)

Sensing duration is a major sensing parameter since it is
inextricably interwoven with the collision and energy-causality
constraints. Although sensing for a longer duration yields
more protection from collision with PUs, it results in extra
sensing energy cost, fewer harvested energy, and reduced
achievable throughput due to the less time left for secondary
transmission. Therefore, the sensing duration establishes the
fundamental tradeoff between these two major constraints. In
other words, sensing longer grants less collision probability
in return for fewer chance to be in the active mode due to
the reduced energy availability. Detection threshold is another
key sensing parameter such that setting a higher threshold
yields more collision probability and less chance to utilize the
idle PC states. Therefore, optimization of sensing duration and
detection threshold is a necessity to obtain an optimal perfor-
mance. Under the cooperation of EH-SUs, on the other side,
determination of an optimal framework typically necessitates a
much more involved design since we are also required to find
an optimal tradeoff among cooperating SUs with respect to
their sensing, reporting and energy harvesting characteristics.

For given feasible sensing durations and detection thresh-
olds of cooperating SUs, we first consider asymptotic activity
pattern of a single SU over an infinite time-horizon and
infinite battery capacity such that the average energy causality
constraint dictates the average amount of harvested energy not
to be less than the average amount of consumed energy [7].
Since we consider the average values over an infinite time-
horizon, we omit the superscript t throughout this section.
Denoting the probability of being active in idle and busy
PC state as α0

m , P
[
a1
m|H0

]
and α1

m , P
[
a1
m|H1

]
,

respectively, probability of being active to sense and transmit
(if the PC is found idle) for SUm can be given by

αm = π0α
0
m + π1α

1
m (15)

which is an essential metric reflecting the cooperation chance
of SUm based on its sensing/reporting quality, energy con-
sumption and arrival properties. As per (15), local probability



Eh,tm =


(
1− atm

)
χtmT︸ ︷︷ ︸

EH Event Type 1

+atm

χtm (Γ− τm)︸ ︷︷ ︸
EH Event Type 2

+ϕtχ
t
m (T − Γ)︸ ︷︷ ︸

EH Event Type 3

+Ctϕtχ
t,RF
m (T − Γ)︸ ︷︷ ︸

EH Event Type 4

 , EHS

χtmT︸ ︷︷ ︸
Always

+ atmCtϕtχ
t,RF
m (T − Γ)︸ ︷︷ ︸

EH Event Type 4

, EFS
(12)

of being active and falsely deciding the idle PC as busy,
P̄ fm , P

[
δ1
m, a

1
m|H0

]
, and local probability of being active

and truly deciding the busy PC as busy, P̄ dm , P
[
δ1
m, a

1
m|H1

]
,

are given by

P̄ fm = α0
mP

f
m ≤ P fm (16)

P̄ dm = α1
mP

d
m ≤ P dm (17)

where P fm and P dm are energy unconstrained false alarm and
detection probabilities where SUs can always be active to
sense and transmit (i.e., αm = α0

m = α1
m = 1), respectively.

Then, substituting P̄ fm and P̄ dm into (4) and (5), Q̄f and Q̄d
can be obtained from (7) and (8), respectively. Therefore, the
expected energy consumption can be derived from (9) as

Ecm = α0
mE

c,0
m + α1

mE
c,1
m (18)

Ec,0m = π0

[
Esm +

(
1− Q̄f

)
Etxm

]
(19)

Ec,1m = π1

[
Esm +

(
1− Q̄d

)
Etxm

]
(20)

where (19) and (20) denote the expected energy cost within
the idle and busy PC states, respectively. Probabilities for the
energy harvesting event types given in Section III-B can be
given as follows

1) P
[
Eh,tm |at,0m , Ct, ϕt

]
= 1− αm = 1− π0α

0
m − π1α

1
m

2) P
[
Eh,tm |at,1m , Ct, ϕt

]
= αm = π0α

0
m + π1α

1
m

3) P
[
Eh,tm |at,1m , Ct, ϕ

1
t

]
= π0α

0
mQ̄f + π1α

1
mQ̄d

4) P
[
Eh,tm |at,1m , C1

t , ϕ
1
t

]
= π1α

1
mQ̄d

Accordingly, the expected amount of harvested energy in EHS
is derived from (12) as follows

Ehm , E
[
Eh,tm

]
t

= (1− π0α
0
m − π1α

1
m)χmT

+ (π0α
0
m + π1α

1
m)χm(Γ− τm)

