
Adaptive Filtering

Recall optimal filtering: Given

x(n) = d(n) + v(n),

estimate and extract d(n) from the current and past values of x(n).

EE 524, # 11 1

Let the filter coefficients be

w =

w0

w1
...

wN−1

 .

Filter output:

y(n) =
N−1∑
k=0

w∗
kx(n− k) = wHx(n) = d̂(n),

where

x(n) =

x(n)

x(n− 1)
...

x(n−N + 1)

 .

EE 524, # 11 2

Wiener-Hopf equation:

R(n)w(n) = r(n) −→ wopt(n) = R(n)−1r(n),

where

R(n) = E {x(n)x(n)H},
r(n) = E {x(n)d(n)∗}.

EE 524, # 11 3

Adaptive Filtering (cont.)

Example 1: Unknown system identification.

EE 524, # 11 4

Adaptive Filtering (cont.)

Example 2: Unknown system equalization.

EE 524, # 11 5

Adaptive Filtering (cont.)

Example 3: Noise cancellation.

EE 524, # 11 6

Adaptive Filtering (cont.)

Example 4: Signal linear prediction.

EE 524, # 11 7

Adaptive Filtering (cont.)

Example 5: Interference cancellation without reference input.

EE 524, # 11 8

Adaptive Filtering (cont.)

Idea of the Least-Mean-Square (LMS) algorithm:

wk+1 = wk − µ(∇wE {|ek|2})∗, (∗)

where the indices are given as subscripts [e.g. d(k) = dk], and

E {|ek|2} = E {|dk −wH
k xk|2}

= E {|dk|2} −wH
k r − rHwk + wH

k Rwk,

(∇wE {|ek|2})∗ = Rw − r.

Use single-sample estimates of R and r:

R̂ = xkx
H
k , r̂ = xkd

∗
k,

EE 524, # 11 9

and insert them into (∗):

wk+1 = wk + µxke
∗
k, ek = dk −wH

k xk ← LMS alg.

EE 524, # 11 10

Adaptive Filtering: Convergence Analysis

Convergence analysis: Subtract wopt from both sides of the previous
equation:

wk+1 −wopt︸ ︷︷ ︸
vk+1

= wk −wopt︸ ︷︷ ︸
vk

+µxk(d∗k − xH
k wk) (∗∗)

and note that

xk(d∗k − xH
k wk) = xkd

∗
k − xkx

H
k wk

= xkd
∗
k − xkx

H
k wk + xkx

H
k wopt − xkx

H
k wopt

= (xkd
∗
k − xkx

H
k wopt)− xkx

H
k vk.

EE 524, # 11 11

Observe that

E
{

xk(d∗k − xH
k wk)

}
= r −Rwopt︸ ︷︷ ︸

0

−RE {vk} = −RE {vk}.

Let ck = E {vk}. Then

ck+1 = [I − µR]ck (∗ ∗ ∗)

Sufficient condition for convergence:

‖ck+1‖ < ‖ck‖ ∀k.

EE 524, # 11 12

Adaptive Filtering: Convergence Analysis

Let us premultiply both parts of the equation (∗ ∗ ∗) by the matrix UH of
the eigenvectors of R, where

R = UΛUH.

Then, we have

UHck+1︸ ︷︷ ︸
ĉk+1

= UH[I − µR]UUH︸ ︷︷ ︸
I

ck,

and, hence

ĉk+1 = [I − µΛ]ĉk.

Since

‖ck‖2 = cH
k ck = cH

k UUH︸ ︷︷ ︸
I

ck = ĉH
k ĉk = ‖ĉk‖2,

EE 524, # 11 13

the sufficient condition for convergence can be rewritten as

‖ĉk+1‖2 < ‖ĉk‖2 ∀k.

Let us then require that the absolute value of each component of the vector
ĉk+1 is less than that of ĉk:

|1− µλi| < 1, i = 1, 2, . . . , N.

