Adaptive Filtering

Recall optimal filtering: Given

$$
x(n)=d(n)+v(n)
$$

estimate and extract $d(n)$ from the current and past values of $x(n)$.

Let the filter coefficients be

$$
\boldsymbol{w}=\left[\begin{array}{c}
w_{0} \\
w_{1} \\
\vdots \\
w_{N-1}
\end{array}\right]
$$

Filter output:

$$
y(n)=\sum_{k=0}^{N-1} w_{k}^{*} x(n-k)=\boldsymbol{w}^{H} \boldsymbol{x}(n)=\widehat{d}(n)
$$

where

$$
\boldsymbol{x}(n)=\left[\begin{array}{c}
x(n) \\
x(n-1) \\
\vdots \\
x(n-N+1)
\end{array}\right]
$$

Wiener-Hopf equation:

$$
R(n) \boldsymbol{w}(n)=\boldsymbol{r}(n) \quad \longrightarrow \quad \boldsymbol{w}_{\mathrm{opt}}(n)=R(n)^{-1} \boldsymbol{r}(n),
$$

where

$$
\begin{aligned}
R(n) & =\mathrm{E}\left\{\boldsymbol{x}(n) \boldsymbol{x}(n)^{H}\right\} \\
\boldsymbol{r}(n) & =\mathrm{E}\left\{\boldsymbol{x}(n) d(n)^{*}\right\}
\end{aligned}
$$

Adaptive Filtering (cont.)

Example 1: Unknown system identification.

Adaptive Filtering (cont.)

Example 2: Unknown system equalization.

Adaptive Filtering (cont.)

Example 3: Noise cancellation.

Adaptive Filtering (cont.)

Example 4: Signal linear prediction.

Adaptive Filtering (cont.)

Example 5: Interference cancellation without reference input.

Adaptive Filtering (cont.)

Idea of the Least-Mean-Square (LMS) algorithm:

$$
\begin{equation*}
\boldsymbol{w}_{k+1}=\boldsymbol{w}_{k}-\mu\left(\nabla \boldsymbol{w} \mathrm{E}\left\{\left|e_{k}\right|^{2}\right\}\right)^{*}, \tag{*}
\end{equation*}
$$

where the indices are given as subscripts [e.g. $d(k)=d_{k}$], and

$$
\begin{aligned}
\mathrm{E}\left\{\left|e_{k}\right|^{2}\right\} & =\mathrm{E}\left\{\left|d_{k}-\boldsymbol{w}_{k}^{H} \boldsymbol{x}_{k}\right|^{2}\right\} \\
& =\mathrm{E}\left\{\left|d_{k}\right|^{2}\right\}-\boldsymbol{w}_{k}^{H} \boldsymbol{r}-\boldsymbol{r}^{H} \boldsymbol{w}_{k}+\boldsymbol{w}_{k}^{H} R \boldsymbol{w}_{k}, \\
\left(\nabla \boldsymbol{w} \mathrm{E}\left\{\left|e_{k}\right|^{2}\right\}\right)^{*} & =R \boldsymbol{w}-\boldsymbol{r} .
\end{aligned}
$$

Use single-sample estimates of R and r :

$$
\widehat{R}=\boldsymbol{x}_{k} \boldsymbol{x}_{k}^{H}, \quad \widehat{\boldsymbol{r}}=\boldsymbol{x}_{k} d_{k}^{*},
$$

and insert them into $(*)$:

$$
\boldsymbol{w}_{k+1}=\boldsymbol{w}_{k}+\mu \boldsymbol{x}_{k} e_{k}^{*}, \quad e_{k}=d_{k}-\boldsymbol{w}_{k}^{H} \boldsymbol{x}_{k} \quad \leftarrow \text { LMS alg. }
$$

Adaptive Filtering: Convergence Analysis

Convergence analysis: Subtract $\boldsymbol{w}_{\text {opt }}$ from both sides of the previous equation:

$$
\underbrace{\boldsymbol{w}_{k+1}-\boldsymbol{w}_{\mathrm{opt}}}_{\boldsymbol{v}_{k+1}}=\underbrace{\boldsymbol{w}_{k}-\boldsymbol{w}_{\mathrm{opt}}}_{\boldsymbol{v}_{k}}+\mu \boldsymbol{x}_{k}\left(d_{k}^{*}-\boldsymbol{x}_{k}^{H} \boldsymbol{w}_{k}\right) \quad(* *)
$$

and note that

$$
\begin{aligned}
\boldsymbol{x}_{k}\left(d_{k}^{*}-\boldsymbol{x}_{k}^{H} \boldsymbol{w}_{k}\right) & =\boldsymbol{x}_{k} d_{k}^{*}-\boldsymbol{x}_{k} \boldsymbol{x}_{k}^{H} \boldsymbol{w}_{k} \\
& =\boldsymbol{x}_{k} d_{k}^{*}-\boldsymbol{x}_{k} \boldsymbol{x}_{k}^{H} \boldsymbol{w}_{k}+\boldsymbol{x}_{k} \boldsymbol{x}_{k}^{H} \boldsymbol{w}_{\mathrm{opt}}-\boldsymbol{x}_{k} \boldsymbol{x}_{k}^{H} \boldsymbol{w}_{\mathrm{opt}} \\
& =\left(\boldsymbol{x}_{k} d_{k}^{*}-\boldsymbol{x}_{k} \boldsymbol{x}_{k}^{H} \boldsymbol{w}_{\mathrm{opt}}\right)-\boldsymbol{x}_{k} \boldsymbol{x}_{k}^{H} \boldsymbol{v}_{k}
\end{aligned}
$$

