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Abstract—This paper proposes an energy management frame-
work for cellular heterogeneous networks (HetNets) supported
by dynamic drone small cells. A 3-tier HetNet is considered
where macrocell, on/off switching micro cells, and solar-powered
drone small cells are deployed to serve the networks’ subscribers.
In addition to energy harvesting, the drones can power their
batteries via a charging station located at the macrocell site.
Pre-planned locations are identified by the mobile operator for
possible drones’ placement. The objective of the framework is to
optimally determine the positioning of the drones in addition to
the micro cells that can be turned off in order to minimize the
daily energy consumption of the network. The framework takes
also into account the cells’ capacity and quality of service (QoS)
metric defined by the minimum received power. An integer linear
programming problem is formulated to optimally determine the
network status during a time blocked period. An online scheme
solving the optimization problem is proposed where the future
system statistics are unknown. The performances of this online
scheme are shown to be very close to those of an ideal benchmark
scenario where future network’s statistics are perfectly estimated.

Index Terms—Energy harvesting, energy management, hetero-
geneous networks, dynamic drone small cells.

I. INTRODUCTION

Recently, the use of unmanned aerial vehicles (UAVs),

also known as drones, as small cell base stations (BSs) to

support ground cellular networks has received considerable

attention. Drone base station (DBS) can act as an aerial BS

characterized by a quick and dynamic deployment [1], which

is extremely helpful for different scenarios. For instance, in

public safety communication, where ground infrastructure is

damaged by natural disasters, DBSs represent an alterna-

tive solution for mobile operators to maintain coverage and

connectivity. In fact, DBSs are more robust against such

environmental changes thanks to their mobility. DBSs are also

useful for temporary/unexpected high traffic demand situations

where already deployed infrastructure becomes overloaded and

requires additional communication equipment to maintain the

high quality-of-service (QoS) level. For example, in big events

such as Footbal games, Olympic games, or Concerts, it is

unfeasible from economical perspective to invest in the ground

infrastructure for a relatively short time period.

Few works in the literature investigate the deployment of

the DBSs and its challenges. In [2], a placement technique

that uses the drones as relays for cell overloading and out-

age compensation is proposed. Although they provided an
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analytical model for evaluating system performance in the

downlink direction, the authors did not discuss the DBSs’

coverage performance and did not suggest any deployment

method. The authors in [3] discussed the optimal deployment

position for drones that maximizes the average data rate while

keeping the symbol error rate under a certain level. However,

their work is limited to only one relaying drone. In [4],

the authors analyzed the optimal altitude of one DBS for

a certain coverage area that minimizes the DBS’s transmit

power. Moreover, they investigated the coverage of two DBSs

positioned at a fixed altitude and interfering with each other

over a certain coverage area.

Recharging the DBSs is another challenging issue in UAV-

based communications since traditional wired charging meth-

ods are not always feasible. Therefore, energy harvesting (EH)

techniques can be considered as one of the most effective and

robust solutions to protract the lifetime and sustainability of

drones [5]. In general, many promising practical applications

that use EH nodes have been discussed such as emerging ultra-

dense small cell deployments, point-to-point sensor networks,

cognitive radio networks, and far-field microwave power trans-

fer [6]. In UAV-based communications, EH is also considered

as an attractive technology for DBSs by offering additional

energy to charge their batteries [7]–[9].

In this paper, we investigate the placement of multiple EH

DBSs that support typical heterogeneous networks (HetNets)

consisting of a single macrocell and multiple micro cells. The

proposed method can be generalized in the context of large-

scale HetNets. The objective of the framework is to exploit the

mobility and quick deployment of the solar powered drones

to support the ground cells whenever it is required and when

the drones’ batteries allow. Inactive drones are placed at a

charging station located at the macrocell site. We formulate a

binary linear optimization problem aiming at optimally mini-

mizing the total energy consumption in a time block system.

During each time block, the proposed approach selects specific

drones to be placed at specific potential pre-planned locations.