The condition
|1− µλi| < 1, i = 1, 2, . . . , N,

is equivalent to

0 < µ <
2

λmax

where λmax is the maximum eigenvalue of R. In practice, even a stronger

EE 524, # 11 14

condition is (often) used:

0 < µ <
2

tr{R}
,

where tr{R} > λmax.

EE 524, # 11 15

Normalized LMS
A promising variant of LMS is the so-called Normalized LMS (NLMS)
algorithm:

wk+1 =wk +
µ

‖xk‖2
xke

∗
k, ek = dk −wH

k xk ←NLMS alg.

The sufficient condition for convergence:

0 < µ < 2.

In practice, at some time points ‖xk‖ can be very small. To make the
NLMS algorithm more robust, we can modify it as follows:

wk+1 = wk +
µ

‖xk‖2 + δ
xke

∗
k,

so that the gain constant cannot go to infinity.

EE 524, # 11 16

Recursive Least Squares

Idea of the Recursive Least Squares (RLS) algorithm: use sample estimate

R̂k (instead of true covariance matrix R) in the equation for the weight
vector and find wk+1 as an update to wk. Let

R̂k+1 = λR̂k + xk+1x
H
k+1

r̂k+1 = λr̂k + xk+1d
∗
k+1,

where λ ≤ 1 is the (so-called) forgetting factor. Using the matrix inversion
lemma, we obtain

R̂−1
k+1 = (λR̂k + xk+1x

H
k+1)

−1

=
1
λ

[
R̂−1

k −
R̂−1

k xk+1x
H
k+1R̂

−1
k

λ + xH
k+1R̂

−1
k xk+1

]
.

EE 524, # 11 17

Therefore,

wk+1 = R̂−1
k+1r̂k+1 =

[
R̂−1

k −
R̂−1

k xk+1x
H
k+1R̂

−1
k

λ + xH
k+1R̂

−1
k xk+1

]
r̂k

+
1
λ

[
R̂−1

k −
R̂−1

k xk+1x
H
k+1R̂

−1
k

λ + xH
k+1R̂

−1
k xk+1

]
xk+1d

∗
k+1

= wk − gk+1x
H
k+1wk + gk+1d

∗
k+1,

where

gk+1 =
R̂−1

k xk+1

λ + xH
k+1R̂

−1
k xk+1

.

EE 524, # 11 18

Hence, the updating equation for the weight vector is

wk+1 = wk − gk+1x
H
k+1wk + gk+1d

∗
k+1

= wk + gk+1 (d∗k+1 − xH
k+1wk)︸ ︷︷ ︸

e∗
k,k+1

= wk + gk+1e
∗
k,k+1.

EE 524, # 11 19

RLS algorithm:

• Initialization: w0 = 0, P0 = δ−1I

• For each k = 1, 2, . . ., compute:

hk = Pk−1xk,

αk = 1/(λ + hH
k xk),

gk = hkαk,

Pk = λ−1
[
Pk−1 − gkh

H
k

]
,

ek−1,k = dk −wH
k−1xk,

wk = wk−1 + gke
∗
k−1,k,

ek = dk −wH
k xk.

EE 524, # 11 20

Example

LMS linear predictor of the signal

x(n) = 10ej2πfn + e(n)

where f = 0.1 and

• N = 8,

• e(n) is circular unit-variance white noise,

• µ1 = 1/[10 tr(R)], µ2 = 1/[3 tr(R)], µ3 = 1/[tr(R)].

EE 524, # 11 21

EE 524, # 11 22

Adaptive Beamforming

The above scheme describes narrowband beamforming, i.e.

• conventional beamforming if w1, . . . , wN do not depend on the

EE 524, # 11 23

input/output array signals,

• adaptive beamforming if w1, . . . , wN are determined and optimized based
on the input/output array signals.

Input array signal vector:

x(i) =

x1(i)
x2(i)

...
xN(i)

 .

Complex beamformer output:

y(i) = wHx(i).

EE 524, # 11 24

Adaptive Beamforming (cont.)

Input array signal vector:

x(k) =

x1(k)
x2(k)

...
xN(k)

 .

