Discrete Fourier Transform (DFT)

Recall the DTFT:

$$
X(\omega)=\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n}
$$

DTFT is not suitable for DSP applications because

- In DSP, we are able to compute the spectrum only at specific discrete values of ω,
- Any signal in any DSP application can be measured only in a finite number of points.

A finite signal measured at N points:

$$
x(n)= \begin{cases}0, & n<0 \\ y(n), & 0 \leq n \leq(N-1) \\ 0, & n \geq N\end{cases}
$$

where $y(n)$ are the measurements taken at N points.

Sample the spectrum $X(\omega)$ in frequency so that

$$
\begin{aligned}
& X(k)=X(k \Delta \omega), \quad \Delta \omega=\frac{2 \pi}{N} \\
& X(k)=\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi \frac{k n}{N}} \quad \text { DFT. }
\end{aligned}
$$

The inverse DFT is given by:

$$
x(n)=\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j 2 \pi \frac{k n}{N}} .
$$

$$
\begin{aligned}
x(n) & =\frac{1}{N} \sum_{k=0}^{N-1}\left\{\sum_{m=0}^{N-1} x(m) e^{-j 2 \pi \frac{k m}{N}}\right\} e^{j 2 \pi \frac{k n}{N}} \\
& =\sum_{m=0}^{N-1} x(m) \underbrace{\left\{\frac{1}{N} \sum_{k=0}^{N-1} e^{-j 2 \pi \frac{k(m-n)}{N}}\right\}}_{\delta(m-n)}=x(n) .
\end{aligned}
$$

The DFT pair:

$$
\begin{aligned}
X(k) & =\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi \frac{k n}{N}} \quad \text { analysis } \\
x(n) & =\frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j 2 \pi \frac{k n}{N}} \quad \text { synthesis. }
\end{aligned}
$$

Alternative formulation:

$$
\begin{aligned}
X(k) & =\sum_{n=0}^{N-1} x(n) W^{k n} \longleftarrow W=e^{-j \frac{2 \pi}{N}} \\
x(n) & =\frac{1}{N} \sum_{k=0}^{N-1} X(k) W^{-k n}
\end{aligned}
$$

Periodicity of DFT Spectrum

$$
\begin{aligned}
X(k+N) & =\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi \frac{(k+N) n}{N}} \\
& =\left(\sum_{n=0}^{N-1} x(n) e^{-j 2 \pi \frac{k n}{N}}\right) e^{-j 2 \pi n} \\
& =X(k) e^{-j 2 \pi n}=X(k) \Longrightarrow
\end{aligned}
$$

the DFT spectrum is periodic with period N (which is expected, since the DTFT spectrum is periodic as well, but with period 2π).

Example: DFT of a rectangular pulse:

$$
\begin{aligned}
& x(n)= \begin{cases}1, & 0 \leq n \leq(N-1), \\
0, & \text { otherwise }\end{cases} \\
& X(k)=\sum_{n=0}^{N-1} e^{-j 2 \pi \frac{k n}{N}}=N \delta(k) \Longrightarrow
\end{aligned}
$$

the rectangular pulse is "interpreted" by the DFT as a spectral line at frequency $\omega=0$.

DFT and DTFT of a rectangular pulse $(\mathrm{N}=5)$

Zero Padding

What happens with the DFT of this rectangular pulse if we increase N by zero padding:

$$
\{y(n)\}=\{x(0), \ldots, x(M-1), \underbrace{0,0, \ldots, 0}_{N-M \text { positions }}\},
$$

where $x(0)=\cdots=x(M-1)=1$. Hence, DFT is

$$
\begin{aligned}
Y(k) & =\sum_{n=0}^{N-1} y(n) e^{-j 2 \pi \frac{k n}{N}}=\sum_{n=0}^{M-1} y(n) e^{-j 2 \pi \frac{k n}{N}} \\
& =\frac{\sin \left(\pi \frac{k M}{N}\right)}{\sin \left(\pi \frac{k}{N}\right)} e^{-j \pi \frac{k(M-1)}{N}}
\end{aligned}
$$

DFT and DTFT of a Rectangular Pulse with

 Zero Padding ($N=10, M=5$)

Remarks:

- Zero padding of analyzed sequence results in "approximating" its DTFT better,
- Zero padding cannot improve the resolution of spectral components, because the resolution is "proportional" to $1 / M$ rather than $1 / N$,
- Zero padding is very important for fast DFT implementation (FFT).