Observe that

$$
\mathrm{E}\left\{\boldsymbol{x}_{k}\left(d_{k}^{*}-\boldsymbol{x}_{k}^{H} \boldsymbol{w}_{k}\right)\right\}=\underbrace{\boldsymbol{r}-R \boldsymbol{w}_{\mathrm{opt}}}_{0}-R \mathrm{E}\left\{\boldsymbol{v}_{k}\right\}=-R \mathrm{E}\left\{\boldsymbol{v}_{k}\right\} .
$$

Let $\boldsymbol{c}_{k}=\mathrm{E}\left\{\boldsymbol{v}_{k}\right\}$. Then

$$
\boldsymbol{c}_{k+1}=[I-\mu R] \boldsymbol{c}_{k} \quad(* * *)
$$

Sufficient condition for convergence:

$$
\left\|\boldsymbol{c}_{k+1}\right\|<\left\|\boldsymbol{c}_{k}\right\| \quad \forall k
$$

Adaptive Filtering: Convergence Analysis

Let us premultiply both parts of the equation $(* * *)$ by the matrix U^{H} of the eigenvectors of R, where

$$
R=U \Lambda U^{H} .
$$

Then, we have

$$
\underbrace{U^{H} \boldsymbol{c}_{k+1}}_{\widehat{\boldsymbol{c}}_{k+1}}=U^{H}[I-\mu R] \underbrace{U U^{H}}_{I} \boldsymbol{c}_{k},
$$

and, hence

$$
\widehat{\boldsymbol{c}}_{k+1}=[I-\mu \Lambda] \widehat{c}_{k} .
$$

Since

$$
\left\|\boldsymbol{c}_{k}\right\|^{2}=\boldsymbol{c}_{k}^{H} \boldsymbol{c}_{k}=\boldsymbol{c}_{k}^{H} \underbrace{U U^{H}}_{I} \boldsymbol{c}_{k}=\widehat{\boldsymbol{c}}_{k}^{H} \widehat{\boldsymbol{c}}_{k}=\left\|\widehat{\boldsymbol{c}}_{k}\right\|^{2},
$$

the sufficient condition for convergence can be rewritten as

$$
\left\|\widehat{\boldsymbol{c}}_{k+1}\right\|^{2}<\left\|\widehat{\boldsymbol{c}}_{k}\right\|^{2} \quad \forall k
$$

Let us then require that the absolute value of each component of the vector $\widehat{\boldsymbol{c}}_{k+1}$ is less than that of $\widehat{\boldsymbol{c}}_{k}$:

$$
\left|1-\mu \lambda_{i}\right|<1, \quad i=1,2, \ldots, N
$$

The condition

$$
\left|1-\mu \lambda_{i}\right|<1, \quad i=1,2, \ldots, N
$$

is equivalent to

$$
0<\mu<\frac{2}{\lambda_{\max }}
$$

where $\lambda_{\text {max }}$ is the maximum eigenvalue of R. In practice, even a stronger
condition is (often) used:

$$
0<\mu<\frac{2}{\operatorname{tr}\{R\}}
$$

where $\operatorname{tr}\{R\}>\lambda_{\text {max }}$.

Normalized LMS

A promising variant of LMS is the so-called Normalized LMS (NLMS) algorithm:

$$
\boldsymbol{w}_{k+1}=\boldsymbol{w}_{k}+\frac{\mu}{\left\|\boldsymbol{x}_{k}\right\|^{2}} \boldsymbol{x}_{k} e_{k}^{*}, \quad e_{k}=d_{k}-\boldsymbol{w}_{k}^{H} \boldsymbol{x}_{k} \leftarrow \text { NLMS alg. }
$$

The sufficient condition for convergence:

$$
0<\mu<2 .
$$

In practice, at some time points $\left\|\boldsymbol{x}_{k}\right\|$ can be very small. To make the NLMS algorithm more robust, we can modify it as follows:

$$
\boldsymbol{w}_{k+1}=\boldsymbol{w}_{k}+\frac{\mu}{\left\|\boldsymbol{x}_{k}\right\|^{2}+\delta} \boldsymbol{x}_{k} e_{k}^{*}
$$

so that the gain constant cannot go to infinity.

Recursive Least Squares

Idea of the Recursive Least Squares (RLS) algorithm: use sample estimate \widehat{R}_{k} (instead of true covariance matrix R) in the equation for the weight vector and find \boldsymbol{w}_{k+1} as an update to \boldsymbol{w}_{k}. Let

$$
\begin{aligned}
\widehat{R}_{k+1} & =\lambda \widehat{R}_{k}+\boldsymbol{x}_{k+1} \boldsymbol{x}_{k+1}^{H} \\
\widehat{\boldsymbol{r}}_{k+1} & =\lambda \widehat{\boldsymbol{r}}_{k}+\boldsymbol{x}_{k+1} d_{k+1}^{*},
\end{aligned}
$$

where $\lambda \leq 1$ is the (so-called) forgetting factor. Using the matrix inversion lemma, we obtain