+ [π0α
0
mQ̄f + π1α

1
mQ̄d]χm(T − Γ) + π1α

1
mQ̄dχ

RF
m (T − Γ)

= χmT + α0
mAm + α1

m(Bm + Cm) (21)

Am = π0χm
[(
Q̄f − 1

)
(T − Γ)− τm

]
(22)

Bm = π1

[
χm{(Q̄d − 1)(T − Γ)− τm}+ χRFm Q̄d(T − Γ)

]
Cm = π1Q̄dχ

RF
m (T − Γ) (23)

which can easily be adopted for EFS by setting Am = 0 and
replacing Bm with Cm. Then, the expected energy causality
constraint, Ecm ≤ Ehm, can be derived from (18)-(23) as

α0
m(Ec,0m −Am) + α1

m(Ec,1m −Bm) ≤ χmT , for EHS (24)

α0
mE

c,0
m + α1

m(Ec,1m − Cm) ≤ χmT , for EFS (25)

Since p and q quantify the amount of information about Ct+1

that can be extracted from Ct, considered Markovian PC traffic
model mandates the following correlation constraint

` ≤ α1
m/α

0
m ≤ υ (26)

where ` = max
[

1−max(p,1−q)
max(p,1−q) , min(1−p,q)

1−min(1−p,q)

]
1−q
1−p and υ =

min
[

1−min(p,1−q)
min(p,1−q) , max(1−p,q)

1−max(1−p,q)

]
1−q
1−p [8].

Fig. 4: Feasible region of α0
m and α1

m in EHS for a given (Nm, εm).

The energy causality constraint in (24) and the correlation
constraint in (26) is visualized in Fig. 4 which demonstrates
the feasible region of the EHS for a given (Nm, εm). The
energy causality constraint is shown as a solid-red line which
forms the energy constrained and energy unconstrained EHS
as polygonal convex regions in checkered-cyan and solid-green
colors, respectively. Energy constrained (unconstrained) SUs
can be defined as SUs whose average harvested energy is less
(equal or higher) than the average energy consumption. On
the other hand, the dashed-black lines illustrate the correlation
constraint which determines the relation between α0

m and
α1
m as a function of channel transition probabilities p and q.

Physical interpretation of correlation constraint can be inferred
from its effect on the feasible region which reduces to solid-
black line (α0

m = α1
m) in Fig. 4 if the PC traffic as an i.i.d.

random process. Accordingly, energy causality and correlation
constraints is projected on the asymptotic upper bound of α0

m

and α1
m as in Theorem 1.

Theorem 1: Assuming an infinite time-horizon and Bm →
∞, the upper bounds on probability of being active in idle
and busy states under the energy causality and correlation



constraints are found for the EHS as

ᾱ0
m(Nm, εm, χm) = min

(
1,

χmT

Ec,0
m −Am + `(Ec,1

m −Bm)

)
(27)

ᾱ1
m(Nm, εm, χm) = min

(
1,

υχmT

Ec,0
m −Am + υ(Ec,1

m −Bm)

)
(28)

Upper bounds for EFS can be obtained from (27) and (28) by
setting Am = 0 and replacing Bm with Cm.
Proof: Please see Appendix A.

Corollary 1: Upper bound on sensing probability is given by

ᾱm = π0ᾱ
0
m + π1ᾱ

1
m (29)

Proof: This corollary is an immediate result of (15) and
Theorem 1.

In what follows, P1 formulates the optimal EEH-CSS which
maximizes the total achievable throughput of the secondary
network subject to the collision, energy causality, and corre-
lation constraints.

P1 : maximize
α0

m,α
1
m

Nm,εm, ∀m

R̄ = π0(1− Q̄f )
∑
m

Rm

C1: s.t. Qthd ≤ Q̄d
C2: Q̄f ≤ Qthf
C3: 0 ≤ α0

m ≤ ᾱ0
m, ∀m

C4: 0 ≤ α1
m ≤ ᾱ1

m, ∀m
C5: 30 ≤ Nm ≤ T/Ts, ∀m
C6: Nm ∈ R+, ε ∈ R, ∀m

Constraints C1 and C2 satisfy the collision and spectrum
utilization constraint by ensuring Qthd and Qthf global detection
and false alarm probabilities, respectively. C3 and C4 assure
the energy causality and correlation constraints according to
Theorem 1. Nm is lower-bounded to evoke the central limit
theorem and is upper-bounded by the maximum permissible
number of samples within a slot duration in C5. The domains
of variables are indicated in C6. P1 is a mixed integer non-
linear programming problem due to the integer valued number
of samples. A practical approach to relax P1 is unintegeriza-
tion of Nm, which does not violate the the problem constraints
or negatively effect the system performance since Nm >> 1
and Ts << 1 in general.