Matrix Formulation of DFT

Introduce the $N \times 1$ vectors

$$
\boldsymbol{x}=\left[\begin{array}{c}
x(0) \\
x(1) \\
\vdots \\
x(N-1)
\end{array}\right], \quad \boldsymbol{X}=\left[\begin{array}{c}
X(0) \\
X(1) \\
\vdots \\
X(N-1)
\end{array}\right]
$$

and the $N \times N$ matrix

$$
\mathcal{W}=\left[\begin{array}{ccccc}
W^{0} & W^{0} & W^{0} & \cdots & W^{0} \\
W^{0} & W^{1} & W^{2} & \cdots & W^{N-1} \\
W^{0} & W^{2} & W^{4} & \cdots & W^{2(N-1)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
W^{0} & W^{N-1} & W^{2(N-1)} & \cdots & W^{(N-1)^{2}}
\end{array}\right]
$$

DFT in a matrix form:

$$
\boldsymbol{X}=\mathcal{W} \boldsymbol{x}
$$

Result: Inverse DFT is given by

$$
\boldsymbol{x}=\frac{1}{N} \mathcal{W}^{H} \boldsymbol{X}
$$

which follows easily by checking $\mathcal{W}^{H} \mathcal{W}=\mathcal{W} \mathcal{W}^{H}=N I$, where I denotes the identity matrix. Hermitian transpose:

$$
\boldsymbol{x}^{H}=\left(x^{T}\right)^{*}=\left[x(1)^{*}, x(2)^{*}, \ldots, x(N)^{*}\right]
$$

Also, "*" denotes complex conjugation.
Frequency Interval/Resolution: DFT's frequency resolution

$$
F_{\mathrm{res}} \sim \frac{1}{N T} \quad[\mathrm{~Hz}]
$$

and covered frequency interval

$$
\Delta F=N \Delta F_{\mathrm{res}}=\frac{1}{T}=F_{\mathrm{s}} \quad[\mathrm{~Hz}]
$$

Frequency resolution is determined only by the length of the observation interval, whereas the frequency interval is determined by the length of sampling interval. Thus

- Increase sampling rate \Longrightarrow expand frequency interval,
- Increase observation time \Longrightarrow improve frequency resolution.

Question: Does zero padding alter the frequency resolution?

Answer: No, because resolution is determined by the length of observation interval, and zero padding does not increase this length.

Example (DFT Resolution): Two complex exponentials with two close frequencies $F_{1}=10 \mathrm{~Hz}$ and $F_{2}=12 \mathrm{~Hz}$ sampled with the sampling interval $T=0.02$ seconds. Consider various data lengths $N=10,15,30,100$ with zero padding to 512 points.

DFT with $N=10$ and zero padding to 512 points. Not resolved: $F_{2}-F_{1}=2 \mathrm{~Hz}<1 /(N T)=5 \mathrm{~Hz}$.

DFT with $N=15$ and zero padding to 512 points. Not resolved: $\quad F_{2}-F_{1}=2 \mathrm{~Hz}<1 /(N T) \approx$ 3.3 Hz .

DFT with $N=30$ and zero padding to 512 points. Resolved: $F_{2}-F_{1}=2 \mathrm{~Hz}>1 /(N T) \approx 1.7 \mathrm{~Hz}$.

DFT with $N=100$ and zero padding to 512 points. Resolved: $F_{2}-F_{1}=2 \mathrm{~Hz}>1 /(N T)=$ 0.5 Hz .

DFT Interpretation Using Discrete Fourier Series

Construct a periodic sequence by periodic repetition of $x(n)$ every N samples:
$\{\widetilde{x}(n)\}=\{\ldots, \underbrace{x(0), \ldots, x(N-1)}_{\{x(n)\}}, \underbrace{x(0), \ldots, x(N-1)}_{\{x(n)\}}, \ldots\}$
The discrete version of the Fourier Series can be written as
$\widetilde{x}(n)=\sum_{k} X_{k} e^{j 2 \pi \frac{k n}{N}}=\frac{1}{N} \sum_{k} \widetilde{X}(k) e^{j 2 \pi \frac{k n}{N}}=\frac{1}{N} \sum_{k} \widetilde{X}(k) W^{-k n}$,
where $\widetilde{X}(k)=N X_{k}$. Note that, for integer values of m, we have

$$
W^{-k n}=e^{j 2 \pi \frac{k n}{N}}=e^{j 2 \pi \frac{(k+m N) n}{N}}=W^{-(k+m N) n} .
$$

As a result, the summation in the Discrete Fourier Series (DFS) should contain only N terms:

$$
\widetilde{x}(n)=\frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}(k) e^{j 2 \pi \frac{k n}{N}} \quad \text { DFS. }
$$

Inverse DFS

The DFS coefficients are given by

$$
\widetilde{X}(k)=\sum_{n=0}^{N-1} \widetilde{x}(n) e^{-j 2 \pi \frac{k n}{N}} \quad \text { inverse DFS. }
$$

Proof.

$$
\begin{aligned}
\sum_{n=0}^{N-1} \widetilde{x}(n) e^{-j 2 \pi \frac{k n}{N}} & =\sum_{n=0}^{N-1}\left\{\frac{1}{N} \sum_{p=0}^{N-1} \widetilde{X}(p) e^{j 2 \pi \frac{p n}{N}}\right\} e^{-j 2 \pi \frac{k n}{N}} \\
& =\sum_{p=0}^{N-1} \widetilde{X}(p) \underbrace{\left\{\frac{1}{N} \sum_{n=0}^{N-1} e^{j 2 \pi \frac{(p-k) n}{N}}\right\}}_{\delta(p-k)}=\widetilde{X}(k) .
\end{aligned}
$$