$$
\begin{aligned}
\widehat{R}_{k+1}^{-1} & =\left(\lambda \widehat{R}_{k}+\boldsymbol{x}_{k+1} \boldsymbol{x}_{k+1}^{H}\right)^{-1} \\
& =\frac{1}{\lambda}\left[\widehat{R}_{k}^{-1}-\frac{\widehat{R}_{k}^{-1} \boldsymbol{x}_{k+1} \boldsymbol{x}_{k+1}^{H} \widehat{R}_{k}^{-1}}{\lambda+\boldsymbol{x}_{k+1}^{H} \widehat{R}_{k}^{-1} \boldsymbol{x}_{k+1}}\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\boldsymbol{w}_{k+1}= & \widehat{R}_{k+1}^{-1} \widehat{\boldsymbol{r}}_{k+1}=\left[\widehat{R}_{k}^{-1}-\frac{\widehat{R}_{k}^{-1} \boldsymbol{x}_{k+1} \boldsymbol{x}_{k+1}^{H} \widehat{R}_{k}^{-1}}{\lambda+\boldsymbol{x}_{k+1}^{H} \widehat{R}_{k}^{-1} \boldsymbol{x}_{k+1}}\right] \widehat{\boldsymbol{r}}_{k} \\
& +\frac{1}{\lambda}\left[\widehat{R}_{k}^{-1}-\frac{\widehat{R}_{k}^{-1} \boldsymbol{x}_{k+1} \boldsymbol{x}_{k+1}^{H} \widehat{R}_{k}^{-1}}{\lambda+\boldsymbol{x}_{k+1}^{H} \widehat{R}_{k}^{-1} \boldsymbol{x}_{k+1}}\right] \boldsymbol{x}_{k+1} d_{k+1}^{*} \\
= & \boldsymbol{w}_{k}-\boldsymbol{g}_{k+1} \boldsymbol{x}_{k+1}^{H} \boldsymbol{w}_{k}+\boldsymbol{g}_{k+1} d_{k+1}^{*},
\end{aligned}
$$

where

$$
\boldsymbol{g}_{k+1}=\frac{\widehat{R}_{k}^{-1} \boldsymbol{x}_{k+1}}{\lambda+\boldsymbol{x}_{k+1}^{H} \widehat{R}_{k}^{-1} \boldsymbol{x}_{k+1}} .
$$

Hence, the updating equation for the weight vector is

$$
\begin{aligned}
\boldsymbol{w}_{k+1} & =\boldsymbol{w}_{k}-\boldsymbol{g}_{k+1} \boldsymbol{x}_{k+1}^{H} \boldsymbol{w}_{k}+\boldsymbol{g}_{k+1} d_{k+1}^{*} \\
& =\boldsymbol{w}_{k}+\boldsymbol{g}_{k+1} \underbrace{\left(d_{k+1}^{*}-\boldsymbol{x}_{k+1}^{H} \boldsymbol{w}_{k}\right)}_{e_{k, k+1}^{*}} \\
& =\boldsymbol{w}_{k}+\boldsymbol{g}_{k+1} e_{k, k+1}^{*}
\end{aligned}
$$

RLS algorithm:

- Initialization: $\boldsymbol{w}_{0}=\mathbf{0}, P_{0}=\delta^{-1} I$
- For each $k=1,2, \ldots$, compute:

$$
\begin{aligned}
\boldsymbol{h}_{k} & =P_{k-1} \boldsymbol{x}_{k}, \\
\alpha_{k} & =1 /\left(\lambda+\boldsymbol{h}_{k}^{H} \boldsymbol{x}_{k}\right), \\
\boldsymbol{g}_{k} & =\boldsymbol{h}_{k} \alpha_{k} \\
P_{k} & =\lambda^{-1}\left[P_{k-1}-\boldsymbol{g}_{k} \boldsymbol{h}_{k}^{H}\right], \\
e_{k-1, k} & =d_{k}-\boldsymbol{w}_{k-1}^{H} \boldsymbol{x}_{k}, \\
\boldsymbol{w}_{k} & =\boldsymbol{w}_{k-1}+\boldsymbol{g}_{k} e_{k-1, k}^{*}, \\
e_{k} & =d_{k}-\boldsymbol{w}_{k}^{H} \boldsymbol{x}_{k} .
\end{aligned}
$$

Example

LMS linear predictor of the signal

$$
x(n)=10 e^{j 2 \pi f n}+e(n)
$$

where $f=0.1$ and

- $N=8$,
- $e(n)$ is circular unit-variance white noise,
- $\mu_{1}=1 /[10 \operatorname{tr}(R)], \mu_{2}=1 /[3 \operatorname{tr}(R)], \mu_{3}=1 /[\operatorname{tr}(R)]$.

The above scheme describes narrowband beamforming, i.e.

- conventional beamforming if w_{1}, \ldots, w_{N} do not depend on the
input/output array signals,
- adaptive beamforming if w_{1}, \ldots, w_{N} are determined and optimized based on the input/output array signals.

Input array signal vector:

$$
\boldsymbol{x}(i)=\left[\begin{array}{c}
x_{1}(i) \\
x_{2}(i) \\
\vdots \\
x_{N}(i)
\end{array}\right]
$$

Complex beamformer output:

$$
y(i)=\boldsymbol{w}^{H} \boldsymbol{x}(i)
$$

Adaptive Beamforming (cont.)

Input array signal vector:

$$
\boldsymbol{x}(k)=\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\vdots \\
x_{N}(k)
\end{array}\right]
$$

Complex beamformer output:

$$
\begin{aligned}
y(k) & =\boldsymbol{w}^{H} \boldsymbol{x}(k), \\
\boldsymbol{x}(k) & =\underbrace{\boldsymbol{x}_{\mathrm{s}}(k)}_{\text {signal }}+\underbrace{\boldsymbol{x}_{\mathrm{N}}(k)}_{\text {noise }}+\underbrace{\boldsymbol{x}_{\mathrm{I}}(k)}_{\text {interference }} .
\end{aligned}
$$

The goal is to filter out $\boldsymbol{x}_{\mathrm{I}}$ and $\boldsymbol{x}_{\mathrm{N}}$ as much as possible and, therefore,
to obtain an approximation $\widehat{\boldsymbol{x}}_{\mathrm{S}}$ of $\boldsymbol{x}_{\mathrm{S}}$. Most popular criteria of adaptive beamforming:

- MSE minimum

$$
\min _{\boldsymbol{w}} \mathrm{MSE}, \quad \mathrm{MSE}=\mathrm{E}\left\{\left|d(i)-\boldsymbol{w}^{H} \boldsymbol{x}(i)\right|^{2}\right\}
$$

- Signal-to-Interference-plus-Noise-Ratio (SINR)

$$
\max _{\boldsymbol{w}} \text { SINR, } \quad \text { SINR }=\frac{\mathrm{E}\left\{\left|\boldsymbol{w}^{H} \boldsymbol{x}_{\mathrm{s}}\right|^{2}\right\}}{\mathrm{E}\left\{\left|\boldsymbol{w}^{H}\left(\boldsymbol{x}_{\mathrm{I}}+\boldsymbol{x}_{\mathrm{N}}\right)\right|^{2}\right\}}
$$

Adaptive Beamforming (cont.)

Adaptive Beamforming (cont.)

In the sequel, we consider the $\max S I N R$ criterion. Rewrite the snapshot model as

$$
\boldsymbol{x}(k)=s(k) \boldsymbol{a}_{\mathrm{s}}+\boldsymbol{x}_{\mathrm{I}}(k)+\boldsymbol{x}_{\mathrm{N}}(k),
$$

where $\boldsymbol{a}_{\mathrm{S}}$ is the known steering vector of the desired signal. Then

$$
\mathrm{SINR}=\frac{\sigma_{\mathrm{s}}^{2}\left|\boldsymbol{w}^{H} \boldsymbol{a}_{\mathrm{s}}\right|^{2}}{\boldsymbol{w}^{H} \mathrm{E}\left\{\left(\boldsymbol{x}_{\mathrm{I}}+\boldsymbol{x}_{\mathrm{N}}\right)\left(\boldsymbol{x}_{\mathrm{I}}+\boldsymbol{x}_{\mathrm{N}}\right)^{H}\right\} \boldsymbol{w}}=\frac{\sigma_{\mathrm{s}}^{2}\left|\boldsymbol{w}^{H} \boldsymbol{a}_{\mathrm{s}}\right|^{2}}{\boldsymbol{w}^{H} R \boldsymbol{w}}
$$

where

$$
R=\mathrm{E}\left\{\left(\boldsymbol{x}_{\mathrm{I}}+\boldsymbol{x}_{\mathrm{N}}\right)\left(\boldsymbol{x}_{\mathrm{I}}+\boldsymbol{x}_{\mathrm{N}}\right)^{H}\right\}
$$

is the interference-plus-noise covariance matrix.
Obviously, SINR does not depend on rescaling of \boldsymbol{w}, i.e. if $\boldsymbol{w}_{\text {opt }}$ is an optimal weight, then $\alpha \boldsymbol{w}_{\text {opt }}$ is such a vector too. Therefore, max SINR is
equivalent to

$$
\min _{\boldsymbol{w}} \boldsymbol{w}^{H} R \boldsymbol{w} \quad \text { subject to } \quad \boldsymbol{w}^{H} \boldsymbol{a}_{\mathrm{S}}=\text { const. }
$$

Let const $=1$. Then

$$
\begin{aligned}
H(\boldsymbol{w}) & =\boldsymbol{w}^{H} R \boldsymbol{w}+\lambda\left(1-\boldsymbol{w}^{H} \boldsymbol{a}_{\mathrm{s}}\right)+\lambda^{*}\left(1-\boldsymbol{a}_{\mathrm{s}}^{H} \boldsymbol{w}\right) \\
\nabla \boldsymbol{w} H(\boldsymbol{w}) & =\left(R \boldsymbol{w}-\lambda \boldsymbol{a}_{\mathrm{s}}\right)^{*}=\mathbf{0} \Longrightarrow \\
R \boldsymbol{w} & =\lambda \boldsymbol{a}_{\mathrm{s}} \Longrightarrow \boldsymbol{w}_{\mathrm{opt}}=\lambda R^{-1} \boldsymbol{a}_{\mathrm{s}}
\end{aligned}
$$

This is a spatial version of the Wiener-Hopf equation!
From the constraint equation, we obtain

$$
\lambda=\frac{1}{\boldsymbol{a}_{\mathrm{s}}^{H} R^{-1} \boldsymbol{a}_{\mathrm{s}}}
$$

and therefore

$$
\boldsymbol{w}_{\mathrm{opt}}=\frac{1}{\boldsymbol{a}_{\mathrm{s}}^{H} R^{-1} \boldsymbol{a}_{\mathrm{s}}} R^{-1} \boldsymbol{a}_{\mathrm{s}} \quad \longleftarrow \text { MVDR beamformer. }
$$

Substituting $\boldsymbol{w}_{\text {opt }}$ into the SINR expression, we obtain

$$
\max \operatorname{SINR}=\mathrm{SINR}_{\mathrm{opt}}=\frac{\sigma_{\mathrm{s}}^{2}\left(\boldsymbol{a}_{\mathrm{s}}^{H} R^{-1} \boldsymbol{a}_{\mathrm{s}}\right)^{2}}{\boldsymbol{a}_{\mathrm{s}}^{H} R^{-1} R R^{-1} \boldsymbol{a}_{\mathrm{s}}}=\sigma_{\mathrm{s}}^{2} \boldsymbol{a}_{\mathrm{s}}^{H} R^{-1} \boldsymbol{a}_{\mathrm{s}}
$$

If there are no interference sources (only white noise with variance σ^{2}):

$$
\mathrm{SINR}_{\mathrm{opt}}=\frac{\sigma_{\mathrm{s}}^{2}}{\sigma^{2}} \boldsymbol{a}_{\mathrm{s}}^{H} \boldsymbol{a}_{\mathrm{s}}=\frac{N \sigma_{\mathrm{s}}^{2}}{\sigma^{2}}
$$

Adaptive Beamforming (cont.)