However, unintegerized P1 is still not jointly convex in
(Nm, εm, α0

m, α
1
m), ∀m. To alleviate this issue, we trans-

form P1 into a convex bilevel optimization problem with a
convex upper level problem, Pu

1 , and a convex lower level
problem, Pl

1. In an iterative manner and subject to common
constraints C1-C7, while Pu

1 maximizes log(R̄) for a given
Nm,∀m obtained from Pl

1 , Pl
1 maximizes log(R̄) for a

given (ε, α0
m, α

1
m), ∀m, obtained from Pu

1 . In the considered
bilevel problem, we take the logarithm of R̄, Q̄f , and Q̄d
in order to put them into convex form by exploiting the
convex composition rules, log-concavity of Poisson-Binomial
distribution, convexity of q-functions for P fm = Q(·) ≤ 0.5,
and concavity of q-functions for P dm = Q(·) ≥ 0.5. Please
note that P fm ≤ 0.5 and P dm ≥ 0.5 do not conflict with the
practical point of interest and can be satisfied by introducing

an additional constraint on detection threshold as in C5. We
refer interested readers to Appendix B and references therein
for a formal convexity analysis of Pu

1 and Pl
1.

Pu
1 : maximize

α0
m,α

1
m

εm, ∀m

log
(
R̄
)

Pl
1 : maximize

Nm, ∀m
log
(
R̄
)

C1: s.t. log(Qthd ) ≤ log(Q̄d)

C2: log(Q̄f ) ≤ log(Qthf )

C3: 0 ≤ α0
m ≤ ᾱ0

m, ∀m
C4: 0 ≤ α1

m ≤ ᾱ1
m, ∀m

C5: 1 ≤ ε ≤ 1 + γm, ∀m
C6: 30 ≤ Nm ≤ T/Ts, ∀m
C7: Nm ∈ R+, ε ∈ R, ∀m

V. SU SELECTION AND SPECTRUM ACCESS POLICY

A. EH-SU Selection Heuristic
In previous sections, EEH-CSS is investigated for a given

set of SUs, M. However, determining the optimal M is of
the essence to achieve a desirable achievable total throughput.
To illustrate, selection of an SU with insufficient energy
arrival rate may not often be available to cooperate due to
the energy causality constraint, which inherently degrades the
group performance. Even if an SU has a profitable energy
arrival rate, sensing quality (i.e. SNR) is another key factor
to count in for energy causality and sensing duration. For
instance, an SU with high energy arrival rate and low SNR
can always be active to cooperate. Nevertheless, its low
SNR may require very long sensing duration which reduces
the transmission time and throughput of the entire group.
Furthermore, CCC imperfection is another crucial practical
issue since an SU must compensate the reporting error by
executing more accurate local sensing which yields less time
for transmission, more energy cost, and thus fewer availability
to cooperate. Please also note that after a certain error rate,
which is also known as bit error probability (BEP) wall [15],
[24], there is no feasible cooperation no matter how much
time and energy are spent for sensing. Determination of the
optimal M leads to a combinatorial problem which requires
impractically high computational complexity.

Therefore, we propose a fast and high performance EH-
SU selection heuristic in Algorithm 1 to determine the best
M. In Algorithm 1, lines 1-3 first evaluate the individual
(non-cooperative) asymptotic sensing performance of SUs,
R̄j , then it ranks the SUs in the descending order of R̄j in
line 4. After the initialization step in line 5, the while loop
forms the best M starting from the SU with the highest rank,
which is terminated with the SU that deteriorates the total
achievable throughput, i.e., ∆ < 0. Such a situation occurs
when acceptance SUi to the cluster reduces the transmission
time of current cluster members (SU1 − SUi−1) and data
rate of SUi cannot compensate the data rate loss of current
members, i.e., cluster sum rate is reduced by accepting SUi.
While the for and while loops take O (S) steps, sorting
operation in line 4 is O (S logS). Thus, the overall complexity
of Algorithm 1 is O (S logS).