The DFS coefficients are given by

$$
\begin{aligned}
\widetilde{X}(k) & =\sum_{n=0}^{N-1} \widetilde{x}(n) e^{-j 2 \pi \frac{k n}{N}} \text { analysis, } \\
\widetilde{x}(n) & =\frac{1}{N} \sum_{k=0}^{N-1} \widetilde{X}(k) e^{j 2 \pi \frac{k n}{N}} \text { synthesis. }
\end{aligned}
$$

- DFS and DFT pairs are identical, except that
- DFT is applied to finite sequence $x(n)$,
- DFS is applied to periodic sequence $\widetilde{x}(n)$.
- Conventional (continuous-time) FS vs. DFS
- CFS represents a continuous periodic signal using an infinite number of complex exponentials, whereas
- DFS represents a discrete periodic signal using a finite number of complex exponentials.

DFT: Properties

Linearity

Circular shift of a sequence: if $X(k)=\mathcal{D} \mathcal{F} \mathcal{T}\{x(n)\}$ then

$$
X(k) e^{-j 2 \pi \frac{k m}{N}}=\mathcal{D} \mathcal{F} \mathcal{T}\{x((n-m) \bmod N)\}
$$

Also if $x(n)=\mathcal{D F} \mathcal{T}^{-1}\{X(k)\}$ then

$$
x((n-m) \bmod N)=\mathcal{D} \mathcal{F I}^{-1}\left\{X(k) e^{-j 2 \pi \frac{k m}{N}}\right\}
$$

where the operation $\bmod N$ denotes the periodic extension $\widetilde{x}(n)$ of the signal $x(n)$:

$$
\widetilde{x}(n)=x(n \bmod N) .
$$

DFT: Circular Shift

$$
\begin{aligned}
& \sum_{n=0}^{N-1} x((n-m) \bmod N) W^{k n} \\
= & W^{k m} \sum_{n=0}^{N-1} x((n-m) \bmod N) W^{k(n-m)}
\end{aligned}
$$

$$
\begin{aligned}
& =W^{k m} \sum_{n=0}^{N-1} x((n-m) \bmod N) W^{k(n-m) \bmod N} \\
& =W^{k m} X(k)
\end{aligned}
$$

where we use the facts that $W^{k(l \bmod N)}=W^{k l}$ and that the order of summation in DFT does not change its result.

Similarly, if $X(k)=\mathcal{D} \mathcal{F} \mathcal{T}\{x(n)\}$, then

$$
X((k-m) \bmod N)=\mathcal{D} \mathcal{F} \mathcal{T}\left\{x(n) e^{j 2 \pi \frac{m n}{N}}\right\}
$$

DFT: Parseval's Theorem

$$
\sum_{n=0}^{N-1} x(n) y^{*}(n)=\frac{1}{N} \sum_{k=0}^{N-1} \mathbf{X}(k) \mathbf{Y}^{*}(k)
$$

Using the matrix formulation of the DFT, we obtain

$$
\begin{aligned}
\boldsymbol{y}^{H} \boldsymbol{x} & =\left(\frac{1}{N} W^{H} \mathbf{Y}\right)^{H}\left(\frac{1}{N} W^{H} \mathbf{Y}\right) \\
& =\frac{1}{N^{2}} \mathbf{Y}^{H} \underbrace{W W^{H}}_{N I} \mathbf{X}=\frac{1}{N} \mathbf{Y}^{H} \mathbf{X} .
\end{aligned}
$$

DFT: Circular Convolution
If $X(k)=\mathcal{D} \mathcal{F} \mathcal{T}\{x(n)\}$ and $Y(k)=\mathcal{D} \mathcal{F} \mathcal{T}\{y(n)\}$, then

$$
X(k) Y(k)=\mathcal{D} \mathcal{F} \mathcal{T}\{\{x(n)\} \circledast\{y(n)\}\}
$$

Here, \circledast stands for circular convolution defined by

$$
\{x(n)\} \circledast\{y(n)\}=\sum_{m=0}^{N-1} x(m) y((n-m) \bmod N)
$$

$$
\begin{aligned}
& \mathcal{D} \mathcal{F} \mathcal{T}\{\{x(n)\} \circledast\{y(n)\}\} \\
= & \sum_{n=0}^{N-1} \underbrace{\left[\sum_{m=0}^{N-1} x(m) y((n-m) \bmod N)\right]}_{\{x(n)\} \circledast\{y(n)\}} W^{k n} \\
= & \sum_{m=0}^{N-1} \underbrace{\left[\sum_{n=0}^{N-1} y((n-m) \bmod N) W^{k n}\right]}_{Y(k) W^{k m}} x(m) \\
= & Y(k) \underbrace{\sum_{m=0}^{N-1} x(m) W^{k m}}_{X(k)}=X(k) Y(k) .
\end{aligned}
$$

