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ABSTRACT

The usual way of designing a �lter is to specify a �lter length and a nominal response,

and then to �nd a �lter of that length which best approximates that response. In this

paper we propose a di�erent approach: specify the �lter only in terms of upper and lower
limits on the response, �nd the shortest �lter length which allows these constraints to

be met, and then �nd a �lter of that order which is farthest from the upper and lower
constraint boundaries in a mini-max sense.

Previous papers have described methods for using an exchange algorithm for �nding
a feasible linear-phase FIR �lter of a given length if one exists, given upper and lower
bounds on its magnitude response. The resulting �lters touch the constraint boundaries

at many points, however, and are not good �nal designs because they do not make best
use of the degrees of freedom in the coe�cients. We use the simplex algorithm for linear
programming to �nd a best linear-phase FIR �lter of minimum length, as well as to �nd
the minimum feasible length itself. The simplex algorithm, while much slower than ex-
change algorithms, also allows us to incorporate more general kinds of constraints, such as
concavity constraints (which can be used to achieve very at magnitude characteristics).

We give examples that illustrate how the proposed and the usual approaches di�er, and

how the new approach can be used to design �lters with at passbands, �lters which meet
point constraints, minimum phase �lters, and bandpass �lters with controlled transition
band behavior.

1. Introduction

The FIR linear-phase �lter design problem begins with the formulation of speci�ca-
tions arising from the application at hand. Typical speci�cations include the desired stop-
band attenuation, passband deviation, location of zeros of transmission, etc. Two methods
for designing a �lter to meet these speci�cations include the approximation approach and

the limit approach. In the approximation approach, the length of the �lter and a desired
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frequency response are speci�ed. The �lter coe�cients are determined to minimize the
maximum weighted error between the desired and actual responses over the frequency
bands of interest. In the limit approach, a set of upper and lower limits are speci�ed for

the frequency response. The necessary number and values of �lter coe�cients for which

the frequency response remains within the prescribed limits are then determined. The

limit approach was used in the earliest work on analog �lter design more than 50 years
ago. Cauer [1] designed analog �lters to meet prescribed, limit type tolerance schemes

using elliptic functions. It is possible to use the approximation approach to meet limit

constraints and to use the limit approach described in this paper to solve approximation

problems.

In 1970, Herrmann published an article describing the equations which must be solved
to obtain a �lter with the maximum possible number of equal ripples [2] (later called
extra-ripple [3] or maximal-ripple [4] �lters). This maximal ripple design is neither an

approximation approach nor a limit approach. Rather, it is a hybrid approach where the
�lter length and ripple size (equivalent to limits on the frequency response) are speci�ed
and the bandedges are determined by the algorithm. Sch�ussler, in 1970, presented the
work he and Herrmann had been doing on the design of maximal-ripple �lters at the
Arden House Workshop [5]. Hofstetter developed an e�cient algorithm for solving the

equations proposed by Herrmann and Sch�ussler and presented papers with Oppenheim
and Siegel at the 1971 Princeton conference [6] and the 1971 Allerton House conference [7]
describing the algorithm and relating it to the Remes exchange algorithm.

Several papers on the Chebyshev approximation approach to �lter design appeared at
about the same time. Helms, in 1971 [8], described techniques, including linear program-
ming, to solve the Chebyshev approximation problem for �lter design. Parks and McClellan
used the Remes exchange algorithm [9,10] to solve the Chebyshev approximation problem.

Hersey, Tufts, and Lewis described, at about the same time, an interactive method
for designing �lters with upper and lower constraints on the magnitude of the frequency
response [11]. The limit approach was also used by McCallig and Leon in 1978 [12] and
by Grenez in 1983 [13].

When a lowpass �lter is designed using the Chebyshev approximation approach, the

5 interrelated parameters are the �lter length N, the passband edge Fp, the stopband edge
Fs, the passband error �p, and the stopband error �s. Relations among these parameters
have been determined numerically for the Chebyshev approximation problem and design

formulas have been published [14,15]. With the help of these design formulas it is possible

to �x any 4 of these parameters and optimize the remaining parameter. Since these design
formulas are not exact, several iterations of the design process are usually necessary. For
example, when the bandedges and deviations are given, an estimate of the necessary �lter
length can be calculated using the design formulas. Usually the �lter with this estimated

length will not be exactly the minimum length required to meet the speci�cations and the
�lter will be designed again with a slightly di�erent length until the minimum-length �lter
is obtained.