Algorithm 1 EH-SU Selection Heuristic
Input: χm, γm, bcm, ∀m
Output: The best total throughput and corresponding SU set.
1: for j = 1 to S do
2: Compute R̄j = π0(1− Q̄f )Rj using Pl

1 and Pu
1

3: end for
4: O ← Sort SUs in descending order wrt R̄j .
5: R̄0 ← 0, ∆← 0, i← 1, M← ∅, M? ← ∅, R? ← 0
6: while ∆ ≥ 0 && i ≤ S do
7: M← SUi Accept the SU ranked ith in O.
8: R̄i ← Compute R̄ for M using Pl

1 and Pu
1

9: ∆← R̄i − R̄i−1

10: if ∆ ≥ 0 then
11: R? ← R̄i

12: M? ←M
13: end if
14: i← i+ 1
15: end while
16: return R?, M?

B. Spectrum Access Policy

Optimal spectrum access policy of EH-CRNs is typically
studied in the realm of POMDP which can be defined as a
tuple (S,A,O,R) = {(St,At,Ot,Rt) |∀t}, where

• St , Ct×Bt is the global state space consisting of battery
level of SUs, Bt = {Btm|∀m}, and PC occupancy state.

• At , At × ∆t is the global action space where At =
{Atm|∀m)} and ∆t = {∆t

m|∀m}.
• Ot , ∆̃t×Φt×Θt is the global observation space where

∆̃t = {∆̃t
m|∀m} and Θt = {Θt

m|∀m}.
• Rt , {Rtm|∀m} is the global reward space.

Since (S,A,O,R) is continuous and uncountable, it can be
found that existing solution methods for optimal access policy
are computationally intractable, and cannot be employed in
practice even for a single SU [9]. In EEH-CSS, complexity
and communication overhead exponentially grow with the
increasing number of cooperating SUs. Without recourse to
optimal POMDP solution, we then focus on the myopic policy
optimization by ignoring the effects of the current actions
on the future rewards and consider only maximization of the
immediate reward of current time slot. Existing studies have
shown that myopic access policy has a close performance to
the optimal policy with a significantly reduced computational
complexity [25], [26]. Regardless of the underlying PC state,
the immediate reward of an SU operating on myopic access
policy can be maximized by involving in cooperation when-
ever there is sufficient energy to execute sensing and trans-
mission. In this case, SUs greedily decide on the participation
in sensing based on the following action policy

atm =

{
1 , Btm ≥ Ethm
0 , Btm < Ethm

,∀m (30)

where Ethm = Esm + [π0(1 − Qthf ) + π1(1 − Qthd )]Etxm is a
function of Nm which is jointly determined by other active
SUs, atm′ ,∀m′ 6= m. Therefore, an evaluation procedure for
(30) is necessary to jointly determine active SUs within a slot.

Based on average SNR values, we first create an offline
table for E ∈ R|M?|×2|M?|

where columns represent 2|M
?|

permutations, which takes O
(
2|M

?|). For the heterogeneous
case, Nm can be determined similar to Pu1 and Pl1 as follows

Pu
2 : maximize

εm, ∀m
log (Rt)

Pl
2 : maximize

Nm, ∀m
log (Rt)

C1: s.t. log(Qthd ) ≤ log(Qd)

C2: log(Qf ) ≤ log(Qthf )

C3: 1 ≤ ε ≤ 1 + γm, ∀m
C4: 30 ≤ Nm ≤ T/Ts, ∀m
C5: Nm ∈ R+, ε ∈ R, ∀m

Under the traditional approach, SUs are required to en-
sure that the FC receives identical local false alarm and
detection probability reports, i.e. P̃ fm = P̃f , P̃

d
m = P̃d, ∀m.

In such a case, there is no need to find Nm numerically
since distinguishing sensing durations and detection thresholds
of each SU is unnecessary. Therefore, Qfm (Qdm) directly
becomes a function of the number of active SUs and P̃ f (P̃ dm)
whose optimal value is defined as P̂ ?f = {P̃f | Qfm = Qfth}
(P̂ ?d = {P̃d | Qdm = Qdth}). Hence, required local false alarm,
P f

?

m , and detection probabilities, P d
?

m , can be expressed as

P̂ fm = bcm

(
1− P f

?

m

)
+ (1− bcm)P f

?

m (31)

P̂ dm = bcm

(
1− P d

?

m

)
+ (1− bcm)P d

?

m (32)

which yields P̃ f
?

m =
P̂ f?

