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Abstract—In this paper, we investigate energy efficient and
energy harvesting (EH) in heterogeneous networks (HetNets)
where all base stations (BSs) are equipped to harvest energy
from renewable energy sources, e.g., solar. We consider a hybrid
power supply of green (renewable) and traditional micro-grid,
such that traditional micro-grid is not exploited as long as the
BSs can meet their power demands from harvested and stored
green energy. Therefore, our goal is to minimize the network-
wide energy consumption subject to users’ certain quality of
service and BSs’ power consumption constraints. As a result
of binary BS sleeping status and user-cell association variables,
proposed is formulated as a binary linear programming (BLP)
problem. Two cases based on the knowledge level about future
renewable energy (RE) statistics are investigated: (i) an online
knowledge case where future RE statistics are unknown, (ii) an
offline knowledge case where future network’s statistics are a
priori perfectly estimated. A green communication algorithm
based on binary particle swarm optimization is implemented to
solve the problem with low complexity time.

Index Terms—Energy harvesting, sleeping strategy, binary
particle swarm optimization.

I. INTRODUCTION

Energy saving is considered as one of the critical research
problems that has been discussed in green communication
over the last few years. In recent years, energy efficiency
has emerged as a major concern in the operation of cellular
heterogenous networks (HetNets). Dynamic base station (BS)
ON/OFF switching, also known as BS sleeping strategy, is
shown to be highly useful in reducing energy consumption
of cellular HetNets [1], [2]. The BSs are turned off during
periods of low traffic and the small number of active users are
offloaded to a nearby BS. As a result, the power consumption
of lightly loaded BSs can be reduced or completely eliminated
depending on the sleep state of the turned off BS. In [2], the
impact of turning off macrocell BSs on the energy efficiency of
the HetNet is studied while keeping the small cell BSs active.
Several robust and efficient schemes for BS ON/OFF switching
have been proposed in literature [3], [4]. For instance, in
[3], three different approaches for small cell BS switching in
HetNets are discussed. The ON/OFF status of the small cell
BSs is controlled by either the detection of active users by the
small cell BSs, wake-up signals by the core network, or wake-
up signals by the users. In [4], the authors have introduced
two modes to cater for the short and long idle periods of
the users. It is shown that dense HetNets can be used t
achieve higher capacity and performance while simultaneously
reducing energy consumption. BS sleeping strategies for single
tier cellular networks are investigated in [5], [6]. In [5], an
energy saving algorithm, that turns off the BSs one by one and

measures the network impact considering the load increments
of the neighboring BSs, is proposed. In [6], an algorithm
based on simulated annealing search is shown to provide
considerable energy savings with insights on the deployment
of small cell BSs. In [7], the authors presented a complete
framework for a smart-grid powered LTE system based on
evolutionary algorithms.

Replenishing a new battery or recharging it using traditional
wired charging method is not feasible always (e.g., sensors lo-
cated on mountains or in forests). Therefore, energy harvesting
(EH) has been considered as one of the most effective and
robust solutions to protract the lifetime and sustainability of
wireless networks [8]. Many promising practical applications
that use EH nodes have been discussed recently, such as,
emerging ultra-dense small cell deployments, point-to-point
sensor networks, and far-field microwave power transfer [9].

One of the limitation of the EH is the discontinuity of the
power generation which affects reliability of the service. In
[10], the authors consider hybrid powering BSs connected
to different micro-grids that cooperate to minimize the total
power cost by optimizing their resources allocation. The
authors assume that each micro-grid can purchase back-up
power from the main grid when needed, in order to ensure
a reliable service to the the users. In this work, we consider a
downlink EH HetNets system where each BS is equipped to
harvest from renewable source. The contribution of this work
can be summarized as follows

• Considering a hybrid power supply sources consisting of
green (renewable) and traditional micro-grid, such that
traditional micro-grid is not exploited as long as the BSs
can meet their power demands from harvested and stored
green energy.

• Formulating an optimization problem aims to minimize
the network-wide energy consumption over a certain time
slots. The goal is to optimize the BS sleeping and user-
cell association variables under BS’s maximum power
constraint, maximum BS’s storing energy constraint, and
user’s quality-of-service (QoS) constraint.

• Two cases depending on the knowledge level about future
RE generation are investigated:

1) The online case: in this case, future RE generation
statistics are unknown. a binary linear programming
(BLP) problem is formulated to optimize the BS sleep-
ing status and user-cell association.