Furthermore, it determines the status of micro cells that can

be turned off to save additional energy. This HetNet green

operation is managed while taking into account several factors

including a QoS metric, the cells’ capacity, drones’ battery

capacity, photovoltaic generation, and the power consumption

related to drones’ mobility. The performances of this online

block-by-block framework are compared to those of an ideal

offline benchmark scenario where future network’s statistics

are perfectly pre-estimated.



II. SYSTEM MODEL

In this study, we investigate a time-blocked system of a

finite period of time divided into b = 1, .., B, blocks of

equal duration Tb. The time blocks are relatively long as

compared to the channel coherence time and hence, we focus

on the system performance based on the average statistics

of the network. Investigating the system performance for

instantaneous channel realizations and network statistics is not

valid for this framework since we are considering the drones’

flying time (seconds) which is very large as compared to the

channel coherence time (milliseconds).

A. Network Model
We consider downlink transmission in a typical HetNet

consisting of one macrocell BS and M (k = 1, · · · ,M) micro

cell BSs (MBSs). The HetNet is assisted by D dynamic drones

that act as DBSs (i.e., each small BS is carried by one drone)

as depicted in Fig. 2.
In this work, we aim to optimize the deployment of DBSs

in the considered network according to its need and QoS

requirement. We assume that the dynamic drone can be in

three different states 1) the drone is in an idle mode and placed

at the charging station assumed to be located in the center of

the cell (i.e., in the macrocell BS site.), 2) the drone is placed

at a pre-defined location in the cell and acts as a DBS to serve

users, or 3) the drone is in motion and flying from a location

to another. Placing the charging station at the center of the cell

minimizes, in general, the flying time of drones and hence the

corresponding energy consumption.
We assume that there are Z+1 possible locations available

for drones’ deployment. These locations, i = 0, · · · , Z, can

be pre-determined by the mobile operator during the planning

phase. Each location i is identified by its 3D geographical

coordinates (xi, yi, hi). The location i = 0 (i.e., x0 = y0 =
h0 = 0) corresponds to the charging station. Hence, the drone

power consumption depends essentially on its current location

(i.e., time block b) and the previous one (i.e., time block b−1).

We denote by εb a binary matrix of size D × (Z + 1). Its

entries εbdl
(i) indicates the location of the drone dl, where

l = 1, · · · , D. In other words, εbdl
(i) = 1 if the drone dl is

placed at location i, and εbdl
(i) = 0 otherwise.

On the other hand, a dynamic on/off switching mechanism

is considered to turn off redundant MBSs whenever it is

possible [10]. More specifically, MBS mk, k = 1, . . . ,M can

be turned off during low traffic periods and the small number

of active users are offloaded to nearby DBSs or macrocell

BS. As a result, the energy consumption of lightly loaded

MBSs can be reduced or completely eliminated. A binary

vector, denoted by πb, is introduced to indicate the status

of each ground MBS mk where πb
mk

= 1 if MBS mk is

operating during time block b, and πb
mk

= 0 otherwise. It

should be noted that we always keep the macrocell BS active

to ensure coverage and minimum connectivity in this typical

HetNet (i.e., one macrocell BS surrounded by multiple of

MBSs). In the case of multiple macrocell BSs covering a

bigger geographical area, macrocell BSs can be turned off

and cell breathing mechanisms can be employed to ensure

connectivity [8].

Macro BS MBS DBS User

Fig. 1: HeteNet assisted by DBSs.

We denote by U b the average total number of users located

in the macrocell during time block b and by Ū0, Ūm, and Ūd

the maximum number of users served by macrocell BS, MBS

mk, and DBS dl, respectively, such that Ūd ≤ Ūm � Ū0.