m −b
c
m

1−bcm
and P̃ d

?

m =
P̂d?

m −b
c
m

1−bcm
by assuming

bcm < 0.5, ∀m. Finally, substituting P̃ f
?

m and P̃ d
?

m into the right
hand side of (2) and (3), and then solving (2) and (3) for Nm
and εm, the optimal number of samples is determined as

Nm =

[
Q−1

(
P d

?

m

)√
2γm + 1−Q−1

(
P f

?

m

)
γm

]2

(33)

Accordingly, the procedure to find the set of SUs to be active
is given in Algorithm 2 where SUs are only aware of their
own battery level and SNR of cluster members. In line 1,
SUs find vector of the feasible permutations Im in which the
required energy is not larger than the battery level, Btm, which
is then reported to the FC. It is worth reminding that energy
consumption of SU m changes with different set of active
SUs, and Im is the set of active SU permutations which is
feasible with respect to battery level of SU m. Among reported
permutations, the FC determines feasibility by checking if a
permutation is reported by all SUs which are set to be active in
that permutation. Afterwards, the FC calculates the achievable
total throughput for I in line 4 and selects the ID with the
maximum throughput, I?, which is then reported to SUs.

Algorithm 2 Myopic Activation Procedure (MAP)
Input: E, M?, Bt

m, γm, bcm, ∀m
Output: Set of SUs to be active.
1: Im ← find

j
s.t. E(m, j) ≤ Bt

m, ∀m
2: SU m report Im’s to the FC, ∀m
3: I ← Determine feasible permutations among

⋃
m Im.

4: I? ← argmax
j∈I

Rt (I (j))

5: return I?



VI. NUMERICAL RESULTS AND ANALYSIS

In order to gain a clear insight into the effect of sensing,
reporting and energy harvesting features of SUs, SUs are
assumed to have identical system parameters. Unless it is
explicitly stated otherwise, we employ the parameter values
summarized in Table II which draws mainly from [27]. Based
on energy arrival rates averaged on a seasonal time scale,
a typical solar panel is shown to have 15 mW/cm2 power
output [28]. Given the parameters in Table I and energy
consumption model in equation (9), for example, 0.25 (0.75)
seconds sensing (transmission) durations require around 260
mW power, which means a 16 cm2 (i.e., 4 cm × 4 cm) panel
is sufficient for an SU. Considering the possible insufficiency
of the RF energy harvesting rates and potential increase
in solar panel efficiency, hybrid model provides a practical
implementation for a more reliable energy source. Throughout
the simulations, we employ the majority voting rule which has
been shown as the most energy efficient. [15].

Par. Value Par. Value Par. Value Par. Value

S 10 W 1 MHz Ts 1 µs T 1 s
P s

m 110 mW P t
m 50 mW P c

m 210 mW Bm 10 J
ξm 6 dB ζm 0.35 Qth

f 0.1 Qth
d 0.9

Table II: Table of Parameters

A. Numerical Results for Asymptotic Analysis of EEH-CSS

To show the impact of SNR heterogeneity, we consider
cooperation of 5 SUs with −5, −10, −15, −20, −25 SNRs
in dB. Unless it is explicitly stated otherwise, we use the
following parameter values throughout this subsection: p =
q = 0.8, bcm = 10−3, χm = 0.5

(
Ec,0m + Ec,1m

)
, χRFm =

0.1
(
Ec,0m + Ec,1m

)
, ∀m. In Fig. 5, we compare α, P dm, P̄ dm,

P fm, P̄ fm of traditional (homogeneous) and proposed (hetero-
geneous) K-out of-N rules for EFS. On the other hand, Fig.
6 shows sensing durations and total achievable throughput
corresponding to values in Fig. 5.
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Fig. 5: Comparison of αm, P d
m, P̄ d

m, P f
m, P̄ f

m for (a )traditional
(homogeneous) and (b) proposed (heterogeneous) approaches for an EFS.