Let us study what happens with the optimal SINR if the covariance matrix includes the signal component:

$$
R_{x}=\mathrm{E}\left\{\boldsymbol{x} \boldsymbol{x}^{H}\right\}=R+\sigma_{\mathrm{s}}^{2} \boldsymbol{a}_{\mathrm{s}} \boldsymbol{a}_{\mathrm{s}}^{H} .
$$

Using the matrix inversion lemma, we have

$$
\begin{aligned}
R_{x}^{-1} \boldsymbol{a}_{\mathrm{s}} & =\left(R+\sigma_{\mathrm{s}}^{2} \boldsymbol{a}_{\mathrm{s}} \boldsymbol{a}_{\mathrm{S}}^{H}\right)^{-1} \boldsymbol{a}_{\mathrm{s}} \\
& =\left(R^{-1}-\frac{R^{-1} \boldsymbol{a}_{\mathrm{s}} \boldsymbol{a}_{\mathrm{s}}^{H} R^{-1}}{1 / \sigma_{\mathrm{s}}^{2}+\boldsymbol{a}_{\mathrm{s}}^{H} R^{-1} \boldsymbol{a}_{\mathrm{s}}}\right) \boldsymbol{a}_{\mathrm{s}} \\
& =\left(1-\frac{\boldsymbol{a}_{\mathrm{s}}^{H} R^{-1} \boldsymbol{a}_{\mathrm{s}}}{1 / \sigma_{\mathrm{s}}^{2}+\boldsymbol{a}_{\mathrm{s}}^{H} R^{-1} \boldsymbol{a}_{\mathrm{s}}}\right) R^{-1} \boldsymbol{a}_{\mathrm{s}} \\
& =\alpha R^{-1} \boldsymbol{a}_{\mathrm{s}}
\end{aligned}
$$

Optimal SINR is not affected!

However, the above result holds only if

- there is an infinite number of snapshots and
- a_{S} is known exactly.

Adaptive Beamforming (cont.)

Gradient algorithm maximizing SNR (very similar to LMS):

$$
\boldsymbol{w}_{k+1}=\boldsymbol{w}_{k}+\mu\left(\boldsymbol{a}_{\mathrm{s}}-\boldsymbol{x}_{k} \boldsymbol{x}_{k}^{H} \boldsymbol{w}_{k}\right)
$$

where, again, we use the simple notation $\boldsymbol{w}_{k}=\boldsymbol{w}(k)$ and $\boldsymbol{x}_{k}=\boldsymbol{x}(k)$. The vector \boldsymbol{w}_{k} converges to $\boldsymbol{w}_{\mathrm{opt}} \sim R^{-1} \boldsymbol{a}_{\mathrm{s}}$ if

$$
0<\mu<\frac{2}{\lambda_{\max }} \quad \Longrightarrow \quad 0<\mu<\frac{2}{\operatorname{tr}\{R\}}
$$

The disadvantage of the gradient algorithms is that the convergence may be very slow, i.e. it depends on the eigenvalue spread of R.

Example

- $N=8$,
- single signal from $\theta_{\mathrm{s}}=0^{\circ}$ and $\mathrm{SNR}=0 \mathrm{~dB}$,
- single interference from $\theta_{\mathrm{I}}=30^{\circ}$ and $\mathrm{INR}=40 \mathrm{~dB}$,
- $\mu_{1}=1 /[50 \operatorname{tr}(R)], \mu_{2}=1 /[15 \operatorname{tr}(R)], \mu_{3}=1 /[5 \operatorname{tr}(R)]$.

Adaptive Beamforming (cont.)

Sample Matrix Inversion (SMI) Algorithm:

$$
\boldsymbol{w}_{\mathrm{SMI}}=\widehat{R}^{-1} \boldsymbol{a}_{\mathrm{S}}
$$

where \widehat{R} is the sample covariance matrix

$$
\widehat{R}=\frac{1}{K} \sum_{k=1}^{K} \boldsymbol{x}_{k} \boldsymbol{x}_{k}^{H}
$$

Reed-Mallet-Brennan (RMB) rule: under mild conditions, the mean losses (relative to the optimal SINR) due to the SMI approximation of $\boldsymbol{w}_{\text {opt }}$ do not exceed 3 dB if

$$
K \geq 2 N
$$

Hence, the SMI provides very fast convergence rate, in general.

Adaptive Beamforming (cont.)

Loaded SMI:

$$
\boldsymbol{w}_{\mathrm{LSMI}}=\widehat{R}_{\mathrm{DL}}^{-1} \boldsymbol{a}_{\mathrm{S}}, \quad \widehat{R}_{\mathrm{DL}}=\widehat{R}+\gamma I,
$$

where the optimal weight $\gamma \approx 2 \sigma^{2}$. LSMI allows convergence faster than N snapshots!

LSMI convergence rule: under mild conditions, the mean losses (relative to the optimal SINR) due to the LSMI approximation of $\boldsymbol{w}_{\text {opt }}$ do not exceed few dB's if

$$
K \geq L
$$

where L is the number of interfering sources. Hence, the LSMI provides faster convergence rate than SMI (usually, $2 N \gg L$)!