2) The offline case: this case assumes that the future
statistics of the network are perfectly and estimated.



• Proposing a low complexity green optimization approach
based on binary particle swarm optimization (BPSO)
algorithm to find a near optimal solution and compare
it with the well known genetic algorithm (GA) [11].

II. SYSTEM MODEL

In this paper, we investigate a time-slotted system of a finite
period of time divided into b = 1, .., B, time slots of equal
duration Tb.

A. Network Model

We consider a half duplex downlink transmission of three-
tiers HetNets consisting of a macrocell tier, microcell tier, and
smallcell tier with a total of L+1 BSs (i.e., a single macrocell
BS and L combined BSs of micro base stations (MBSs),
and small base station (SBSs)). The locations of all BSs
are modeled by an independent homogeneous Poisson Point
Process (PPP). We consider a hybrid power supply micro-
grid sources consisting of a green grid (GG) and a traditional
grid (TG). The former uses renewable sources to generate
the electric power, while the latter uses classical sources to
generate the electric power. Each BS is connected to the GG
so that can provide help in energy when needed.

The GG has the ability to purchase a back-up power from
traditional grid (TG) that is controlled by control unit (CU)
when needed as shown in Fig. 2.
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Fig. 1: System model of hyprid EH.

Denoted U b as the total number of users in the network
during time slot b. We denote by Ūl, the maximum number
of users that can be served by a BS l, where index l = 0
for macrocell BS and l ≥ 1 for other BS tiers, such that
Ūl � Ū0. These numbers reflect the BSs’ capacities due
to available number of frequency carriers and/or hardware
and transmit power limitations. In order to avoid the co-
channel interference, we assume that all the channels shared
the spectrum orthogonally between the BS. Finally, we assume
that the a user is served by at most one BS (either macrocell
BS, MBS, or SBS).

In general, we assume that the communication channel
between two nodes x and y at time slot b is given as follows

hbxy =

√
d−αxy h̃

b
xy, (1)

where dxy is the Euclidean distance between the nodes x and
y, α is a pathloss exponent, and h̃xy,b is a fading coefficient
with a coherence time slot Tb sec. Without loss of generality,
all channel gains are assumed to be constat during Tb.

B. Base Station Power Model

Since the energy arrivals and energy consumption of the BSs
are random and their energy storage capacities are finite, some
BSs might not have enough energy to serve users at a particular
time. Under such scenario, it is preferred that some of the
BSs are kept OFF and allowed to recharge while their load
is handled by the neighboring BSs that are ON. On the other
hand, dynamic base station switching-ON/OFF can help in
ensuring power saving of HetNets by reducing the traditional
(non-renewable) power consumption of BSs that have a heavy
energy usage mainly during low traffic period.

Each BS can be set in either of two operational modes:
active mode (AM) and sleep mode (SM). The decision to
toggle the operational state from one to another is taken
centrally (i.e., the decision is taken by some central entity
based on the current load offered to the network). In the AM,
the BS is serving a certain number of users, thus, the BS
radiated power can be expressed as

PBS
l =

Ul∑
u=1

Pl,u, (2)

that corresponds to the sum of the radiated power over all
users Ul connected to a certain BS l.

In the SM, the BS l consumes power equal to γl. The
sleep mode is a reduced power consumption state in which
the BS in not completely turned off and can be readily
activated. Although the BS is not radiating power in this
mode, elements such as power supply, baseband digital signal
processing, and cooling are still active. Therefore, the BS
keeps consuming power unless it is in a state of complete
shutdown. For simplicity, the total power consumption of BS
l can be approximated by a linear model as follows [12]

Pl =

{
αlP

BS
l + βl, for AM,

γl, for SM, (3)

where al corresponds to the power consumption that scales
with the radiated power due to amplifier and feeder losses
and bl models an offset of site power which is consumed
independently of the average transmit power.

We denote by εb a binary matrix of size L+1×U . Its entries
εbl,u is equal to 1 if user u is allocated to BS l at time b and 0
otherwise.On the other hand, a dynamic ON/OFF switching
mechanism is considered to turn off redundant MBSs and
SBSs whenever it is possible. More specifically, BS l can be
turned off during low traffic periods and the small number of
active users are offloaded to nearby BSs A binary vector πb

of size L × 1 is introduced to indicate the status of each BS
l. Its entries πbl equal to 1 if BS l is in AM during time slot
b and 0 otherwise. Note that in order to ensure that the users
can not be connected to a BS in the SM, then, the following
condition should be respected

εbl,u ≤ πbl , ∀l = 1, ., L, ∀u = 1, ., U, ∀b = 1, ., B. (4)



In this paper, we always keep the macrocell BS active (i.e., πb0,
∀b = 1, .., B) to ensure coverage and minimum connectivity
in this typical HetNet (i.e., one macrocell BS surrounded by
multiple of MBSs and SBSs). In the case of multiple macrocell
BSs covering a bigger geographical area, macrocell BSs could
be turned off and cell breathing mechanisms can be employed
to ensure connectivity [13].