As explained in Section II-B, traditional K-out of-N rule
treats SUs equivalently, which yields a Binomially distributed
test statistic. For an EFS, optimal values of traditional ap-
proach can be seen in Fig. 5a where SUs have identical
αm, P dm, P̄ dm, P fm, and P̄ fm. Because the slowest SU with

Fig. 6: Comparison of (a) τm and (b) R̄ for EHS and EFS with traditional
and proposed approaches.

the lowest SNR senses longer to achieve the performance of
others, enforcing SUs with different sensing quality to have
the same local detector performance increases the sensing
energy cost and decreases R̄ as shown in Fig. 6a and Fig. 6b,
respectively. On the contrary, proposed K-out of-N rule allows
SUs to have different local detection performance which yields
a decrease in sensing energy cost and an increase in R̄ as
depicted in Fig. 6a and Fig. 6b, respectively. According to
Fig. 5b, performance enhancement of the proposed approach
is mostly because of that detection and false alarm probability
of the slowest SU is relaxed to 0.5, which is compensated by
requiring the SUs with high SNR to execute more accurate
local detection. Therefore, this yields more balanced sensing
duration and more time left for transmission since high SNR
SUs compensate relaxation loss with an insignificant increase
in sensing duration. Even though we do not present values
of (αm, P dm, P̄ dm, P fm, P̄ fm) for traditional and proposed
approaches in EHSs due to space limitation, Fig. 6a and
Fig. 6b clearly demonstrate the superiority of the proposed
approach for EHSs, too. Furthermore, it is obvious from Fig.
6b that heterogeneous EFS gives the highest performance by
mitigating the EHD constraint and taking the heterogeneity
into consideration. It is worth mentioning that sensing costs
depicted in Fig. 6 mainly determine the obtained results in Fig.
7-9 such that SUs with close sensing cost obtain performances
close to each other.
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Fig. 7: ᾱm vs. increasing energy arrival rates: (a) Traditional EHS, (b)
Proposed EHS, (c) Traditional EFS, and (d) Proposed EFS.

The impact of composite energy arrival rate on probability



of sensing ᾱm is illustrated in Fig. 7a-d where αm intuitively
increases with the energy arrival rate. In Fig. 7a, there is a
significant difference between the slowest SU with −25 dB
SNR and other SUs. Referring to Fig. 6a, decrease in the ᾱ
is mainly because of the high cost of sensing which increases
the denominator of (27) and (28). Since the proposed approach
generates a more balanced sensing cost as shown in Fig. 6a,
taking the heterogeneity into account can close this gap as
shown in Fig. 7b. Similar trends can be observed in Fig. 7c
where the difference is not as significant as in Fig. 7c since
EFS gains more benefit from energy arrivals than EHS. Finally,
Fig. 7d shows ᾱ of the EFS with proposed approach which
achieves the most balanced performance as a result of Fig. 6a.
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ᾱ

0.5

0.6

0.7

0.8

0.9

1

Fig. 8: ᾱm vs. p and q: (a) Traditional EHS, (b) Proposed EHS, (c)
Traditional EFS, and (d) Proposed EFS.

We demonstrate the impact of transition probabilities on ᾱm
in Fig. 8a-d where the common pattern is a result of the fact
that ᾱ0

m and ᾱ1
m increase monotonically as |1−p−q| increases

since ` and monotonically decreases but υ monotonically
increases. The reasoning behind this nature is hidden in the
correlation constraints, that is, the higher value of |1− p− q|
gives more information to anticipate the next PC state more
accurately given the current PC state. For example, p = q = 1
(p = q = 0) means that the PC state in the next slot will be
the same as (opposite to) the current PC state. The difference
in ᾱm is due to the different sensing costs in traditional and
proposed approaches in EHS and EFS as explained for Fig.
7. Again, Fig. 8d shows that ᾱ of the EFS with proposed
approach achieves the most balanced performance as a result
of Fig. 6a.

Fig. 9a-d shows the impact of the BEP, bcm on ᾱm where the
common pattern is because of the fact that as the bcm increases,
SUs are required to compensate the inaccuracy caused from
reporting error by sensing longer. This results in more energy
consumption, hence, less chance of being available for sensing.
In Fig. 9a, the BEP wall occurs at 0.025 which is mostly
driven by the slowest SU. The BEP wall of proposed EHS is
observed between 0.4 and 0.5 since taking the heterogeneity
into consideration mitigates the slowest SU effect in Fig. 9a.
For the EFS in Fig. 9c, a better BEP wall is obtained compared
to Fig. 9c since EFS is less vulnerable to the energy causality
constraint. Finally, Fig. 9d shows that the EFS with proposed
approach achieves the best performance in terms of ᾱm and
the BEP wall.
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Fig. 9: ᾱm vs. bcm: (a) Traditional EHS, (b) Proposed EHS, (c) Traditional
EFS, and (d) Proposed EFS.