Example

- $N=10$,
- single signal from $\theta_{\mathrm{s}}=0^{\circ}$ and $\mathrm{SNR}=0 \mathrm{~dB}$,
- single interference from $\theta_{\mathrm{I}}=30^{\circ}$ and $\mathrm{INR}=40 \mathrm{~dB}$,
- SMI vs. LSMI.

SMI directional pattern (signal free case), $K=20$

LSMI directional pattern (signal free case), $K=2$

LSMI, 2 SNAPSHOTS

Convergence rates with signal absent and present:

Adaptive Beamforming (cont.)

Hung-Turner (Projection) Algorithm:

$$
\boldsymbol{w}_{\mathrm{HT}}=\left(I-X\left(X^{H} X\right)^{-1} X^{H}\right) \boldsymbol{a}_{\mathrm{S}},
$$

i.e. data-orthogonal projection is used instead of inverse covariance matrix. For Hung-Turner method, a satisfactory performance is achieved with

$$
K \geq L .
$$

Optimal value of K

$$
K_{\mathrm{opt}}=\sqrt{(N+1) L}-1 .
$$

Drawback: number of sources should be known a priori.

Look direction mismatch (pointing error) problem:

This effect is sometimes referred to as the signal cancellation phenomenon. Additional constraints are required to stabilize the mean beam response

$$
\min _{\boldsymbol{w}} \boldsymbol{w}^{H} R \boldsymbol{w} \quad \text { subject to } \quad C^{H} \boldsymbol{w}=\boldsymbol{f}
$$

1. Point constraints: Matrix of constrained directions:

$$
C=\left[\boldsymbol{a}_{\mathrm{S}, 1}, \boldsymbol{a}_{\mathrm{S}, 2} \cdots \boldsymbol{a}_{\mathrm{S}, M}\right]
$$

where $\boldsymbol{a}_{\mathrm{S}, i}$ are all taken in the neighborhood of $\boldsymbol{a}_{\mathrm{S}}$ and include $\boldsymbol{a}_{\mathrm{S}}$ as well. Vector of constraints:

$$
\boldsymbol{f}=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]
$$

2. Derivative constraints: Matrix of constrained directions:

$$
C=\left[\boldsymbol{a}_{\mathrm{S}},\left.\frac{\partial \boldsymbol{a}(\theta)}{\partial \theta}\right|_{\theta=\theta_{\mathrm{S}}}, \cdots,\left.\frac{\partial^{M-1} \boldsymbol{a}(\theta)}{\partial \theta^{M-1}}\right|_{\theta=\theta_{\mathrm{S}}}\right],
$$

where $\boldsymbol{a}_{\mathrm{S}, i}$ are all taken in the neighborhood of $\boldsymbol{a}_{\mathrm{S}}$ and include $\boldsymbol{a}_{\mathrm{S}}$ as well. Vector of constraints:

$$
\boldsymbol{f}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

Note that

$$
\left.\frac{\partial^{k} \boldsymbol{a}(\theta)}{\partial \theta^{k}}\right|_{\theta=\theta_{\mathrm{S}}}=D^{k} \boldsymbol{a}_{\mathrm{S}}
$$

where D is the matrix depending on θ_{s} and on array geometry.

Adaptive Beamforming (cont.)

$$
\boldsymbol{w}_{\mathrm{opt}}=R^{-1} C\left(C^{H} R^{-1} C\right)^{-1} \boldsymbol{f}
$$

and its SMI version:

$$
\boldsymbol{w}_{\mathrm{opt}}=\widehat{R}^{-1} C\left(C^{H} \widehat{R}^{-1} C\right)^{-1} \boldsymbol{f}
$$

- Additional constraints "protect" the directions in the neighborhood of the assumed signal direction.
- Additional constraints require enough degrees of freedom (DOF's) number of sensors must be large enough.
- Gradient algorithms exist for the constraint adaptation.

Effect of point constraints:
$\downarrow \downarrow \downarrow \downarrow \downarrow$

Adaptive Beamforming (cont.)

Generalized Sidelobe Canceller (GSC): Let us decompose

$$
\boldsymbol{w}_{\mathrm{opt}}=R^{-1} C\left(C^{H} R^{-1} C\right)^{-1} \boldsymbol{f}
$$

into two components, one in the constrained subspace, and one orthogonal to it:

$$
\begin{aligned}
\boldsymbol{w}_{\mathrm{opt}}= & \underbrace{\left(P_{C}+P_{C}^{\perp}\right)}_{I} \boldsymbol{w}_{\mathrm{opt}} \\
= & C\left(C^{H} C\right)^{-1} \underbrace{C^{H} R^{-1} C\left(C^{H} R^{-1} C\right)^{-1}}_{I} \boldsymbol{f} \\
& +P_{C}^{\perp} R^{-1} C\left(C^{H} R^{-1} C\right)^{-1} \boldsymbol{f}
\end{aligned}
$$

Generalizing this approach, we obtain the following decomposition for $\boldsymbol{w}_{\text {opt }}$:

$$
\boldsymbol{w}_{\mathrm{opt}}=\boldsymbol{w}_{\mathrm{q}}-B \boldsymbol{w}_{\mathrm{a}}
$$

where

$$
\boldsymbol{w}_{\mathrm{q}}=C\left(C^{H} C\right)^{-1} \boldsymbol{f}
$$

is the so-called quiescent weight vector,

$$
B^{H} C=0
$$

B is the blocking matrix, and $\boldsymbol{w}_{\mathrm{a}}$ is the new adaptive weight vector.