Complex beamformer output:

y(k) = wHx(k),

x(k) = xs(k)︸ ︷︷ ︸
signal

+xN(k)︸ ︷︷ ︸
noise

+ xI(k)︸ ︷︷ ︸
interference

.

The goal is to filter out xI and xN as much as possible and, therefore,

EE 524, # 11 25

to obtain an approximation x̂S of xS. Most popular criteria of adaptive
beamforming:

• MSE minimum

min
w

MSE, MSE = E {|d(i)−wHx(i)|2}.

• Signal-to-Interference-plus-Noise-Ratio (SINR)

max
w

SINR, SINR =
E {|wHxs|2}

E {|wH(xI + xN)|2}
.

EE 524, # 11 26

Adaptive Beamforming (cont.)

EE 524, # 11 27

Adaptive Beamforming (cont.)

In the sequel, we consider the max SINR criterion. Rewrite the snapshot
model as

x(k) = s(k)as + xI(k) + xN(k),

where aS is the known steering vector of the desired signal. Then

SINR =
σ2

s |wHas|2

wHE {(xI + xN)(xI + xN)H}w
=

σ2
s |wHas|2

wHRw

where
R = E {(xI + xN)(xI + xN)H}

is the interference-plus-noise covariance matrix.

Obviously, SINR does not depend on rescaling of w, i.e. if wopt is an
optimal weight, then αwopt is such a vector too. Therefore, max SINR is

EE 524, # 11 28

equivalent to

min
w

wHRw subject to wHaS = const.

Let const = 1. Then

H(w) = wHRw + λ(1−wHas) + λ∗(1− aH
s w)

∇wH(w) = (Rw − λas)∗ = 0 =⇒
Rw = λas =⇒ wopt = λR−1as.

This is a spatial version of the Wiener-Hopf equation!

From the constraint equation, we obtain

λ =
1

aH
s R−1as

EE 524, # 11 29

and therefore

wopt =
1

aH
s R−1as

R−1as ←− MVDR beamformer.

Substituting wopt into the SINR expression, we obtain

max SINR = SINRopt =
σ2

s (a
H
s R−1as)2

aH
s R−1RR−1as

= σ2
sa

H
s R−1as.

If there are no interference sources (only white noise with variance σ2):

SINRopt =
σ2

s

σ2
aH

s as =
Nσ2

s

σ2
.

EE 524, # 11 30

Adaptive Beamforming (cont.)
Let us study what happens with the optimal SINR if the covariance matrix
includes the signal component:

Rx = E {xxH} = R + σ2
sasa

H
s .

Using the matrix inversion lemma, we have

R−1
x as = (R + σ2

sasa
H
S)−1as

=

(
R−1 − R−1asa

H
s R−1

1/σ2
s + aH

s R−1as

)
as

=

(
1− aH

s R−1as

1/σ2
s + aH

s R−1as

)
R−1as

= αR−1as.

EE 524, # 11 31

Optimal SINR is not affected!

However, the above result holds only if

• there is an infinite number of snapshots and

• aS is known exactly.

EE 524, # 11 32

Adaptive Beamforming (cont.)

Gradient algorithm maximizing SNR (very similar to LMS):

wk+1 = wk + µ(as − xkx
H
k wk),

where, again, we use the simple notation wk = w(k) and xk = x(k). The
vector wk converges to wopt ∼ R−1as if

0 < µ <
2

λmax
=⇒ 0 < µ <

2
tr{R}

.

The disadvantage of the gradient algorithms is that the convergence may
be very slow, i.e. it depends on the eigenvalue spread of R.

EE 524, # 11 33

Example

• N = 8,

• single signal from θs = 0◦ and SNR = 0 dB,

• single interference from θI = 30◦ and INR= 40 dB,

• µ1 = 1/[50 tr(R)], µ2 = 1/[15 tr(R)], µ3 = 1/[5 tr(R)].