B. Performance Analysis of EH-SU Selection Heuristic
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Fig. 10: Comparison of exhaustive and proposed heuristic solutions.

Fig. 10 compares the proposed heuristic solution presented
in Algorithm 1 with the exhaustive solution where all pos-
sible combinations of EH-SU are calculated. Fig. 10 shows
the average values of 30 different network scenarios where
SUs have following randomized parameters: χm ∈ [0, 1],
γm ∈ [−30, 0]dB, and bcm ∈ [10−5, 10−1]. As depicted in
Fig. 10, heuristic solution achieves 95% and 99% of exhaus-
tive performance using traditional and proposed approaches,
respectively. We note that while the exhaustive solution takes
1 − 2 hours on average, proposed heuristic generates results
in less than a minute.

C. Performance Evaluation for MAP

Fig. 11: Performance evaluation of MAP under different scenarios.

For performance evaluation of MAP, we consider an average
of 100 different scenarios for 10 EH-SUs with random SNRs,
γm ∈ [−30, 0]dB, random energy arrival rates, χm ∈ [0, 1],
χRFm ∈ [0, 0.2], and random BEPs. bcm ∈ [10−4, 10−1], ∀m.
Fig. 11 shows the achieved total throughput of the SUs over
1000 time slots for different cases. The percentage over the
bars shows the performance enhancement with respect to EHS
with traditional CSS scheme. In EHS, exploiting the proposed



K-out of-N rule yields 60% more throughput which is a
result of the more time left for more transmission and more
chance to be active since the proposed method takes care of
the sensing, reporting, and harvesting properties. As expected,
the EFS with proposed heterogeneous CSS scheme introduces
20% more throughput by constantly harvesting the renewable
energy in contrast to EHSs. Finally, EFS with the proposed
K-out of-N rule gives the best performance with 85% more
throughput since it combines the mitigation of EHD constraint
and the proposed CSS schemes.

VII. CONCLUSIONS

In this paper, we have considered the design of a hetero-
geneous EEH-CSS scheme subject to fundamental EEH-CSS
constraints. It was shown that taking the different harvesting,
sensing, and reporting characteristics of EH-SUs into consid-
eration can yield a better performance in terms of achievable
throughput, energy consumption, and thus probability of being
active. Since the active probability of an EH-SU is highly
dependent on harvesting, sensing, and reporting attributes, we
analyzed the asymptotic behavior of being active for a single
EH-SU, which is then generalized to proposed heterogeneous
EEH-CSS scheme. Given a potential set of SUs, determining
the optimal subset of cooperating EH-SUs is of the essence to
achieve maximum achievable total throughput. Since selection
of this set inherently leads us to a combinatorial problem,
which may be computationally infeasible even for small size
of clusters, we proposed a fast yet high performance EH-
SU selection heuristic exploiting the asymptotic cooperation
behaviors. A myopic access procedure is then developed to
jointly determine the active set of EH-SUs given the best
subset of cooperating EH-SUs.

APPENDIX A
PROOF OF THEOREM 1

We first note that this is a generalization of the proof
in [5, Appendix C] where authors consider a deterministic
amount of harvested energy, which is not suitable for the
proposed hybrid model where the amount of harvested en-
ergy within a slot is stochastic. For their convenience, we
refer readers to Fig. 4 for demonstration of the following
discussion. The upper bound of α0

m can be found either on
the borderline segment drawn between points A = (1, `)

and B =
(

1,min
(

1,
χmT−Ec,0

m +Am

Ec,1
m −Bm

))
or at the point of

α`m =
(

χmT

Ec,0
m −Am+`(Ec,1

m −Bm)
, `χmT

Ec,0
m −Am+`(Ec,1

m −Bm)

)
. Thus,

the upper bound of α0
m is obtained from AB and α`m as

α0
m ≤ min

(
1, XmT

Ec,0
m −Am+`(Ec,1

m −Bm)

)
. On the other side,

the lower bound of α0
m is obviously at the origin. Simi-

larly, the upper bound of α1
m can be found either on the

borderline segment drawn between points C = (1/υ, 1)

and D =
(

1,min
(

1,
χmT−Ec,1

m +Bm

Ec,0
m −Am

))
or at the point

of αυm =
(

χmT

Ec,0
m −Am+υ(Ec,1

m −Bm)
, υχmT

Ec,0
m −Am+υ(Ec,1

m −Bm)

)
.

