
Network Design and Protection Using Network
Coding

Salah A. Aly
Electrical & Computer Eng. Dept.
New Jersey Institute of Technology

salah@njit.edu

Ahmed E. Kamal
Electrical & Computer Eng. Dept.

Iowa State University
kamal@iastate.edu

Anwar I. Walid
Bell Labs, Alcatel-Lucent

Murry Hill, NJ
anwar@research.bell-labs.com

Abstract—Link and node failures are two common fundamen-
tal problems that affect operational networks. Hence, protection
of communication networks against such failures is essential
for maintaining network reliability and performance. Netw ork
protection codes (NPC) are proposed to protect operational
networks against link and node failures. Furthermore, encoding
and decoding operations of such codes are well developed over
binary and finite fields. Finding network topologies, practical
scenarios, and limits on graphs applicable for NPC are of interest.
In this paper, we establish limits on network protection codes and
investigate several network graphs where NPC can be deployed.
Furthermore, we construct graphs with minimum number of
edges suitable for network protection codes deployment.

I. I NTRODUCTION

With the increase in the capacity of backbone networks,
the failure of a single link or node can result in the loss of
significant amounts of information, which may lead to loss of
revenues or even catastrophic failures. Network connections
are therefore provisioned with the property that they can
survive such edge and node failures. Several techniques have
been introduced in the literature to achieve such goal, where
either extra resources are added or some of the available
network resources are reserved as backup circuits. Recovery
from failures is also required to be agile in order to minimize
the network outage time. This recovery usually involves two
steps: fault diagnosis and location, and rerouting connections.
Hence, the optimal network survivability problem is a multi-
objective problem in terms of resource efficiency, operation
cost, and agility [10], [11].

Allowing network relay nodes to encode packets is a
novel approach that attracted much research work from both
academia and industry with applications to enterprise net-
works, wireless communication and storage systems. This ap-
proach, which is known as network coding, offers benefits such
as minimizing network delay, maximizing network capacity
and enabling security and protection services, see [4], [9]and
references therein. Network coding allows the sender nodes
to combine/encode the incoming packets into one outgoing
packet. Furthermore, the receiver nodes are allowed to decode
those packets once they receive enough number of combi-
nations. However, finding practical network topologies where
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network coding can be deployed is a challenging problem.
In order to apply network coding on a network with a large
number of nodes, one must ensure that the encoding and
decoding operations are done correctly over binary and finite
fields.

There have been several applications for the edge disjoint
paths (EDP) and node disjoint paths (NDP) problems in the
literature including network flow, load balancing, routing, and
optimal networks. In both cases (edge and vertex disjointness
paths), deciding whether the pairs can be disjointedly con-
nected is NP-complete [8].

A network protection scheme against a single link failure
using network coding and reduced capacity is shown in [1].
The scheme is extended to protect against multiple link failures
as well as against a single node failure. A protection scheme
protects the communication links and network traffic between
a group of senders and receivers in a large network with several
relay nodes. This scheme is based on what we callNetwork
Protection Codes(NPCs), which are defined in Section II.
The encoding and decoding operations of such codes are
defined in the case of binary and finite fields in [1], [2]. In
this paper, we establish limits on network protection codes
and investigate several network graphs where NPC can be
deployed. In addition, we construct graphs with minimum
number of edges valid for NPC deployment.

This paper is organized as follows. In Sections II and VI
we present the network model and essential definitions. In
Section III, we derive bounds on the minimum number of
edges of graphs for NPC, and construct graphs that meet these
bounds in Section V. Section IV presents limits on certain
graphs that are applicable for NPC deployment.

II. NETWORK MODEL AND NPC DEFINITION

In this section we present the network model, define briefly
network protection codes, and then state the problem. Further
details can be found in [1].