C. Energy Harvesting Model

In this paper, we assume that each BS can harvest from
RE in both AM and SM. We model the RE stochastic energy
arrival rate as a random variable Φ Watt defined by a probabil-
ity density function (pdf) f(ϕ). For example, for photovoltaic
energy, Φ can be interpreted as the received amount of energy
per time unit with respect to the received luminous intensity
in a particular direction per unit solid angle. In general, the
energy consumption of the BS l during time slot b can be
expressed as

Eb0 = Tb

(
α0

U∑
u=1

εb0,uP0,u + β0

)
, l = 0 (5)

Ebl = Tb

(
πbl

[
αl

U∑
u=1

εbl,uPl,u + βl

]
+ (1− πbl )γl

)
, l ≥ 1,

(6)

By using (4), we can re-write (6) as follows

Ebl = Tb

(
αl

U∑
u=1

εbl,uPl,u + πbl βl + (1− πbl )γl

)
, l ≥ 1,

(7)

The harvested energy in BS l and GG at the end of time
slot b, are given respectively by

Hb
l = Tbηlϕ

b
l , (8)

Hb
g = Tbηgϕ

b
g, (9)

where ηl and ηg are the energy conversion efficiency co-
efficient of the RE at BS l and GG, respectively, where
0 ≤ ηl, ηg ≤ 1. Notice that the current stored energy in
BS l and GG depend on both the current harvested energy
during slot time b and the previously stored energy during
previous slots. Therefore, he stored energy in BS l at the end
of time t is given by

Sbl =
[
Sb−1l +Hb

l − Ebl − Ele
]+
, (10)

where Ele is the leakage energy during Tb. [x]+ = max(0, x).

III. PROBLEM FORMULATION AND SOLUTION

In this section, we formulate and solve optimally two
optimization problems, based on the knowledge level of the
RE generation, aiming to minimize the network’s energy
consumption during the B time slots. The first optimization
problem corresponds to the online case where the mobile
operator manages its BSs time slot by time slot without any
prior information about the future RE generation. The second

one corresponds to the offline case with full information about
the future RE generation where all the decisions variables are
simultaneously optimized for the B time slots. The offline
case is a not realistic case. In this study, it is used as a
benchmark scenario for comparison with online case or as
an approximation of the case where RE energy uncertainty is
almost negligible. The achievable data rate of user u served
by BS l at a given time b is given by

Rbl,u = log2

(
1 +

Pl,u |htl,u|2

N0

)
(11)

where N0 is the noise power density.

A. Online Optimization Problem
In this case, we assume that the mobile operator is not aware

about the future RE generation(i.e., ϕbl and ϕbg are known
during b only). Therefore, optimization problem that aims to
minimize the total consumed energy at each time slot b is
formulated as follows

minimize
πb
l ,ε

b
l,u≥0

Ebc =

L∑
l=0

Ebl (π
b
l , ε

b
l,u)− Sbl (πb−1l , εb−1l,u ) (12)

subject to:

U∑
u=1

εbl,uPl,u ≤ P̄l, ∀l = 0, ., L, (13)

L∑
l=0

εbl,uR
b
l,u ≥ R0, ∀u = 1, ., U, (14)

Sb−1l (πbl , ε
b
l,u) +Hb

l ≤ S̄l, ∀l = 0, ., L, (15)
U∑
u=1

εbl,u ≤ Ūl, ∀l = 0, ., L, (16)

L∑
l=0

εbl,u ≤ 1, ∀u = 1, ., U, (17)

εbl,u ≤ πbl , ∀l = 1, ., L, ∀u = 1, ., U, (18)

where constraint (13) and (14) represent the maximum al-
lowable transmit energy of BS l and user QoS, respectively.
Constraint (15) forces the total energy stored in the battery
of a BS l during the time slot b to be less than the battery
capacity denoted by S̄l. Constraints (16) and (17) to satisfy the
backhauling condition and to ensure that each user is served
by at most one BS, respectively.