Hence, the upper bound of α1
m is obtained from CD and

αυm as α1
m ≤ min

(
1, υXmT

Ec,0
m −Am+υ(Ec,1

m −Bm)

)
. On the other

hand, the lower bound of α1
m is at the origin. As a special

case, feasible region reduces to a line for i.i.d. PC traffic
model where α0

m = α1
m and ` = υ = p + q = 1.

Accordingly, the upper bound of α0
m and α1

m is given by
min

(
1, XmT

Ec,0
m +Ec,1

m −Am−Bm

)
. The upper bounds of EFS can

easily be found by substituting Am = 0 and replacing Bm
with Cm in above procedure.

APPENDIX B
CONVEXITY ANALYSIS OF Pl

1 AND Pu
1

Without loss of generality, we focus on the proof of con-
vexity for log(R̄) which can then be adopted to the proof of
convexity for log(Rt) by keeping α0

m and α1
m constant. The

decoupled convexity (concavity) of log(Qf ) (log(Qd)) can be
obtained by the log-concavity of Poisson-Binomial distribution
as in [15], [16].

A. Convexity Analysis of Lower Level Problem, Pl
1

↘ Pd
m P f

m P̄d
m P̄ f

m Qd Qf Q̄d Q̄f R̄

εm ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗ ↘

↗ Pd
m P f

m P̄d
m P̄ f

m Qd Qf Q̄d Q̄f R̄

α0
m ↔ ↔ ↗ ↗ ↔ ↔ ↗ ↗ ↘
α1

m ↔ ↔ ↗ ↗ ↔ ↔ ↗ ↗ ↘

Table III: Observation on Q̄f , Q̄d, and R̄ with respect to εm, α0
m, and α1

m.

To check the convexity of C3 and C4, we consider the
following observation given in Table III. For fixed α0

m, α1
m,

and a decreasing εm, Q̄f is increasing and upper bounded by
Qthf . Thus, once Q̄f = Qthf is satisfied, we cannot decrease
εm since it violates Q̄f ≤ Qthf and reduces R̄. On the other
hand, for a decreasing εm, Qd is also increasing along with a
decreasing objective, R̄. Therefore, once Q̄d = Qthd is attained,
there is no need to decrease εm since it reduces R̄. As a result,
the optimal R̄ is obtained when Q̄f = Qthf and Q̄d = Qthd is
attained. As can be seen from Table III, the same observations
hold for increasing α0

m (α1
m) with fixed α1

m (α0
m) and εm.

Accordingly, we treat Q̄f and Q̄d in ᾱ0
m and ᾱ1

m as constant
by setting Q̄f = Qthf and Q̄d = Qthd . In this case, C3 and C4
reduces to a linear upper-lower bound range for α0

m and α1
m,

respectively. In the objective,

log(R̄) = log (π0) + log
(
1− Q̄f

)
+ log

(∑
m

Rm

)
, (34)

the first term and second term is constant with respect to
(α0
m, α

1
m, εm). For the middle term, we exploit the above

observation and set Q̄f = Qthf which is also constant.
Accordingly, Pu

1 is reduced to a convex feasibility problem.

B. Convexity Analysis of Upper Level Problem, Pu
1

In the objective given in (34), the first term is a constant and
the second term is concave due the log-concavity of Poisson-
Binomial distribution. For the last term, we consider each sum-
mand separately as Rm = g (Y,Z) = Y

T log
(
1 + Z

Y

)
where

Z = Em and Y = T − Γ = T −maxm(NmTs). g (Y,Z) is
monotonically increasing over (Y,Z) since Y, Z ≥ 0 and the



first derivative of g (Y,Z) is ∂g(Y,Z)
∂Y = log

(
1 + Z

Y

)
− Z
Y+Z >

0 due to the property of logarithm function: log (1 + x) >
x/(1 + x) for x > 0. Moreover, g (Y,Z) is jointly concave
on (Y, Z) since it is a perspective function of log (1 + Z),
which is concave for Z ≥ 0, and the perspective operation
preserves the convexity [29]. Γ = maxm (NmTs) is a piece-
wise maximum of functions fm = NmTs which is linear
over Nm and constant for Nn, ∀n 6= m. Since the piece-
wise maximization preserves the convexity and fm is linear,
Y = T − Γ is a concave function of Nm which is followed
from the convex composition rules and negative sign of Γ.
Since the last term is log-sum of the concave Rms, it is also
a concave function of Nm which is again follows from the
convex composition rules.
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