The use of transition bands will give good lowpass designs but may cause problems

for multiband bandpass �lters [16]. The frequency response is not controlled in the tran-

sition band and may make large, unexpected, excursions which make the design useless.
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The design formulas can be used to modify the stopband speci�cations to eliminate the
unwanted excursions in most cases, but the choice of stopband edges and appropriate error
weighting functions is more of an art than a science. The limit approach o�ers a way to

avoid unwanted excursions in multiband �lter design. Upper and lower limits are imposed

on the response for all frequencies. The limits imposed on the bands which otherwise would

be unrestricted transition bands eliminate the possibility of large peaks in the magnitude
of the frequency response, but do not impose any particular shape on the response in these

bands.

In this paper we describe a very exible design program which combines most of the

useful characteristics of the approximation approach and the limit approach to FIR �lter
design. We use the simplex algorithm for linear programming to �nd the linear-phase
�lter of minimum length which meets prescribed limits on the frequency response and

then maximize the distance from the constraints. For a �xed length �lter, the bandedges
can be adjusted to maximize or minimize the width of a frequency band while still meeting

prescribed limits on the frequency response. The bands can consist of just one frequency
so that the location of the zeros can be �xed in the stopband. Additional constraints,
such as concavity of the response to give at magnitude characteristics, can be imposed
in appropriate frequency bands. First, we describe the algorithm and the Pascal program
and then we give examples to show how this new approach can be used in a variety of

situations.

2. The Algorithm

There are 4 di�erent types of linear-phase �lters. For both even and odd symmetry of
the impulse response, we obtain linear phase with either even or odd number of coe�cients.
In Rabiner and Gold [17] it is shown that the frequency response for each of the 4 types
of linear-phase �lters has the form

H(
) = ej
�

2
Le�j
(

N�1

2
)A(
)

where the real-valued amplitude function A(
) is a weighted sum of trigonometric func-

tions, where N is the length of the �lter and L = 0 or L = 1, depending on the �lter
symmetry.

For convenience, in the following discussion we assume that the �lter model is the
following sum of cosines, corresponding to an odd-length, even symmetric impulse response,

although any linear combination of known functions can be used.

A(
k) =

N�1

2X

i=0

ai cos(i
k)

A(
k) is the real-valued frequency response of the �lter at frequency 
k, and the frequency

points at which speci�cations are made, 
k; k = 1; 2; 3; : : : ; need not be equally spaced.
An upper-limit constraint at 
k has the form

A(
k) � U(
k):
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We introduce a parameter y which represents the distance between the frequency response
and the upper bound, so that some of the constraints look like

A(
k) + y � U(
k):

Since we are maximizing y, we call those constraints which have y in them optimized

constraints, and those that do not, hugged constraints. Similarly, lower bounds on the

frequency response result in constraints of the form

�A(
k) � �L(
k)

or

�A(
k) + y � �L(
k);

depending on whether the constraint is hugged or optimized.
Putting constraints on the second derivative of the frequency response has been shown

to be an e�ective way to obtain �lters that are very at [15]. The second derivative is a
linear function of the coe�cients, namely, for the case 1 �lters considered here

A00(
k) = �

m�1X

i=1

i2ai cos(i
k);

so that concavity constraints can be written as linear inequalities of the form

A00(
k) � 0

for a concave downward function, or

A00(
k) � 0;

for a concave upward function.
When all the constraints are written down, we obtain the linear programming problem

(PRIMAL) max y

subject to
CTa + hy � b

where the matrix C is determined from the sampled trigonometric functions, the vector a
is made up of the coe�cients ai, the vector b contains the bounds, and the vector h has a
1 wherever a constraint is optimized, and a 0 wherever it is hugged. The variables a and y

are unconstrained in sign. We will call this the PRIMAL problem. The dual of this linear

program is in standard form, the most convenient for numerical solution:

(DUAL) min bTx
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subject to

Cx = 0; hTx = 1; andx � 0:

We solve DUAL using the standard two-phase simplex algorithm [18]. Phase I searches

for a feasible solution to DUAL, starting from an arti�cial basis, and phase II searches for

an optimal solution.