These numbers reflect the BSs’ capacities due to available

number of frequency carriers and/or hardware and transmit

power limitations. We assume that the co-channel interference

is ignored and the transmissions are performed in orthogonal

basis. Also, we assume that a user is served by at most one

BS (either a macrocell BS, MBS, or DBS). We consider that

the user distribution during time block b over the macrocell

area A follow a certain probability density function (pdf)

denoted by f(x, y, b), where (x, y) represents the geographical

coordinates of a user. We denote by AX (AX ⊆ A) the

coverage area of an active BS X where X ∈ {{0}, {mk : k =
1, · · · ,M}, {(dl, i) : l = 1, · · · , D, i = 0, · · · , Z}} referring

to the macrocell BS, MBS mk and DBS dl placed at location

i, respectively. Hence, the average number of users served by

an active BS X during time block b is denoted by U b
X and

given by:

Ub
X = min

(
Ub

∫∫
AX

f(x, y, b) dxdy, ŪX

)
, (1)

for MBSs and DBSs, i.e., X ∈ {mk, (dl, i)} and,

Ub
0 = min

(
Ub −

M∑
k=1

πb
mk

Ub
mk

−
D∑
l=1

Z∑
i=1

εbdl(i)U
b
dl,i, Ū0

)
, (2)

for macrocell BS, i.e, X = 0.

where min is the minimum function.

B. Channel Model
In this paper, we distinguish two channel models depending

on the nature of the transmitter.
1) Ground-to-Ground Channel Model: The average path

loss (PL) between a ground BS X ∈ {0,mk} and a ground

user is given by the average PL for non-line of sight (NLoS)

links and expressed as [11]:

PLNLoS
X [dB] = 20 log10

(
4πδX
λ0

)
+ ξNLoS, (3)

where δX is the average distance between the ground BS X
and a served user located within its cell, λ0 is the carrier

wavelength, and ξNLoS is the average additional loss due to

the free space propagation loss for NLoS link.



2) Air-to-Ground Channel Model: The PL of air-to-ground

link is a weighted combination of two PL links: LoS and NLoS

links. This is due to the mobility and ability of drones to

serve users from high altitude as compared to ground BSs.

In this case, there will be a probability to obtain a LoS link

between the DBS and a user [11]. The average PL between

the DBS l positioned at a position i and a served user in urban

environments for line of sight (LoS) is given as [11]:

PLLoS
dl,i

[dB] = 20 log10

(
4πδdl,i

λ0

)
+ ξLoS, (4)

where δdl
is the average distance between the DBS l and the

served user located in its cell and ξLOS is the average additional

loss to the free space propagation loss for LoS link.

The LoS probability is given by [4], [12], [13]:

pLoS
dl,i

=
1

1 + ν1 exp(−ν1[θdl,i − ν2])
, (5)

where θdl,i is the elevation angle between DBS l positioned

at location i and the served user in (degree). ν1 and ν2 are

constant values that depend on the environment. The NLoS

probability is, then, equal to 1− pLOS
dl,i

. Therefore, the average

PL for air-to-ground link is given by:

PLdl,i = pLoS
dl,i

PLLoS
dl,i

+ (1− pLoS
dl,i

)PLNLoS
dl,i

. (6)

C. Base Stations Power Model

In the active state, to serve its connected users during a

time block b, the BS X consumes a power denoted by P b
X ,

however, in the idle mode, it consumes a constant power equal

to P idle
X = γX . The latter power corresponds to the minimum

power required to readily activate BS X . For simplicity, the

total power consumption of an active BS X during a time

block b can be approximated by a linear model as follows [14]:

P b
X = αX P̃ b

X + βX , (7)

where αX is the scaling parameter and βX models an offset of

site power which is consumed independently of the average ra-

diated power of BS which is denoted by P̃ b
X and expressed as:

P̃ b
X = U b

XPminPLX , (8)

where PLX is the corresponding average PL of the BS X .

Note that PLX = PLNLoS
X given in (3) in the case of a

macrocell BS or MBS and PLX = PLdl,i given in (6) in

case of a DBS.