Generalized Sidelobe Canceller (GSC):

- Choice of B is not unique. We can take $B=P_{C}^{\perp}$. However, in this case B is not of full rank. More common choice is to assume $N \times(N-M)$ full-rank matrix B. Then, the vectors $z=B^{H} \boldsymbol{x}$ and $\boldsymbol{w}_{\mathrm{a}}$ both have shorter length $(N-M) \times 1$ relative to the $N \times 1$ vectors \boldsymbol{x} and $\boldsymbol{w}_{\mathrm{q}}$.
- Since the constrained directions are blocked by the matrix B, the signal cannot be suppressed and, therefore, the weight vector $\boldsymbol{w}_{\mathrm{a}}$ can adapt
freely to suppress interference by minimizing the output GSC power

$$
\begin{aligned}
Q_{\mathrm{GSC}}= & \left(\boldsymbol{w}_{\mathrm{q}}-B \boldsymbol{w}_{\mathrm{a}}\right)^{H} R\left(\boldsymbol{w}_{\mathrm{q}}-B \boldsymbol{w}_{\mathrm{a}}\right) \\
= & \boldsymbol{w}_{\mathrm{q}}^{H} R \boldsymbol{w}_{\mathrm{q}}-\boldsymbol{w}_{\mathrm{q}}^{H} R B \boldsymbol{w}_{\mathrm{a}}-\boldsymbol{w}_{\mathrm{a}}^{H} B^{H} R \boldsymbol{w}_{\mathrm{q}} \\
& +\boldsymbol{w}_{\mathrm{a}}^{H} B^{H} R B \boldsymbol{w}_{\mathrm{a}} .
\end{aligned}
$$

The solution is $\boldsymbol{w}_{\mathrm{a}, \mathrm{opt}}=\left(B^{H} R B\right)^{-1} B^{H} R \boldsymbol{w}_{\mathrm{q}}$.

Adaptive Beamforming (cont.)

Generalized Sidelobe Canceller (GSC): Noting that

$$
y(k)=\boldsymbol{w}_{\mathrm{q}}^{H} \boldsymbol{x}(k), \quad \boldsymbol{z}(k)=B^{H} \boldsymbol{x}(k),
$$

we obtain

$$
\begin{aligned}
R_{z} & =\mathrm{E}\left\{\boldsymbol{z}(k) \boldsymbol{z}(k)^{H}\right\} \\
& =B^{H} \mathrm{E}\left\{\boldsymbol{x}(k) \boldsymbol{x}(k)^{H}\right\} B \\
& =B^{H} R B \\
\boldsymbol{r}_{y z} & =\mathrm{E}\left\{\boldsymbol{z}(k) y^{*}(k)\right\} \\
& =B^{H} \mathrm{E}\left\{\boldsymbol{x}(k) \boldsymbol{x}(k)^{H}\right\} \boldsymbol{w}_{\mathrm{q}} \\
& =B^{H} R \boldsymbol{w}_{\mathrm{q}} .
\end{aligned}
$$

Hence,

$$
\boldsymbol{w}_{\mathrm{a}, \mathrm{opt}}=R_{z}^{-1} \boldsymbol{r}_{y z} \quad \longleftarrow \text { Wiener-Hopf equation! }
$$

How to Choose B?

Choose $N-M$ linearly independent vectors \boldsymbol{b}_{i} :

$$
B=\left[\boldsymbol{b}_{1} \boldsymbol{b}_{2} \cdots \boldsymbol{b}_{N-M}\right]
$$

so that

$$
\boldsymbol{b}_{i} \perp \boldsymbol{c}_{k}, \quad i=1,2, \ldots, N-M, \quad k=1,2, \ldots, M
$$

where \boldsymbol{c}_{k} is the k th column of C.
There are many possible choices of B !

Example: GSC in the Particular Case of Normal Direction (Single) Constraint and for a Particular Choice of Blocking Matrix:

In this particular example

$$
\begin{gathered}
C=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] . \\
B^{H}=\left[\begin{array}{cccccc}
1 & -1 & 0 & \cdots & 0 & 0 \\
0 & 1 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \\
0 & 0 & 0 & \cdots & 1 & -1
\end{array}\right],
\end{gathered}
$$

and

$$
\boldsymbol{x}(k)=\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\vdots \\
x_{N}(k)
\end{array}\right], \quad \boldsymbol{z}(k)=\left[\begin{array}{c}
x_{1}(k)-x_{2}(k) \\
x_{2}(k)-x_{3}(k) \\
\vdots \\
x_{N-1}(k)-x_{N}(k)
\end{array}\right] .
$$

Partially Adaptive Beamforming

In many applications, number of interfering sources is much less than the number of adaptive weights [adaptive degrees of freedom (DOF's)]. In such cases, partially adaptive arrays can be used.

Idea: use nonadaptive preprocessor reducing the number of adaptive channels:

$$
\boldsymbol{y}(i)=T^{H} \boldsymbol{x}(i)
$$

where

- \boldsymbol{y} has a reduced dimension $M \times 1(M<N)$ compared with $N \times 1$ vector \boldsymbol{x},
- T is an $N \times M$ full-rank matrix.

Partially Adaptive Beamforming

There are two types of nonadaptive preprocessors:

- subarray preprocessor,
- beamspace preprocessor.

For arbitrary preprocessor:

$$
R_{y}=\mathrm{E}\left\{\boldsymbol{y}(i) \boldsymbol{y}(i)^{H}\right\}=T^{H} \mathrm{E}\left\{\boldsymbol{x}(i) \boldsymbol{x}(i)^{H}\right\} T=T^{H} R T
$$

Recall the previously-used representation:

$$
R=A S A^{H}+\sigma^{2} I
$$

After the preprocessing, we have

$$
\begin{aligned}
R_{y} & =T^{H} A S A^{H} T+\sigma^{2} T^{H} T \\
& =\widetilde{A} S \widetilde{A}^{H}+Q \\
\widetilde{A} & =T^{H} A \\
Q & =\sigma^{2} T^{H} T
\end{aligned}
$$

- Preprocessing changes array manifold.
- Preprocessing may lead to colored noise.