Notice that, this optimization problem will be solved at the
beginning of each time slot. Hence, the optimal solutions for
such a problem can be determined using simplex method with
Gurobi/CVX interface [14].

B. Offline Optimization Problem
In this case, we assume that the mobile operator can

perfectly predict the future RE generation ahead of time. This
case can be considered as a useful benchmark to compare with
the online case. Therefore, the objective function becomes the
minimization of the total energy consumption of the network
during all B time slots.



minimize
πb
l ,ε

b
l,u≥0

Ec =

B∑
b=1

L∑
l=0

Ebl (π
b
l , ε

b
l,u)−Sbl (πb−1l , εb−1l,u ) (19)

subject to:

U∑
u=1

εbl,uPl,u ≤ P̄l, ∀l = 0, ., L, ∀b = 1, ., B, (20)

L∑
l=0

εbl,uR
b
l,u ≥ R0, ∀u = 1, ., U, ∀b = 1, ., B, (21)

Sb−1l (πbl , ε
b
l,u)+Hb

l ≤ S̄l, ∀l = 0, ., L, ∀b = 1, ., B, (22)

U∑
u=1

εbl,u ≤ Ūl, ∀l = 0, ., L, ∀b = 1, ., B, (23)

L∑
l=0

εbl,u ≤ 1, ∀u = 1, ., U, ∀b = 1, ., B, (24)

εbl,u ≤ πbl , ∀l = 1, ., L, ∀u = 1, ., U, (25)

Notice that the constraints (20)-(25) are similar to the con-
straints (13)-(18) except that they have to be satisfied for all
time slots b = 1, .., B.

The offline problem can be also solved using simplex
method with Gurobi/CVX interface [14].

C. Special case

The communication channel is assumed to be a block fading
channel with a coherence time Tc second. Therefore, the
scheduling and user-cell association can be assumed to be
taken over a short time scale. While, the operational state of
the switching ON/OFF of the BSs can be taken over a long
time scale, where each long time slot consists of multiple short
slots. Hence, the problem can be solved by optimizing only
εbl,u at the beginning of the short time slot and optimizing both
πbl and εbl,u at the beginning of the long time slot.

IV. LOW COMPLEXITY ALGORITHM

The formulated BLP optimization problems given in Sec-
tion III is considered as NP-hard problem due to the existence
of the binary variables, hence, we propose to employ a meta-
heuristic algorithm, namely BPSO.

The BPSO algorithm was firstly developed in 1997 by J.
Kennedy and R. Eberhart [15]. The idea is inspired from
swarm intelligence, social behavior, and food searching by
a flock birds and a school of fish. The main advantages are
summarized as follows: (i) BPSO presents a simple search
process and is easy to implement with few parameters to
manipulate (e.g., such as the number of particles and accelera-
tion factors for BPSO), (ii) it requires low computational cost
attained from small number of agents, and (iii) it provides a
good convergence speed [16]. Then, we propose to compare
its performances with the well known evolutionary GA [11].

A. Binary Particle Swarm Optimization (BPSO)
The BPSO starts by generating N particles λ =

[π1
1 , .., π

B
L , .., ε

1
1,1, .., ε

B
L,U ] ;n = 1, .., N of size L + (L +

1)U × 1 for online case (solved for each time slot b) and
LB+(L+1)UB×1 for offline case to form an initial popula-
tion S. Then, it determines the minimum energy consumed by
each particle that satisfy the QoS by solving the optimization
problem. Then, it finds the particle that provides the best
solution for this iteration, denoted by λbest. In addition, for
each particle n, it saves a record of the position of its previous
best performance, denoted by λ(n,local). Then, at each iteration
i, BPSO computes a velocity term V

(n)
m corresponding to

element m in λ as follows:

V (n)
m (i) = ΩV (n)

m (i− 1) + ψ1(i)
(
λ(n,local)m (i)− λ(n)m (i)

)
+ ψ2(i)

(
λbestm (i)− λ(n)m (i)

)
, (26)

where Ω is the inertia weight and ψ1 and ψ2 are two random
positive numbers (ψ1, ψ2 ∈ [0, 2]) generated for each iteration
i [15]. Then, it updates each element i of a particle λ(n) as
follows:

λ(n)m (i+ 1) =

{
1 if rrand < Ψ

(
V

(n)
m (i)

)
,

0 otherwise.
(27)

where rrand is a pseudo-random number selected from a
uniform distribution in [0, 1] and Ψ is a sigmoid function for
transforming the velocity to probabilities and is given as:

Ψ (x) =
1

1 + e−x
. (28)

Algorithm 1 Proposed Solution using BPSO Algorithm
1: i = 1.
2: Generate an initial population S composed of N random particles

λ(n), n = 1 · · ·N .
3: while not converged do
4: for n = 1 · · ·N do
5: Compute the corresponding consumed utility function

E
(n)
c (i).