D. Drone Power Model

Besides the power consumed by the BSs carried by the

drones (i.e., DBSs), the drone consumes additional hovering

and hardware powers. Without loss of generality, we assume

that all drones move with a fixed speed denoted by vd. The

hover and hardware drone power levels, denoted by Phov and

Phar, can be expressed, respectively, as [15]:

Phov =

√
(mtotg)3

2πr2pnpρ
, and Phar =

Pfull − Ps

vmax

vd + Ps, (9)

where mtot, g, and ρ are the drone mass in (Kg), earth gravity

in (m/s2), and air density in (Kg/m3), respectively. rp and

np are the radius and the number of the drone’s propellers,

respectively. vmax is the maximum speed of the drone. Pfull and

Ps are the hardware power levels when the drone is moving

at full speed and when the drone is in idle mode, respectively.

Note that in (9) we assume that when serving users at a

location i, the drone will be in a static position, hence, it

consumes only Ps for hardware power. However, when it is

flying to a destination (i.e., one of the Z + 1 locations), it

will consume Phar. Finally, the flying power of DBS l can be

calculated as:

Pf = Phov + Phar. (10)

E. Renewable Energy Model

In this paper, we assume that DBS l can harvest from

renewable energy (RE) sources selected to be the photovoltaic

energy. We model the RE stochastic energy arrival rate as a

random variable Φ Watt defined by a pdf g(ϕb
dl
). An event

ηϕb
dl

in a time block b can be interpreted as the average

received amount of power with respect to the received

luminous intensity in a particular direction per unit solid

angle. η denotes the EH efficiency coefficient.

To summarize, we present in Table I the consumed and

harvested energies of the drone for all possible scenarios: 1)

when the drone is at a location other than location i �= 0
at time block b − 1, 2) when the drone remains at the same

location i �= 0, 3) when the drone decides to go to the charging

station (i.e., i = 0) while it was positioned at location j �= 0
during block b− 1, and 4) when the drone decides to stay in

the charging station i = 0. In Table I, Tf (j, i) corresponds to

the drone trip duration from a location j to a location i while

Tr(j, i) = Tb − Tf (j, i) and it corresponds to the time spent

by a drone at a location i to serve users (i.e., i �= 0) or charge

its battery (i.e., i = 0) with Tf (j, i) � Tb. Pch denotes the

power per drone of the charging station.

III. PROBLEM FORMULATION

In this section, we formulate two optimization problems

aiming to minimize the network’s energy consumption during

the B time blocks. Choosing this metric reduces at maximum

the use of drones and hence send them only when needed.

The first one corresponds to an online scenario where the

mobile operator manages its BSs time block by time block

due to limited information about the future traffic and RE

generation. The second one considers full knowledge of the

future statistics and hence, optimizes all the decisions variables

simultaneously for the B time blocks.

A. Online Optimization

The total energy consumption of the network during time

block b can be expressed as:

Eb
tot = Eb

0 + Eb
M + Eb

D, (11)

where, using (2) and (7), Eb
0 =

(
α0P̃

b
0

(
πb, εb

)
+ β0

)
Tb and

represents the energy consumption of the macrocell BS during



Table I: Consumed and harvested energies of DBS l during a time block b for all possible cases
Previous location Current location Consumed energy Harvested energy Charging energy

εb−1
dl

(j) = 1, j �= i εbdl(i) = 1, i �= 0 (Pf + γd)Tf (j, i) + (P b
dl,i

+ Ps)Tr(j, i) ηϕb
dl
(Tf (j, i) + Tr(j, i)) 0

εb−1
dl

(j) = 1, j = i εbdl(i) = 1, i �= 0 (P b
dl,i

+ Ps)Tb ηϕb
dl
Tb 0

εb−1
dl

(j) = 1, j �= 0 εbdl(i) = 1, i = 0 (Pf + γd)Tf (j, i) + γdTr(j, i) ηϕb
dl
(Tf (j, i) + Tr(j, i)) PchTr(j, i)

εb−1
dl

(j) = 1, j = 0 εbdl(i) = 1, i = 0 γdTb ηϕb
dl
Tb PchTb

time block b. Eb
M is the total energy consumption of M MBSs

during time block b which is expressed as:

Eb
M =

M∑
k=1

[
πb
mk

(αmP̃ b
mk

+ βm) + (1− πb
mk

)γm

]
Tb. (12)

Finally, Eb
D =

∑D
l=1 E

b
dl

corresponds to the total energy

consumption of all drones D during time block b. Using

Table I and knowing that Tf (i, i) = 0, the total energy

consumption of a drone dl during time block b is expressed

as follows:

Eb
dl = εbdl(0)

Z∑
j=0

εb−1
dl

(j) [(Pf + γd)Tf (j, 0) + γdTr(j, 0)]+

Z∑
i=1

Z∑
j=0

εbdl(i)ε
b−1
dl

(j) [(Pf + γd)Tf (j, i) + (Pdl + Ps)Tr(j, i)] .

(13)

On the other hand and again using Table I, the total harvest-

plus-charging energy of DBS l during time block b due to EH

and Pch, denoted by Hb
dl

, is given as follows:

Hb
dl = εbdl(0)

Z∑
j=0

εb−1
dl

(j)
[
ηϕb

dlTf (j, 0) + (ηϕb
dl + Pch)Tr(j, 0)

]

+
Z∑

i=1

Z∑
j=0

εbdl(i)ε
b−1
dl

(j)ηϕb
dl [Tb] .

(14)

The stored energy by DBS l at the end of time block b,
denoted by Sb

dl
, is given as by:

Sb
dl

= Sb−1
dl

+Hb
dl
− Eb

dl
. (15)

We assume that initially each battery is charged by an amount

of energy denoted by S0
dl

. Hence, the optimization problem

minimizing the total energy consumption at each time block

b with EH drones is given as:

minimize
εb∈{0,1},πb∈{0,1}

Eb
tot = Eb

0 + Eb
M + Eb

D (16)

subject to:

Eb
dl

≤ Sb−1
dl

, ∀l, (17)

Sb−1
dl

+Hb
dl

≤ S̄, ∀l, (18)

Z∑
i=0

εbdl
(i) = 1, ∀l, (19)

D∑
l=1

εbdl
(i) ≤ 1, ∀i = 1, · · · , Z, (20)

U b −
M∑
k=1

πb
mk

U b
mk

−
D∑
l=1

Z∑
i=1

εbdl
(i)U b

dl,i
≤ Ū0, (21)

Constraint (17) indicates that the total energy consumed by a

drone dl during the time block b has to be less than the energy

stored at the beginning of this time block. Constraint (18)

forces the total energy stored in the battery of a drone dl
during the time block b to be less than the battery capacity

denoted by S̄. Note that S̄ is chosen such that the required

energy to return a drone to the charging station (i = 0)

is guaranteed. This energy is simply equal to PfTf (imax, 0)
where imax the farthest location from i = 0. Constraints (19)

and (20) prevent the optimization problem from positioning

a drone in two or more different locations during the same

time block and positioning at maximum one drone in the

locations i = 1, · · · , Z, respectively. Multiple drones can be

located simultaneously at the charging station i = 0. Finally,

constraint (21) ensures that the macrocell BS’s capacity is not

violated. This constraint encourages the activation of MBSs

and the deployment of DBSs during high traffic time blocks.

Notice that this optimization problem will be solved

at the beginning of each time block which is possible

due to the knowledge of the status of the network dur-

ing the previous time block εb−1. Hence, the problem

can be converted to the standard form of a binary lin-

ear programming optimization problem and the decision

variables can be re-written in a single vector W =[
εb1(0), · · · , εb1(Z)εb2(0), · · · · · · , εbD(Z), πb

1, · · · , πb
M

]
. Optimal so-

lutions for such a problem can be determined using Cplex [16].