It is a fundamental fact of linear programming theory that the cost function of the
DUAL always satis�es bTx � y, the cost function of the PRIMAL, with equality if and only

if x and y are both optimal in their respective programs. Therefore, if the DUAL cost bTx
ever falls below zero during pivoting, the optimal PRIMAL cost must be negative. This

means that the original �lter approximation problem is infeasible, and we stop the simplex
algorithm whenever this condition is obtained. Application of the simplex algorithm to

the DUAL problem therefore terminates in one of the following conditions:

a) Negative cost reached, implying that the original design problem is infeasible;

b) Optimality is reached in DUAL with non-negative cost, in which case the original
design problem has a feasible solution;

c) DUAL is unbounded, which implies that PRIMAL (and the original design problem)
is infeasible;

d) DUAL is infeasible, which implies that PRIMAL (and the original design problem) is
either infeasible or unbounded.

A comment is in order as to why the variable y is introduced in those situations when
we are interested only in whether there is a feasible solution to lower- and upper-bound
constraints. Computational experience has shown that with a trivial cost function in the
primal, the simplex method applied to the dual sometimes cycles in realistic �lter-design
problems, because of degeneracy. A non-trivial cost function seems to provide enough
direction to the simplex algorithm to avoid such stagnation. Rather than take special

precautions to avoid cycling, we chose always to maximize the distance y from the response
to the constraint boundaries. (As we saw above, it is not always necessary to complete the
optimization when the original problem is infeasible.) This has the additional advantage of
being useful for the �nal design when the length is known, and also does not interfere with
the resolution of ties based on size of the pivot elements, which is important for numerical

stability (see [19]).

A special case arises unavoidably, however, when there are no constraints designated
as optimized. In that case, h = 0 and DUAL is always infeasible. However, the constraint
matrix of DUAL in this case is not of full rank, having a zero row, and phase I ends with an

arti�cial basis element remaining in the basis. The redundant row is disregarded in phase
II, and the optimization �nds a solution to the original problem (if any exist) with zero

cost, corresponding to a response that is allowed to touch any of the constraint boundaries.
Thus, the algorithm functions in a useful way, even if a zero row is present in the DUAL

constraint matrix.

The optimal value of the dual variable x has a well-known and interesting interpreta-

tion. Suppose the constraint values b are changed a small amount to b+ db. This changes
the cost function in the dual a small amount, but will not in general change the optimal so-

lution x to the dual. The new value of the optimal cost function becomes y = bTx+ dbTx.

Thus, xis the partial derivative of the optimal value ofy with respect to the constraint
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values b. Simplex �nds an optimal value for x that has at most m+1 positive entries, and,
by complementary slackness, each of these corresponds to an extremum of the distance
between the frequency response and constraints (a \ripple") in the case of an upper or

lower bound, or to a point where the second derivative is zero in the case of a concavity

constraint.

The simplex algorithm is used in the following three modes, depending on what design
task is desired:

a) Given m1 < m2, �nd the minimum-lengthm between them such that the original de-

sign problem is feasible (that is, such that DUAL has a non-negative optimal solution),
and optimize y for that minimum length;

b) Solve the original optimization problem for �xed length m0;

c) Given a particular right (left) bandedge and a set of constraints in which it occurs, �nd
the largest (smallest) value for that bandedge for which the original design problem

is feasible, and optimize y for that bandedge value. (The optimum value of y will in
general be positive because the bandedge value is rounded to the nearest gridpoint.)

What is the best search strategy to use in �nding the minimum length in a)? We
might expect, because the cost of testing feasibility increases with m, that the strategy

with least expected cost (assuming uniformly distributed answers) probes to the left of
the midpoint between the current left and right boundaries. However, computation of the
optimal strategies for probe-cost functions that grow as a low-order polynomial inm shows
that binary search is surprisingly near optimal. More work on this problem is in progress
[20], but binary search appears adequate for this application. Mode b) allows us to do
things like �nd the best stopband rejection, while keeping passband ripple within limits.