A. Network Model

The network model is described as follows:
i) Let N be a network represented by an abstract graph

G = (V, E), whereV is the set of nodes andE be set
of undirected edges. LetS andR are sets of independent



Fig. 1. A network model with a super source S and super receiver R. A set
of sources and a set of receivers are shown in green color. We assume the
source(s) and receiver(s) share k edge disjoint paths.

sources and destinations, respectively. The setV = V ∪
S ∪ R contains the relay, source, and destination nodes.

ii) The node can be a router, switch, or an end terminal
depending on the network modelN and the transmission
layer.

iii) L is a set of linksL = {L1, L2, . . . , Lk} carrying the
data from the sources to the receivers. All connections
have the same bandwidth, otherwise a connection with
high bandwidth can be divided into multiple connections,
each of which has a unit capacity. There are exactlyk
connections. For simplicity, we assume that the number
of sources is less than or equal to the number of links. A
sender with a high capacity can divide its capacity into
multiple unit capacity, each of which has its own link.
Put differently,

Li = {(si, w1i), (w1i, w2i), . . . , (w(λ)i, ri)}, (1)

where 1 ≤ i ≤ k and (w(j−1)i, wji) ∈ E, for some
integerλ ≥ 1.

iv) The failure on a linkLi may happen due to the network
circumstance such as a link replacement, overhead, etc.
We assume that the receiver is able to detect a failure and
using the protection strategy is able to recover it.

B. NPC Definition

Let us assume a network modelN with t > 1 path failures
in thek working paths, i.e., paths carrying data from source(s)
to receiver(s) [1]. One can define anetwork protection code
NPC which protectsk edge disjoint links as shown in the
systematic matrixG in (2). In general, the systematic matrix
G defines the source nodes that will send encoded messages
and source nodes that will send only plain message without
encoding. In order to protectk working paths,k−t connections
must carry plain data, andt connections must carry encoded
data.

The generator matrix of the NPC for multiple link failures
is given by:

G=















1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1

p11 p12 . . . p1t

p21 p22 . . . p2t

...
...

...
...

pk−t,1 pk−t,2 . . . pk−t,t

ident. Ik−t× k−t
︸ ︷︷ ︸

SubmatrixPk−t×t

︸ ︷︷ ︸















, (2)

wherepij ∈ Fq, whereq ≥ k − t + 1, see [1].
The matrixG can be rewritten as

G =
[

Ik−t | Pk−t,t

]

, (3)

where P is the sub-matrix that defines the redundant data
∑k−t

i=1 pij to be sent to a set of sources for the purpose of
protection from multiple link failures,1 ≤ j ≤ t. The matrixG
is defined explicitly using MDS optimal codes such as Reed-
Solomon codes [6], [7]. Based on the above matrix, every
sourcesi sends its own messagexi to the receiverri via the
link Li. In addition t edge disjoint paths out of thek edge
disjoint paths will carry encoded data.

Definition 1: An [k, k− t]q network protection code(NPC)
is a k-t dimensional subspace of the spaceF

k
q that is able to

recover fromt edge disjoint path failures. The code protects
k working paths and is defined by the matrixG described in
Equation 2.

We say that a Network Protection Code (NPC) is feasi-
ble/valid on a graphG if the encoding and decoding operations
can be achieved over the binary fieldF2 or a finite field
with q elementsFq [1]. Also, we ensure that the set of
senders (receivers) are connected with each other. We define
the feasibility conditions of NPC, we will look for graphs that
satisfy these conditions

Definition 2 (NPC Feasibility (validity)):Let S and R be
sets of source(s) and receiver(s) in a graphG, as shown in
Fig. 1. We say that the network protection code (NPC) is
feasible (valid) fork edge disjoint connections (paths) from
si in S to ri in R, for i = 1, 2, .., k if

(i) between any two sourcessi andsj in S, there is a walk
(path)si → sj . This means that the nodes inS share a
tree.

(ii) between any two receiversri andrj in R, there is a walk
(path)ri → rj . This means that the nodes inR share a
tree.

(iii) there are k edge disjoint paths fromS to R, the pairs
〈si, ri〉 are different edge disjoint paths for all1 ≤ i ≤ k.

Therefore we say the graphG is valid for NPC deployment.
By Definition 2, there arek edge disjoint paths in the graph
from a set ofk senders to a set ofk receivers. This also include
the case in which a single source sendsk different messages
throughk edge disjoint paths tok receivers and vice versa.
The feasibility of NPC guarantees that the encoding operations
at the senders and decoding operations at the receivers can be
achieved precisely.