B. Offline Optimization

In this case, the objective function becomes the minimiza-

tion of the total energy consumption of the network during all

B time blocks. The decision variables are identified as ε and

π that correspond to the vertical concatenation of the matrices

εb and πb, ∀b = 1, · · · , B, respectively. Hence, the problem

becomes a binary non-linear programming problem due to the

existence of the binary products εb−1
dl

(j)εbdl
(i) in the energy

expressions given in (13) and (14). To linearize the problem,

we introduce for each link the parameter ζbdl
(j, i) such that

ζbdl
(j, i) = εb−1

dl
(j)εbdl

(i) where the following inequalities have

to be respected:

ζbdl
(j, i) ≤ εb−1

dl
(j), ζbdl

(j, i) ≤ εbdl
(i),

and ζbdl
(j, i) ≤ εb−1

dl
(j) + εbdl

(i)− 1. (22)

The first two inequalities ensure that ζbdl
(j, i) = 0 if εb−1

dl
(j) or

εbdl
(i) is zero. The third inequality guarantees that ζbdl

(j, i) = 1

if εb−1
dl

(j) = εbdl
(i) = 1. Hence, the expressions (13) and (14)

become depending on ζb(dl, n) and the decision variables

turn into ζ, ε, and π that have the following number of

elements: BD(Z + 1)
2
, BD(Z + 1), and BM , respectively.

Accordingly, the optimization problem that minimizes the

network energy consumption during all B time blocks is

given by:



minimize
ε∈{0,1},π∈{0,1},

ζ∈{0,1}

Etot =

B∑
b=1

Eb
0 + Eb

M + Eb
D (23)

subject to:

b∑
t=1

Et
dl
−

b−1∑
t=1

Ht
dl

≤ S0
dl
, ∀l, ∀b, (24)

S0
dl
+

b∑
t=1

Ht
dl
−

b−1∑
t=1

Et
dl

≤ S̄, ∀l, ∀b, (25)

Z∑
i=0

εbdl
(i) = 1, ∀l, ∀b, (26)

D∑
l=1

εbdl
(i) ≤ 1, ∀i = 1, · · · , Z, ∀b, (27)

U b −
M∑
k=1

πb
mk

U b
mk

−
D∑
l=1

Z∑
i=1

εbdl
(i)U b

dl,i
≤ Ū0, ∀b, (28)

ζbdl
(j, i) ≤ εbdl

(i), ∀l, ∀i, ∀j, ∀b, (29)

ζbdl
(j, i) ≤ εb−1

dl
(j), ∀l, ∀i, ∀j, ∀b, (30)

ζbdl
(j, i) ≥ εb−1

dl
(j) + εbdl

(i)− 1, ∀l, ∀i, ∀j, ∀b, (31)

Notice that the constraints (24)-(28) are similar to the con-

straints (17)-(21) except that they have to be satisfied for

all time blocks b = 1, · · · , B. The constraints (24)-(25) are

obtained by replacing Sb
dl

by its expression given in (15). The

constraints (29)-(31) correspond to the linearization process as

indicated in (22). In terms of complexity, the linearized offline

optimization problem is largely more complex than the online

one due to the higher number of binary decision variables and

constraints. The linearized offline problem can be also solved

using Cplex.

IV. SELECTED NUMERICAL RESULTS

In this section, selected numerical results are provided to

investigate the benefits of utilizing dynamic DBSs in HetNets.

We assume a HetNet consisting of one macrocell BS with

radius of one km, four MBSs (M = 4) with a coverage of

250 meters, and six identical drones (D = 6), unless otherwise

stated, that can potentially placed in sixteen different locations

(Z = 16) with same altitude hi = 60, meters, ∀i = 1, . . . , 16
and a coverage of 150 meters. The Z pre-planned locations are

indicated as depicted in Fig 2. We assume that the drones are

initially charged with S0
dl

= 6 kJ of energy and placed at the

charging station. The average received amount of photovoltaic

power φb
dl

is assumed to be generated following a Gamma

distribution with shape and scale parameters equal to 1 and 2,

respectively. We assume that U b = 140, ∀b = 1, · · · , B users

exist within the macrocell. In case of overlap between the

micro cell and an active DBS, we assume that the drone has

the priority in serving the users in the intersection region once

deployed. In Table II, we present the values of the remaining

parameters used in the simulations [14], [15].