Mode c) allows us to do things like extend the end of a stopband as far as possible, while
keeping the other constraints �xed. Binary search is also used in c).

3. The Program

The algorithm described above was implemented in Pascal, and the current version is
available from the authors. The authors' intent is that the programbe read and modi�ed by
users, rather than used as a static package, and Pascal seems well suited to this purpose:
it is widely available, cleanly designed, allows careful structuring, and hopefully, good

readability.

As might be expected, the critical parts of the program involve the treatment of tests

which theoretically determine whether quantities are positive, negative, or zero. These
tests determine when each of the various termination conditions is reached, and roundo�
error requires us to decide on how small a positive number is considered zero, how small
a negative number is considered negative, and so on. Experience has shown that a single

parameter eps can be used for these tests at several di�erent places in the program, and
that eps can be �xed at 10�8 for the range of problems used as examples in this paper.

The only cases observed so far where serious accumulation of roundo� error occurs is

when a wide band of frequencies is unconstrained, and the frequency response is allowed
to grow very large in those bands | say as large as 106. The problem is manifested by

the cost in phase I reaching relatively large negative numbers before detecting optimality,
even though the cost in phase I is theoretically non-negative. Of course, these designs are

6



impractical, and the accuracy problem irrelevant, but the program continues to function
in these cases.

Trading o� space for running time is a serious issue in the program design. At one

extreme, we can pre-compute and store the tableau entries, which avoids re-computation,
but uses a great deal of storage. At the other extreme, we can generate the tableau

entries on the y, using the least space, but the most time. As a compromise between
the two, we can pre-compute and store tables of the trigonometric functions used for the

tableau entries. We chose the �rst alternative because it appears that execution time

is a more serious limitation than storage for the kinds of design problems likely to be

solved. If storage is a serious problem, references to the tableau entries must be replaced

by procedure calls that compute the required values.

4. Examples

We present a series of 8 examples illustrating various features of the algorithm. Two

separate programs are used to design a �lter. The program FORM is an interactive pro-
gram which requests information from the user and creates an input �le for METEOR
which solves the linear programming problem. The desired frequency response is speci�ed
by two kinds of speci�cations: limit and concavity. We call these \limit speci�cations" and

\concavity speci�cations".

limit speci�cations: Each limit speci�cation consists of the following information:

information form

upper or lower? \+" or \�"
left bandedge, right bandedge [F1; F2], real
bound at left edge, bound at right edge [B1; B2], real
hugged or not hugged? \h" or \n"
arithmetic or geometric interpolation? \a" or \g"

An upper bound on the frequency response is indicated by a \+", and a lower by a
\�". The left and right bandedges, F1 and F2, are expressed in units of cycles/sampling
interval, so that the Nyquist frequency corresponds to 0.5. The frequency response is

constrained by the value B1 at the left bandedge, and by B2 at the right bandedge; the
values in between are interpolated by the program either arithmetically (linearly) (\a"),

or geometrically (\g"), (linearly in dB.). Finally, if a limit speci�cation is \hugged", it is
not included in the optimization criterion of the �nal linear program, and is included if

it is \not hugged". Thus, the �nal design is pushed away as much as possible from those
limit speci�cations that are not hugged, but may be arbitrarily close to the hugged limit
speci�cations.

concavity speci�cations: Each concavity speci�cation is determined by the following infor-
mation:

information form

concave up or down \+" or \�"
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left bandedge, right bandedge [F1; F2], real

The frequency response is constrained to be concave up or down in the indicated band.

mode: The design program has three modes, \minimum-length", \optimize", and \push".

In the \minimum-length" mode, the minimum length that satis�es the given constraints
is found. The user speci�es either even or odd length and either even or odd symmetry of

the impulse response.

In the \optimize" mode, the response is pushed away from the non-hugged constraints

for the �xed length speci�ed by the user. If the design is not realizable at all for this �xed
length, the program reports infeasibility.

In the \push" mode, a set of bandedges are pushed as far as possible while still

respecting the constraints for the �xed length speci�ed by the user. The set is pushed

either to the left or the right.