6: end for
7: Find (nj , ij) = argmin

n,i
E

(n)
c (i) (i.e., nj and ij indicate

the index and the position of the particle that results in the
minimum energy consumption). Then, set Ebest

c = E
(nj)
c (ij)

and λbest = λ(nj)(ij).
8: Find il = argmin

i
E

(n)
c (i) for each particle n (i.e., il indicates

the position of the particle n that results in best local utility).
Then, set λ(l,local) = λ(n)(il).

9: Adjust velocities and positions of all particles using (27).
10: i = i+ 1.
11: end while

These steps are repeated until reaching convergence by
either attaining the maximum number of iterations or stopping
the algorithm when no improvement is noticed. Details of the
proposed optimization approach are given in Algorithm 1.

B. Genetic Algorithm
The performances of the proposed BPSO algorithm is com-

pared to those of the well-know GA. In our genetic based ap-
proach, we generate randomly N particles λ(n), n = 1 · · ·N



of size L + (L + 1)U × 1 for online case (solved for each
time slot b) and LB + (L + 1)UB × 1 for offline case to
form an initial population S. Then, it determines the minimum
energy consumed by each particle that satisfy the QoS by
solving the optimization problem. After that, the algorithm
selects τ(1 ≤ τ ≤ N ) strings that provide the minimum
consumed energy and keeps them to the next population
while the N − τ remaining strings are generated by applying
crossovers and mutations to the τ survived parents. Crossovers
consist in cutting two selected random parent strings at a
correspond point which is chosen randomly. The obtained
fragments are then swapped and recombined to produce two
new strings. Then, mutation (i.e., changing a bit value of the
string randomly) is applied with a probability p [17]. This
procedure is repeated until reaching convergence or reaching
the maximum number of iterations.

After solving the optimization problem, the total cost of
the non-renewable energy consumed is equal to the cost of
the energy consumed by all BSs that exceeding the available
harvested energy stored at time b and given by

Cb =

[
L∑
l=0

[
Ebl − Sb−1l

]+ − Sb−1g

]+
(29)

where Sb−1g is the stored energy at the GG at the end of time
slot b− 1. Therefore, the total cost over multiple time slots is

given by C =
B∑
b=1

Cb.

V. SIMULATION RESULTS

In this section, selected numerical results are provided to
evaluate the performance of the EH HetNets systems. Selected
BSs transmit their messages periodically every Tb = 60
sec. All the fading channel gains adopted in the framework
are assumed to be independent and identically distributed
(i.i.d) Rayleigh fading gains. The efficiency transmission and
conversion ratios are set to ηl = ηg = 0.3, respectively.
The target data rate user (R0), the number of MBSs and
SBSs are 10 bits/s/Hz, 4 and 8, respectively, unless otherwise
stated. The noise power is taken to be N0 = NW , where
N = −174 dBm/Hz and W = 180 KHz. The power
consumption parameters are selected according to the energy
aware radio and network technologies (EARTH) model for
macrocell BS, MBSs, SBSs, are given, respectively [12] as
follows: αl = {4.7, 2.6, 4} W and βl = {130, 56, 6.8} W.
The other power consumption parameters for MBSs and SBSs
are given respectively by γl = {39, 2.9} W. The maximum
transmit power levels for the for macrocell BS, MBSs, SBSs,
are set, respectively, to P̄l = {46, 38, 20} dBm.

At each BS, RE is assumed to be generated follow-
ing Gamma distributions Γ(20, 2), Γ(12, 2), and Γ(3, 1) for
macrocell BS, MBSs, and SBS, respectively, where in Γ(x, y),
x is the shape parameter and y and scale parameter. While
for GG, RE is assumed to be generated following a Gamma
distribution Γ(25, 2). The total stored energy at macrocell BS,
MBSs, and SBSs cannot exceed S̄l = {50, 12, 6} KJ, respec-
tively, and the battery leakage is set to be Ele = 10 mJ every
Tb. The BPSO is executed with the following parameters:

N = 20 and Ω ∈ [0, 1] is a linear decreasing function of the
BPSO iterations expressed as follows: Ω = 0.9 − t(0.9−0.2)

I ,
where I = 200 is the maximum number of iterations.
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Fig. 2: Average energy cost of B = 20 time slots versus total
number of users.