In Fig. 2, we start by investigating the behavior of two

selected drones, namely drone d1 and drone d3 respectively,

for two different user distribution but same number of users

and RE generation per drone and time block. In Fig. 2(a,c),

Table II: System parameters

Parameter Value Parameter Value Parameter Value
λ (m) 0.125 Pmin(dBm) -70 Tb 10
ν1 9.6 ν2 0.29 ξLoS (dB) 1
ξNLoS (dB) 12 α0 4.7 β0 (W) 130
αm 2.6 βm (W) 56 γm (W) 39
αd 4 βd (W) 6.8 γd (W) 2.9

S̄ (kJ) 10 vd = vmax (m/s) 15 mtot (g) 750
rp (cm) 20 np 4 Ps (W) 0.5

Pch (W) 10 η 0.9 Ū0 130

Fig. 2: The behavior of two drones, drone d1 (a,b), drone d3
(c,d) for different user distributions with D = 6.

we consider a uniform user distribution and hence, if a drone

is placed in a location i �= 0, it will serve exactly the same

number of users as another drone placed in another location

j �= i. In Fig. 2(b,d), another non-uniform distribution is

considered where the number of users to be served differs

from a location to another. It is shown that with uniform

distribution, once the drone is sent to a location i then it has

two possibilities for the next block, either to stay at the same

location (e.g., d1 during b = 3, 4) if it has enough energy or

return back to the charge station (e.g., d1 during b = 2). On

the other hand, with the random distribution, the drone can

go from one location to another to serve the users without

passing by the charging station. For instance, d1 goes to i = 5
in b = 3, then moves to i = 2. It is also worth to note that the

drones avoid long distance trip when selecting the locations

unless they are forced to do due to high user density in these

locations (e.g., d3 with random distribution moves to i = 2, 15
during b = 3, 1 and 5).

In Fig. 3, we plot the energy consumption and number of

active drones for B = 20 time blocks and different number of

users uniformly distributed (i.e., U b = 140 and U b = 160, ∀b).
This figure investigates the impact of RE for two cases: 1)

when the drones are supported by solar panel (blue lines)

and 2) when the drones are charged by the central station

only (red line). It is shown that EH don’t only reduce the
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Fig. 3: Total energy consumption and number of active drones

during the trial period.
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Fig. 4: A comparison between the online and offline methods

for different values of D .

total energy consumption of the network but also, help in

avoiding (or decreasing) the outage risk (i.e., where not all

users can be simultaneously served). Indeed, when the number

of users in the network is relatively large (e.g., U b=160), two

outage periods are detected b = {9, 10} and b = 18. This

outage is due to two reasons. Firstly, the non-EH drones need

to go more frequently to the central station than the drones

supported by EH to charge their batteries. Secondly, the EH

drones can harvest energy when flying and serving users which

contributes to increase the battery level and hence, get more

flexibility to move to other locations without passing by the

charging station. This is deduced from the number of active

drones of each case.

Finally, Fig. 4 compares between the online and offline

methods presented in Section. III for different number of

drones while increasing the total number of users per time

block. It is noticed that increasing the number of drones help

in avoiding network outage and reducing the total energy

consumption specially when the network becomes more and

more congested. Furthermore, the offline method achieves a

more important energy saving due to its efficient management

of the harvested energy compared to the online method.

Nevertheless, the achieved performance of the online method

follows the same trend of the perfect knowledge method with

a minor gap.

V. CONCLUSIONS

In this paper, we proposed an energy management frame-

work for cellular heterogeneous networks assisted by solar-

powered drone small cells. The objective is to minimize the

total energy consumption of the networks while maintaining

the network coverage and connectivity during low and high

traffic periods. Drone base stations are optimally managed in

order to support the overloaded cells while considering their

photovoltaic energy generation and battery capacity. Results

show the behavior of dynamic drones in a time-blocked system

and their significant impacts on ensuring connectivity with

minimum energy consumption.
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