In the following examples we �rst display the speci�cation �le in the format produced
by the program FORM, then graph the resulting frequency response.

Example 1: Lowpass, Minimum-Length Filter

Here we use 4 limit speci�cations, which are displayed as follows by FORM:

# type sense edge1 edge2 bound1 bound2 hugged? interp

1 limit + 0.000 0.200 1.100 1.100 n a
2 limit � 0.000 0.200 0.900 0.900 n a

3 limit + 0.250 0.500 0.100 0.100 n a
4 limit � 0.250 0.500 -0.100 -0.100 n a

FINDING MINIMUM LENGTH

ODD LENGTHS from 7 to 21
COSINE MODEL (even symmetric coe�cients)
201 grid points

The lower and upper limits N1 and N2 (7 and 21 in this case) for the �lter length are

estimated using formulas developed in [14] and [15]. Since we are specifying limits for the
real-valued amplitude function which may be negative we must specify a negative lower

limit in the stop band. Figure 1 shows the resulting amplitude response; the minimum
length satisfying the speci�cations is 17. Note in Figure 1 that since the constraints are

not hugged the optimized response is strictly within the limits. The resulting equiripple
response is equivalent to that obtained with the Parks-McClellan algorithm. In Figure 1

we have shown the amplitude response to clearly display the negative as well as the positive

limits. For the remaining examples we will display the magnitude of the frequency response.
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Figure 1. Frequency Response for Example 1, a Length-17 Lowpass Filter

Example 2: Flat Passband, Lowpass, Minimum-Length Filter

Suppose we want a lowpass �lter with the same bandedges as in Example 1, but we
want the passband to be at. One simple way to do this is to add a concavity speci�cation
that forces the frequency response to be concave down (\�") in the passband. We can also

relax the upper limit speci�cation in the passband to be hugged, and change the upper
limit to 1.0, so that the frequency response can decrease monotonically in the passband
from a value of 1. The new speci�cations are shown below.

# type sense edge1 edge2 bound1 bound2 hugged? interp

1 limit + 0.000 0.200 1.000 1.000 h a

2 limit � 0.000 0.200 0.900 0.900 n a

3 limit + 0.250 0.500 0.100 0.100 n a
4 limit � 0.250 0.500 -0.100 -0.100 n a
5 concave � 0.000 0.200

FINDING MINIMUM LENGTH

ODD LENGTHS from 21 to 31
COSINE MODEL (even symmetric coe�cients)
201 grid points

The resulting frequency response, shown in Figure 2, has a zero frequency gain of
exactly 1 because the upper limit in the passband is hugged. The stopband has the same

upper and lower limits as Example 1. The price we pay for the at passband is an increase

in �lter length from N=17 for Example 1, to N=29 for this example.
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Figure 2. Length-29 Filter with Monotonically Decreasing Passband Response .

Example 3: Flat Passband, Minimum-Phase Filter

If a minimum-phase �lter is desired with the same magnitude performance as the
linear-phase �lter in Example 2, the factorization approach of Herrmann and Sch�ussler[21]
can be used beginning with the length-43 �lter which resulted from the following speci�-
cations:

# type sense edge1 edge2 bound1 bound2 hugged? interp

1 limit + 0.000 0.200 1.000 1.000 h a
2 limit � 0.000 0.200 0.810 0.810 n a
3 limit + 0.250 0.500 0.010 0.010 n a

4 limit � 0.250 0.500 0.000 0.000 h a

5 concave � 0.000 0.200

FINDING MINIMUM LENGTH
ODD LENGTHS from 37 to 55

COSINE MODEL (even symmetric coe�cients)
201 grid points

The lower limit of 0.81 in the passband and the upper limit of 0.01 in the stopband are
used in anticipation of the square root involved in the mimimum-phase design, while the

lower limit of 0.0 in the stopband guarantees a non-negative response. Half of the 42 roots
of the length-43 �lter, 10 roots inside the unit circle and 1 each of the 11 double roots on the

unit circle, are retained to give the length-22 mimimum-phase �lter with response shown

in Figure 3. This minimum-phase �lter, length-22 is slightly shorter than the linear-phase,
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length-29, �lter of Example 2 which meets the same magnitude speci�cations.
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Figure 3. Flat Passband, Length-22, Minimum-Phase Filter.