C. Problem Statement

The max edge-disjoint paths (EDP) problem can be defined
as follows. LetG = (V, E) be an undirected graph represented
by a set of nodes (network switches, routers, hosts, etc.), and
a set of edges (network links, hops, single connection, etc.).
Assume all edges have the same unit distance, and they are
alike regarding the type of connection that they represent.A
path from a source nodeu to a destination nodev in V is
represented by a set of edges inE. Put differently,

〈u, v〉 = {(u, w1), (w1, w2), . . . , (wj , v) |

u, v, wi ∈ V, (wi, wi+1) ∈ E}. (4)

Problem 1. Given k senders andk receivers. We can define
a commodity problem, aka,k edge disjoint paths as follows.
Given a network with a set of nodesV , and a set of links
E, provision the edge disjoint paths to guarantee the encoding
and decoding operations of NPC.

i) Provision thek edge disjoint paths inG as

L = {L1, L2, . . . , Lk}

= {〈sj , rj〉 | ∀ j = 1, . . . , k, si 6= ri ∈ V } (5)

be a set of commodities.
ii) The set of sourcesS = {s1, . . . , sk} are connected

with each other, as well as the set of receiversR =
{r1, . . . , rk} are connected with each other as shown in
Definition 2.

L are realizable in G if there exists mutually edge-disjoint
connections fromsi to ri for all i = 1, . . . , k. Finding the set
L in a given arbitrary graphG is an NP-complete problem as it
is similar to edge-disjoint Menger’s Problem and unsplittable
flow [3].
Problem 2. Given positive integersn and k, and an NPC
with k working paths, find a k-connected n-vertex graphG
having the smallest possible number of edges. This graph by
construction must havek edge disjoint paths and represents a
network which satisfies NPC. This problem will be address in
Section V.

III. NPC AND OPTIMAL GRAPH CONSTRUCTION WITH

M INIMUM EDGES

One might ask what is the minimum number of edges
on graphs, in which Network Protection Codes (NPC) is
feasible/valid as shown in definition 2. We will answer this
question in two cases: (i) the set of sources and receivers are
predetermined (preselected from the network nodes). (ii) the
sources and receivers are chosen arbitrary.

A. Single Source and Multiple Receivers

We consider the case of a single source and multiple
receivers in an arbitrary graph withn nodes.

Lemma3: Let G be a connected graph representing a
network withn total nodes, among them a single source node
andk receiver nodes. Assume a NPC from the source node to

the multiple receivers is applied. Then the minimum number
of edges required to construct the graphG is given by

n + k − 2. (6)

Proof: The graphG contains a single source,k receiver
nodes, andn− k − 1 relay nodes (nodes that are not sources
or receivers). To apply NPC, we must havek edge disjoint
paths from the source to thek receivers. Also, all receivers
must be connected by a tree with a minimum ofk − 1 edges.
The remainingn − k − 1 relay nodes in G can be connected
with at leastn−k−1 edges. Therefore, the minimum number
of nodes required to construct the graph G is given by

k + (k − 1) + (n − k − 1). (7)

B. Multiple Sources and Multiple Receivers

Lemma4: Let G be a connected graph withn nodes and
predeterminedk sources andk receivers. Then the minimum
number of edges required for predeterminedk edge-disjoint
paths for a feasible NPC solution on G is given by

Emin = n + k − 2 (8)

Proof: We proceed the proof by constructing the graph
G with a total number of nodesn andk sources (receivers).

i) There arek sources that need ak − 1 edges represented
by a tree. There arek receivers that need ak − 1 edges
represented by a tree.

ii) Assume every source nodesi is connected with a receiver
noderi has anli nodes in between for all1 ≤ i ≤ k.
Therefore there are there areli + 1 edges in every edge-
disjoint path, hence the number of edges from the sources
to receivers is given byk +

∑k

i=1 li.
iii) Assume an arbitrary nodeu exists in the graphG, then

this node can be connected to a source (receiver) node or
to another relay node. In either case, one edge is required
to connected this nodeu to at least one node inG. Hence,
number of edges required for all other relay nodes is given
by n − (2k +

∑k

i=1 li)
iv) Therefore the total number of edges is given by

Emin = 2(k − 1) +
(
k +

k∑

i=1

li
)

+
(
n − (k +

k∑

i=1

li)
)

= n + k − 2 (9)

In the previous Lemma, we assume that thek sources and
k receivers can be predetermined to minimize the number of
edges onG. In the following Lemma, we assume that the
sources and receivers can be chosen arbitrary among then
nodes ofG.