EE 524, # 11 34

EE 524, # 11 35

Adaptive Beamforming (cont.)
Sample Matrix Inversion (SMI) Algorithm:

wSMI = R̂−1aS,

where R̂ is the sample covariance matrix

R̂ =
1
K

K∑
k=1

xkx
H
k .

Reed-Mallet-Brennan (RMB) rule: under mild conditions, the mean losses
(relative to the optimal SINR) due to the SMI approximation of wopt do
not exceed 3 dB if

K ≥ 2N.

Hence, the SMI provides very fast convergence rate, in general.

EE 524, # 11 36

Adaptive Beamforming (cont.)

Loaded SMI:
wLSMI = R̂−1

DLaS, R̂DL = R̂ + γI,

where the optimal weight γ ≈ 2σ2. LSMI allows convergence faster than
N snapshots!

LSMI convergence rule: under mild conditions, the mean losses (relative to
the optimal SINR) due to the LSMI approximation of wopt do not exceed
few dB’s if

K ≥ L

where L is the number of interfering sources. Hence, the LSMI provides
faster convergence rate than SMI (usually, 2N � L)!

EE 524, # 11 37

Example

• N = 10,

• single signal from θs = 0◦ and SNR = 0 dB,

• single interference from θI = 30◦ and INR= 40 dB,

• SMI vs. LSMI.

EE 524, # 11 38

EE 524, # 11 39

EE 524, # 11 40

EE 524, # 11 41

Adaptive Beamforming (cont.)

Hung-Turner (Projection) Algorithm:

wHT = (I −X(XHX)−1XH)aS,

i.e. data-orthogonal projection is used instead of inverse covariance matrix.
For Hung-Turner method, a satisfactory performance is achieved with

K ≥ L.

Optimal value of K

Kopt =
√

(N + 1)L− 1.

Drawback: number of sources should be known a priori.

EE 524, # 11 42

EE 524, # 11 43

This effect is sometimes referred to as the signal cancellation phenomenon.
Additional constraints are required to stabilize the mean beam response

min
w

wHRw subject to CHw = f .

1. Point constraints: Matrix of constrained directions:

C = [aS,1,aS,2 · · ·aS,M],

where aS,i are all taken in the neighborhood of aS and include aS as well.
Vector of constraints:

f =

1
1
...
1

 .

EE 524, # 11 44

2. Derivative constraints: Matrix of constrained directions:

C =

[
aS,

∂a(θ)
∂θ

∣∣∣∣∣
θ=θS

, · · · , ∂M−1a(θ)
∂θM−1

∣∣∣∣∣
θ=θS

]
,

where aS,i are all taken in the neighborhood of aS and include aS as well.
Vector of constraints:

f =

1
0
...
0

 .

Note that
∂ka(θ)

∂θk

∣∣∣∣∣
θ=θS

= DkaS,

where D is the matrix depending on θs and on array geometry.

EE 524, # 11 45

Adaptive Beamforming (cont.)

wopt = R−1C(CHR−1C)−1f

and its SMI version:

wopt = R̂−1C(CHR̂−1C)−1f .

• Additional constraints “protect” the directions in the neighborhood of
the assumed signal direction.

• Additional constraints require enough degrees of freedom (DOF’s) –
number of sensors must be large enough.

• Gradient algorithms exist for the constraint adaptation.

EE 524, # 11 46

EE 524, # 11 47

Adaptive Beamforming (cont.)

Generalized Sidelobe Canceller (GSC): Let us decompose

wopt = R−1C(CHR−1C)−1f

into two components, one in the constrained subspace, and one orthogonal
to it:

wopt = (PC + P⊥
C)︸ ︷︷ ︸

I

wopt

= C(CHC)−1 CHR−1C(CHR−1C)−1︸ ︷︷ ︸
I

f

+P⊥
C R−1C(CHR−1C)−1f .

EE 524, # 11 48

Generalizing this approach, we obtain the following decomposition for wopt:

wopt = wq −Bwa,

where
wq = C(CHC)−1f

is the so-called quiescent weight vector,

BHC = 0,

B is the blocking matrix, and wa is the new adaptive weight vector.