Example 4: Point Constraints with a Flat Passband Filter

If there are speci�c frequencies in the stopband where zeros are desired to null out
interference, the following speci�cations which require zeros at frequencies of 0.3 and 0.4

would be appropriate:
# type sense edge1 edge2 bound1 bound2 hugged? interp

1 limit + 0.000 0.200 1.000 1.000 h a
2 limit � 0.000 0.200 0.900 0.900 n a
3 limit + 0.250 0.500 0.100 0.100 n a
4 limit � 0.250 0.500 -0.100 -0.100 n a

5 concave � 0.000 0.200
6 limit + 0.300 0.300 0.000 0.000 n a

7 limit � 0.300 0.300 0.000 0.000 n a
8 limit + 0.400 0.400 0.000 0.000 n a
9 limit � 0.400 0.400 0.000 0.000 n a

FINDING MINIMUM LENGTH

ODD LENGTHS from 21 to 31
COSINE MODEL (even symmetric coe�cients)
201 grid points

In this case there was no increase in length over the length of 29 in example 2, required

to meet these additional point constraints; the zeros of the response were simply shifted
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as shown in Figure 4. Generally, however an increase in length would be required to meet
these additional constraints.
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Figure 4. Length-29 Filter with Point Constraints .

Example 5: Partial-Band Di�erentiator, Pushing the Stopband.

Suppose next we want a linearly increasing magnitude response, followed by rejec-
tion at higher frequencies. We know we want a linearly increasing response up to 0.25
cycles/sample, and we want as wide a stopband as possible with a length of 16. We do this

by specifying the di�erentiating band by an upper constraint linearly interpolated from
0.01 to 0.26 that is optimized (pushed away from), and a lower constraint from 0.0 to 0.25

that is hugged. The left bandedges of the upper and lower stopband constraints are then
pushed left in the mode \push".

# type sense edge1 edge2 bound1 bound2 hugged? interp

1 limit + 0.000 0.250 0.010 0.260 n a
2 limit � 0.000 0.250 0.000 0.250 h a
3 limit + 0.400 0.500 0.0100 0.0100 n a

4 limit � 0.400 0.500 -0.0100 -0.0100 n a

PUSHING 2 BANDEDGES LEFT, �xed length = 16, bands: 3 4
SINE MODEL (odd symmetric coe�cients)
201 grid points

The resulting bandedge is 0.3555, and Figure 5 shows the frequency response.
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Figure 5. Frequency Response for Example 5, a Length-16 Lowpass Di�erentiator

with a Minimum-Width Transition Band.

Note that the bandedges in the stopband have been pushed to lower frequencies as
far as possible until the constraints are hugged. The speci�cations of any one bandedge
for any type of �lter, lowpass, bandpass, etc., can be pushed in this manner.

Example 6: Bandpass Filter

This example shows how to �nd the minimum-length linear-phase �lter which meets
the frequency speci�cations listed below and has well-behaved transition bands.

# type sense edge1 edge2 bound1 bound2 hugged? interp

1 limit + 0.000 0.080 0.100 0.100 n a
2 limit � 0.000 0.080 -0.100 -0.100 n a

3 limit + 0.250 0.370 1.100 1.100 n a

4 limit � 0.250 0.370 .900 .900 n a
5 limit + 0.400 0.500 0.100 0.100 n a
6 limit � 0.400 0.500 -0.100 -0.100 n a

FINDING MINIMUM LENGTH
ODD LENGTHS from 21 to 29
COSINE MODEL (even symmetric coe�cients)

201 grid points

The initial design using METEOR, maximizing the distance from all the constraints,
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produces a �lter of length 25, the shortest length that meets these speci�cations, and a
deviation of 0.097846.