Lemma5: Let G = (V, E) be a connected graph withn
nodes and arbitrary chosenk sources andk receivers. Then
the minimum number of edges required for anyk edge-disjoint
paths for a feasible NPC solution onG is given by

Emin = ⌈n(n − k + 1)/2⌉ (10)



Proof: In general, assume there arek connection paths,
and the source and destination nodes do not share direction
connections. In this case, every source nodesi in V must
be connected to some relay nodes which are not receivers
(destinations). Therefore, every source node must have a node
degree of(n − k + 1). This agrement is also valid for any
receiver noderi in V . If we consider alln = |V | nodes in the
graphG, hence the total minimum number of edgesE must
be:

⌈n(n − k + 1)/2⌉ (11)

The ceiling value comes from the fact that bothn and (n −
k + 1) should not be odd.

IV. EDGE DISJOINT PATHS IN k-CONNECTED AND

REGULAR GRAPHS

In this section we look for certain graphs where NPC
as feasible as shown in Definition 2. We will consider two
cases: single source single receiver and single source multiple
receivers. We will first consider thek-connected graphs as
defined in Section VI. We derive bounds on the cases ofκe(G)
andκv(G) connectivity in ak-connected graphG.

A. Single Source to Single and Multiple Receivers

Whitney showed that thek-connected graph must havek
edge disjoint paths between any two pair of nodes as shown
in the following Theorem [5, Theorem 5.3.6].

Theorem6 (Whitney 1932):A nontrivial graph G is k-
connected if and only if for each pairu, v of vertices, there
are at leastk internally edge disjoint〈u, v〉 paths inG.

Theorem 6 establishes conditions fork edge disjoint paths
in a k-connected graphG. In order to make NPC feasible
in a k-connected graphG, we ask for more two conditions:
all receivers are connected with each others, as well as all
source(s) are connected with each other.

Lemma7: Let G be a non-trivial graph with a source node
s and receiver noder. Then the NPC has a feasible solution
with at leastk edge disjoint pathsif and only if G is ak-edge
connected graph.

Proof: First, we know that ifG is k-edge connected, then
for each pairs, r of vertices, the degree of each node must
be at leastk. If not, then removing any number of edges less
than k will disconnect the graph, and this contradicts the k-
edge connectivity assumption. Each node connected withs
will be a starting path tor or to another node in the graph.
Consequently, every node must have a degree of at leastk, and
must have a path tor. Therefore, there are at leastk internally
edge disjoints − r paths inG. Hence, NPC is feasible by
considering at leastk edge disjoint paths.

Assume that NPC has a feasible/valid solution fork′ ≥ k,
then there must existk′ ≥ k edge disjoint paths inG. Then
for each pair of verticess andr, there are at leastk internally
edge disjoint paths, thenκs(G), κr(G) ≥ k, for eachs andr
non-adjacent nodes. Therefore, the graphG is k-connected.

Let s be a source in the network modelN that sendsk
different source data tok receivers denoted byR. We need to

Fig. 2. An example of a regular graph of node degree three, in which NPC
is not feasible/valid from a source nodes to receiver ndoesr1, r2 and r3.
The receivers do not share a tree after removing the nodes.

infer conditions for all R receivers to be connected with each
other, and there are k edge disjoint paths from s to R. In this
case, NPC will be feasible in the abstract graphG representing
the networkN .

Theorem8: Let G be a k-edge connected graph with a
Hamiltonian cycle, ands, r1, r2, . . . , rk be anyk + 1 distinct
nodes inG. Then

i) there is a pathLi from s to ri, for i = 1, . . . , k, such
that the collection{L1, L2, . . . , Lk} are internally edge
disjoint paths.

ii) the nodes in the setR are connected with each other.
Therefore, NPC is feasible in the graphG.
The second condition ensures that there exists a tree in the
graph G which connects all nodes inR without repeating
edges from thek edge disjoint paths froms to R.

B. Regular Graphs and NPC Feasibility

We look to establish conditions on regular graphs to be
feasible to apply NPC.

Theorem9: Let G be a regular graph with minimum degree
k. ThenG has ak edge disjoint paths if and only if the min-cut
separating a source from a sink is of at leastk.
As shown in Fig. 2, the degree of each node is three and the
min. cut separating the source node s from the receiversR
is also three. However, we have the following negative result
about NPC feasibility in regular graphs.

Lemma10: There are regular graphs with node degree k,
in which NPC is not feasible.