Table I: MBSs and SBSs status during multiple time slots

Number of Active MBSs Active SBSs
users per b m1 m2 m3 m4 s1 s2 s3 s4
U1 = 100 × - - × × - × -
U2 = 40 × - - × × - - ×
U3 = 200 × × × × × × × -
U4 = 80 - × - × - - × -
U5 = 140 × - - × × × - ×
U6 = 220 × × × × × × × ×
U7 = 80 × - - × × - × -
U8 = 160 × × × - - × - ×
U9 = 160 × × - × × × × -
U10 = 60 - - × - × × × ×

Fig. 2 plots the total average energy cost, which is equal to
C
B , for B = 20 versus number of users (U b, ∀b = 1, .., B), for
online case. This figure investigates the impact of RE with two
scenarios: 1) with the proposed EH (i.e., hybrid of RE and TG
energy), 2) without EH(the energy depends on the TG energy
only). It also investigate the impact of the sleeping strategy
(i.e., optimizing π) on the system performance. we can see
that the proposed scheme (with EH and with sleeping strategy)
offers a significant amount of energy saving switching over the
other scenarios. It should be noted that the sleeping strategy is
very useful specially for low traffic period with a considerable
energy cost gap. Indeed, for U b = 100 users, the average
energy cost can be reduced by around 30% for the EH scenario
by going from 13.5 KJ to around 9.5 KJ. However, this gap
reduces when number of users increases. This can be justified
by the fact that, when the number of users are relatively high,
most of BSs should be in the AM in order to satisfy the user
QoS.

Table I confirms the sleeping strategy results in Fig 2. In
general it can be noted that, activating the MBSs and SBSs
essentially depends on the traffic and BS’s battery level. For
example, as shown in Table I, during low traffic periods e,g.,
b = {2, 4, 7, 10} (i.e., U2 = 40, U4 = 80, U7 = 80, U10 =
60), the sleeping strategy activate some of BSs and keeps the
others in the SM in order to harvest some energy. On the other
hand, when the network is more congested e.g., during slots
b = {3, 6, 8, 9} (i.e., U3 = 200, U6 = 220, U8 = 160, U9 =
160), most of the BSs are in AM.
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Fig. 3: Comparison between optimal solution with BPSO algorithm
and GA. Energy cost versus number of time slot

Under the same setup of Fig. 2, Fig. 3 compares between the
optimal solution (obtained using BLP) with BPSO algorithm
and the well known GA for different total number of users
U b = {80, 160}. It can be seen, that the BPSO achieves better
performance than GA and close to the optimal solution in
both low and high traffic periods. We can notice that both
algorithms are close to the optimal when the network is more
congested. This can be explained, by knowing that during high
traffic period, the network needs to keep most of the BSs in
AM, hence, optimizing only the association variable (i.e., ε).
It is also worth to note that optimizing π has more weigh in
saving energy that optimizing ε due to the high values of offset
power parameter β compare to the amplified power parameter
α.
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Fig. 4: Comparison between online and offline cases.

Finally, Fig. 4 compares the online case to a benchmark
case (i.e., offline case). Fig. 4 plots the total energy cost of
the network for both cases versus different numbers of users.
Since activating the BSs depends on their battery levels and
the traffic status, the offline case can manage the available
resources globally and more efficiently. For example, during
b = 7 (i.e., U7 = 80), the offline case consume more energy
by forcing some BSs to be in SM and activate them where the
network is more congested, i.e., U8 = U9 = 160. Although it
consumes more energy than the online case, which is around
0.1 kJ, when b = 7, the offline case saves more energy, which
is around 0.6 kJ, during the next two time slots b = 8 and
b = 9.

VI. CONCLUSIONS

In this paper, we proposed a downlink energy harvesting
heterogenous networks using hybrid power sources. All the

base stations are equipped with a harvested source and can
get some energy from green grid or/and traditional grid when
needed. We formulated a binary linear optimization problem
aiming to minimize the consumed energy over multiple time
slots. The problem is solved optimally and compared with
two low complexity algorithms. After solving the problem,
we investigated, via numerical results, the behavior of the
proposed scheme versus various system parameters. Finally,
we discussed the effect of sleeping strategy to the system
average energy cost.
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