EE 524, # 11 49

Generalized Sidelobe Canceller (GSC):

• Choice of B is not unique. We can take B = P⊥
C . However, in this case

B is not of full rank. More common choice is to assume N × (N −M)
full-rank matrix B. Then, the vectors z = BHx and wa both have
shorter length (N −M)× 1 relative to the N × 1 vectors x and wq.

• Since the constrained directions are blocked by the matrix B, the signal
cannot be suppressed and, therefore, the weight vector wa can adapt

EE 524, # 11 50

freely to suppress interference by minimizing the output GSC power

QGSC = (wq −Bwa)HR(wq −Bwa)

= wH
q Rwq −wH

q RBwa −wH
a BHRwq

+wH
a BHRBwa.

The solution is wa,opt = (BHRB)−1BHRwq.

EE 524, # 11 51

Adaptive Beamforming (cont.)

Generalized Sidelobe Canceller (GSC): Noting that

y(k) = wH
q x(k), z(k) = BHx(k),

we obtain

Rz = E {z(k)z(k)H}
= BHE {x(k)x(k)H}B
= BHRB,

ryz = E {z(k)y∗(k)}
= BHE {x(k)x(k)H}wq

= BHRwq.

EE 524, # 11 52

Hence,
wa,opt = R−1

z ryz ←−Wiener-Hopf equation!

EE 524, # 11 53

How to Choose B?

Choose N −M linearly independent vectors bi:

B = [b1b2 · · · bN−M]

so that
bi ⊥ ck, i = 1, 2, . . . , N −M, k = 1, 2, . . . ,M,

where ck is the kth column of C.

There are many possible choices of B!

EE 524, # 11 54

Example: GSC in the Particular Case of Normal
Direction (Single) Constraint and for a Particular Choice

of Blocking Matrix:

EE 524, # 11 55

In this particular example

C =

1
1
...
1

 .

BH =

1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...
0 0 0 · · · 1 −1

 ,

and

x(k) =

x1(k)
x2(k)

...
xN(k)

 , z(k) =

x1(k)− x2(k)
x2(k)− x3(k)

...
xN−1(k)− xN(k)

 .

EE 524, # 11 56

Partially Adaptive Beamforming

In many applications, number of interfering sources is much less than the
number of adaptive weights [adaptive degrees of freedom (DOF’s)]. In such
cases, partially adaptive arrays can be used.

Idea: use nonadaptive preprocessor reducing the number of adaptive
channels:

y(i) = THx(i),

where

• y has a reduced dimension M×1 (M < N) compared with N×1 vector
x,

• T is an N ×M full-rank matrix.

EE 524, # 11 57

EE 524, # 11 58

EE 524, # 11 59

Partially Adaptive Beamforming

There are two types of nonadaptive preprocessors:

• subarray preprocessor,

• beamspace preprocessor.

For arbitrary preprocessor:

Ry = E {y(i)y(i)H} = THE {x(i)x(i)H}T = THRT.

Recall the previously-used representation:

R = ASAH + σ2I.

EE 524, # 11 60

After the preprocessing, we have

Ry = THASAHT + σ2THT

= ÃSÃH + Q

Ã = THA

Q = σ2THT.

• Preprocessing changes array manifold.

• Preprocessing may lead to colored noise.

Choosing T with orthonormal columns, we have

THT = I,

and, therefore, the effect of colored noise may be removed.

EE 524, # 11 61

Partially Adaptive Beamforming

EE 524, # 11 62

Preprocessing matrix in this particular case:

TH =
1√
3

 1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

 ,

(note that THT = I here!)

In the general case

T =

aS,1 0 · · · 0
0 aS,2 · · · 0
...
0 · · · 0 aS,M

 ,

where L = N/M is the size of each subarray, and THT = I holds true if
aH

S,kaS,k = 1, k = 1, 2, . . . ,M .