The frequency response for this design is shown in Figure 6, and is essentially the

same as that produced by the Parks-McClellan program [4]. On the scale of Figure 6, there
appears to be a problem in the transition band, but in the bands where the Chebyshev
error was minimized, the response looks good.
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Figure 6. Length-25 Bandpass Filter with a Transition-Band Excursion

To eliminate the transition band excursion, new limits were introduced which con-

strained the response in the �rst transition band to lie between �1:1 and +1.1. The new

algorithm found that the �lter length must be increased to 27 in order to meet these new,
stricter, limits. The response of this length-27 �lter is shown in Figure 7. As in Figure 6,

the distance from all the original constraints is maximized, but the response is allowed to
touch the new constraints.
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Figure 7. Length-27 Bandpass Filter with Transition Limits.

Another way to eliminate the transition band peak is to �x the length at 27 and

push the upper edge of the lower stopband to the right, maximizing the width of the
�rst stopband, thus reducing the width of the �rst transition band and eliminating the
transition band peak. The bandedge found is 0.1667 cycles/sample, and corresponds to a
deviation of 0.099998 . The resulting frequency response is shown in Figure 8.
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Figure 8. Length-27 Bandpass Filter with Mimimum-Width Transition Band.

5. Timing Comparison with the Parks-McClellan Program

The Parks-McClellan program runs much faster than METEOR, as we would expect

given METEOR's greater generality, and the fact that METEOR uses the simplex algo-
rithm instead of the Remes exchange algorithm. However, the running time of METEOR
on present-day computers is not prohibitive even for reasonably large problems. To illus-

trate this, we give some timing comparisons on a SPARCstation 1+ (Model 4/65) using

an f77 compiler at optimization level 03, and a Pascal compiler at optimization level 2.
The examples run were simple �xed-length lowpass �lters of length L, with L = 2i; i =

4; :::; 8; passband [0, 0.1]; and stopband [x, 0.5], where x = 0:1 � (1 + 2(4�i)). Thus the
�lters were of length-16 with stopband [0.2, 0.5]; length-32 with stopband [0.15, 0.5]; etc.

The left edge of the stopband was moved left as the �lter was made longer to keep the

deviation from speci�cations roughly constant over the examples. The number of grid
points was kept comparable in the programs by choosing grid density 10 in the Parks-
McClellan program, and using 10 � (L=2) + 1 grid points in METEOR. The upper and
lower bounds in the passband were 1.5 and 0.5; and 0.5 and -0.5 in the stopband. Table 1

shows the optimal deviations from 1 in the passband (or 0 in the stopband) found by each
program, as well as the user cpu times.

SPARCstation 1+ Model 4/65

Parks-McClellan Meteor Meteor (convex passband)

length deviation cpu seconds deviation cpu seconds deviation cpu seconds

16 0.0283516 0.1 0.0283515 0.2 0.0397526 0.2
32 0.0235960 0.1 0.0235959 0.7 0.0467533 0.7
64 0.0213816 0.5 0.0213815 3.8 0.0509093 4.3
128 0.0185210 2.0 0.0185210 32.7 0.0550728 31.6
256 0.0186837 3.9 0.0186838 184.6 0.0589392 207.0

Table 1. Timing Comparison

The deviations of the two programs check to 6 signi�cant �gures. The Parks-McClellan
program is clearly much faster, by a factor increasing with �lter length, to a factor of 16 for
the length-128 problem, and 47 for the length-256 problem. However, the cpu time of about

3 minutes on a modern workstation for a length-256 �lter would hardly be prohibitive in
most situations. Of course when the minimum length is sought, with no prior estimate,

binary search on the length will result in as many as 8 = log(256) instances of optimizations.
Also shown are the deviations and running times for the same problems, using ME-

TEOR, but with concave-down passbands in [0, 0.1]. The passband was speci�ed by a
single-point upper bound at the left-edge, a single-point lower bound at the right edge,
and a concavity constraint in the entire band. The upper and lower bounds are redundant

within the passband, and this strategy reduces the number of columns generated by ME-
TEOR. The running times are roughly the same as those for the traditional design, and

the results illustrate the price paid in increased deviation by constraining the passband to
be concave down.
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6. Conclusion

A new approach to �lter design, using the simplex method of linear programming,

was proposed which is very general and can incorporate a wide variety of constraints on
the frequency response of the �lter. Several examples were presented to illustrate the

wide range of applications of this approach to linear-phase �lter design. We are presently
working on extensions of this approach to the design of �lters with constraints on group

delay and/or phase as well as magnitude.
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