Proof: A certain example to prove this lemma would be
a graph of 10 nodes, each of degree three, separated into two
equally components connected with an edge, see Fig. 2.

V. GRAPH CONSTRUCTION

We will construct graphs with a minimum number of edges
for given certain number of verticesn and edge disjoint paths
(connections)k, in which NPC can be deployed. Lethk(n)
denote the minimum number of edges that ak-connected
graph onn vertices must have. It is shown by F. Harary
in 1962 that one can construct a k-connected graphHk,n

on n vertices that has exactly⌈kn
2 ⌉ edges fork ≥ 2. The

construction begins with an n-cycle graph, whose vertices are
consecutively numbered0, 1, 2, . . . , n−1 clockwise. The proof
of the following Lemma is shown in [5, Proposition 5.2.5.].



Input : Two positive integersk andn, number of
connections and vertices, such thatk < n.

Output : An optimal Hk,n Harary graph for NPC.
Scatter then isolated nodes ;
Let r = ⌊k/2⌋. ;
The construction ofH2r,n Harary graph.;
foreach i=0 to n-2 do

foreach j=i+1 to n-1 do
if j − i ≤ r OR n + i − j ≤ r then
Create an edge between vertices i and j.

end
end
if k is eventhen

Return graph H for NPC.
else

if n is eventhen
foreach i=0 to n

2 − 1 do
Create an edge between vertexi and vertices
i + n

2
end

else
Create an edge from vertex 0 to vertexn−1

2 ;
Create an edge from vertex 0 to vertexn+1

2 ;
foreach i=1 to n−3

2 do
Create an edge between vertex i and vertex
i + n+1

2
end

end
Return graph H for NPC

end

Algorithm 1 : Construction of an optimal graph for NPC
with given n vertices, k connections and minimum number
of edges.

Lemma11: Let G be a k-connected graph onn nodes.
Then the number of edges inG is at least⌈kn

2 ⌉. That is,
hk(n) ≥ ⌈kn

2 ⌉.
From Algorithm 1, one can ensure that there arek edge

disjoint paths between any two nodes (one is sender and one
is receiver). In addition, there arek edge disjoint paths from
any node, which acts as a source, andk different nodes, which
act as receivers. All nodes are connected together with a loop.
Therefore, NPC can be deployed to such graphs.

Due to the fact that Harary’s graph is k-connected [5,
Theorem 5.2.6.], then using our previous result we can deduce
that NPC is feasible for such graphs. Harary’s graphs are
optimal for NPC construction since they arek-edge connected
graphs with the fewest possible number of edges.

VI. CONCLUSION

We proposed a method for optimal graph construction of
network protection codes, and derived bounds on the minimum
number of edges required for such graphs. We showered a
method to construct optimal network graphs with minimum
number of edges based on Harary graph constructions.
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APPENDEX

ESSENTIAL DEFINITIONS

We will proceed with some essential definitions. We as-
sume that all graphs stated in this paper are undirected (bi-
directional edges) unless stated otherwise. We define the edge-
connectivity and node-connectivity of a graphG as follows.

Definition 12 (Edge-cut and node-cut):Given an
undirected connected graphG, an edge-cut in a graph
G is a set of edges such that its removal disconnects the
graph. A node-cut inG is a set of nodes such that its removal
disconnects the graph.

Definition 13 (node-edge-connectivity):The edge-
connectivity of a connected graphG, denoted κe(G) is
the size of a smallest edge-cut. Also, the node-connectivity of
a connected graphG, denotedκv(G) is the minimum number
of vertices whose removal can either disconnect the graphG
or reduce it to a one-node graph.
The connectivity measuresκv(G) and κe(G) are used in
a quantified model of network survivability, which is the
capacity of a network to retain connections among its nodes
after some edges or nodes are removed.

Definition 14 (k-connected graph):a graph G is k-node
connected ifG is connected andκv(G) ≥ k. Also, a graphG
is k-edge connected ifG is connected and every edge-cut has
at leastk edges,κe(G) ≥ k.
We define two internal connections (paths) between nodes u
and v in a graph G to be internally edge disjoint if they have no
edge in common. This is also different from the node disjoint
paths, in which no two disjoint paths share a common node.
Throughout this paper, a path in a graphG does not contain
the same node or edge twice, i.e a path〈u, v〉 from a starting
nodeu to an ending nodev is a walk in a graphG [5].