EE 524, # 11 63

Wideband Space-Time Processing

In the wideband case, we must consider joint space-time processing:

EE 524, # 11 64

Wideband Space-Time Processing (cont.)

Wideband case:

• Higher dimension of the problem (NP instead of N),

• Steering vector depends on frequency.

EE 524, # 11 65

Constant Modulus Algorithm (CMA)
Application: separation of constant-modulus sources.

• Narrowband signals: the received signal is an instantaneous linear
mixture:

xk = Ask.

• Objective: find inverse W , so that

yk = WHxk = sk.

Challenge: both A and sk are unknown!

• However, we have side knowledge: sources are phase modulated, i.e.

si(t) = exp(jφi(t)).

EE 524, # 11 66

EE 524, # 11 67

Constant Modulus Algorithm (cont.)

Simple example: 2 sources, 2 antennas.

EE 524, # 11 68

Let

w =
[

w1

w2

]
be a beamformer. Output of beamforming:

yk = wHxk = [w∗
1 w∗

2]
[

x1,k

x2,k

]
.

Constant modulus property: |s1,k| = |s2,k| = 1 for all k.

Possible optimization problem:

minJ(w) where J(w) = E [(|yk|2 − 1)2].

EE 524, # 11 69

EE 524, # 11 70

The CMA cost function as a function of y (for simplicity, y is taken to be
real here).

No unique minimum! Indeed, if yk = wHxk is CM, then another
beamformer is αw, for any scalar α that satisfies |α| = 1.

EE 524, # 11 71

2 (real-valued) sources, 2 antennas

EE 524, # 11 72

Iterative Optimization

Cost function:

J(w) = E [(|yk|2 − 1)2], yk = wHxk.

Stochastic gradient method: wk+1 = wk−µ[∇J(wk)]∗, where µ is step
size, µ > 0.

Derivative: Use |yk|2 = yky
∗
k = wHxxHw.

∇J = 2E {(|yk|2 − 1) · ∇(wHxkx
H
k w)}

= 2E {(|yk|2 − 1) · (xkx
H
k w)∗}

= 2E {(|yk|2 − 1)x∗kyk}

EE 524, # 11 73

Algorithm CMA(2,2):

yk = wH
k xk

wk+1 = wk − µxk(|yk|2 − 1)y∗k.

EE 524, # 11 74

Advantages:

• The algorithm is extremely simple to implement

• Adaptive tracking of sources

• Converges to minima close to the Wiener beamformers (for each source)

Disadvantages:

• Noisy and slow

• Step size µ should be small, else unstable

• Only one source is recovered (which one?)

• Possible convergence to local minimum (with finite data)

EE 524, # 11 75

EE 524, # 11 76

EE 524, # 11 77

Other CMAs

Alternative cost function: CMA(1,2)

J(w) = E [(|yk| − 1)2] = E [(|wHxk| − 1)2].

EE 524, # 11 78

Corresponding CMA iteration:

yk = wH
k xk

εk =
yk

|yk|
− yk

wk+1 = wk + µxkε
∗
k.

Similar to LMS, with update error yk
|yk|
− yk. The desired signal is estimated

by yk
|yk|

.

EE 524, # 11 79

Other CMAs (cont.)

• Normalized CMA (NCMA; µ becomes scaling independent)

wk+1 = wk +
µ

‖xk‖2
xkε

∗
k.

• Orthogonal CMA (OCMA): whiten using data covariance R

wk+1 = wk + µR−1
k xkε

∗
k.

EE 524, # 11 80

• Least squares CMA (LSCMA): block update, trying to optimize
iteratively

min
w
‖ŝH −wHX‖2

where X = [x1 x2 · · ·xT] and ŝH is the best blind estimate at step k of
the complete source vector (at all time points t = 1, 2, . . . , T)

ŝH =
[y1

|y1|
,

y2

|y2|
, . . . ,

yT

|yT |

]
,

where
yt = wH

k xt, t = 1, 2, . . . ,K.

and
wH

k = ŝHXH(XXH)−1.

EE 524, # 11 81