Choosing T with orthonormal columns, we have

$$
T^{H} T=I
$$

and, therefore, the effect of colored noise may be removed.

Partially Adaptive Beamforming

Partially adaptive beamformer based on subarray preprocessing

Preprocessing matrix in this particular case:

$$
T^{H}=\frac{1}{\sqrt{3}}\left[\begin{array}{ccccccccc}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1
\end{array}\right]
$$

(note that $T^{H} T=I$ here!)
In the general case

$$
T=\left[\begin{array}{cccc}
\boldsymbol{a}_{\mathrm{S}, 1} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \boldsymbol{a}_{\mathrm{S}, 2} & \cdots & \mathbf{0} \\
\vdots & \vdots & \vdots & \vdots \\
\mathbf{0} & \cdots & \mathbf{0} & \boldsymbol{a}_{\mathrm{S}, M}
\end{array}\right]
$$

where $L=N / M$ is the size of each subarray, and $T^{H} T=I$ holds true if $\boldsymbol{a}_{\mathrm{S}, k}^{H} \boldsymbol{a}_{\mathrm{S}, k}=1, k=1,2, \ldots, M$.

Wideband Space-Time Processing

In the wideband case, we must consider joint space-time processing:

Wideband Space-Time Processing (cont.)

Wideband case:

- Higher dimension of the problem ($N P$ instead of N),
- Steering vector depends on frequency.

Constant Modulus Algorithm (CMA)

Application: separation of constant-modulus sources.

- Narrowband signals: the received signal is an instantaneous linear mixture:

$$
\boldsymbol{x}_{k}=A s_{k}
$$

- Objective: find inverse W, so that

$$
\boldsymbol{y}_{k}=W^{H} \boldsymbol{x}_{k}=\boldsymbol{s}_{k} .
$$

Challenge: both A and s_{k} are unknown!

- However, we have side knowledge: sources are phase modulated, i.e.

$$
s_{i}(t)=\exp \left(j \phi_{i}(t)\right)
$$

$\left\{\begin{array}{l}s_{2}(t)=\exp \left(j p_{2}(t)\right) \\ \sqrt[N]{V} \sqrt{v} \sqrt{n}\end{array}\right.$
antenna output 1

antenna output 2

Constant Modulus Algorithm (cont.)

Simple example: 2 sources, 2 antennas.

Let

$$
\boldsymbol{w}=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]
$$

be a beamformer. Output of beamforming:

$$
y_{k}=\boldsymbol{w}^{H} \boldsymbol{x}_{k}=\left[w_{1}^{*} w_{2}^{*}\right]\left[\begin{array}{l}
x_{1, k} \\
x_{2, k}
\end{array}\right] .
$$

Constant modulus property: $\left|s_{1, k}\right|=\left|s_{2, k}\right|=1$ for all k.

Possible optimization problem:

$$
\min J(\boldsymbol{w}) \quad \text { where } \quad J(\boldsymbol{w})=\mathrm{E}\left[\left(\left|y_{k}\right|^{2}-1\right)^{2}\right] .
$$

CMA cost function

$$
\left(\left|y_{k}\right|^{2}-1\right)^{2}
$$

The CMA cost function as a function of y (for simplicity, y is taken to be real here).

No unique minimum! Indeed, if $y_{k}=\boldsymbol{w}^{H} \boldsymbol{x}_{k}$ is CM , then another beamformer is $\alpha \boldsymbol{w}$, for any scalar α that satisfies $|\alpha|=1$.

2 (real-valued) sources, 2 antennas

Iterative Optimization

Cost function:

$$
J(\boldsymbol{w})=\mathrm{E}\left[\left(\left|y_{k}\right|^{2}-1\right)^{2}\right], \quad y_{k}=\boldsymbol{w}^{H} \boldsymbol{x}_{k}
$$

Stochastic gradient method: $\boldsymbol{w}_{k+1}=\boldsymbol{w}_{k}-\mu\left[\nabla J\left(\boldsymbol{w}_{k}\right)\right]^{*}$, where μ is step size, $\mu>0$.

Derivative: Use $\left|y_{k}\right|^{2}=y_{k} y_{k}^{*}=\boldsymbol{w}^{H} \boldsymbol{x} \boldsymbol{x}^{H} \boldsymbol{w}$.

$$
\begin{aligned}
\nabla J & =2 \mathrm{E}\left\{\left(\left|y_{k}\right|^{2}-1\right) \cdot \nabla\left(\boldsymbol{w}^{H} \boldsymbol{x}_{k} \boldsymbol{x}_{k}^{H} \boldsymbol{w}\right)\right\} \\
& =2 \mathrm{E}\left\{\left(\left|y_{k}\right|^{2}-1\right) \cdot\left(\boldsymbol{x}_{k} \boldsymbol{x}_{k}^{H} \boldsymbol{w}\right)^{*}\right\} \\
& =2 \mathrm{E}\left\{\left(\left|y_{k}\right|^{2}-1\right) \boldsymbol{x}_{k}^{*} y_{k}\right\}
\end{aligned}
$$

Algorithm CMA(2,2):

$$
\begin{aligned}
y_{k} & =\boldsymbol{w}_{k}^{H} \boldsymbol{x}_{k} \\
\boldsymbol{w}_{k+1} & =\boldsymbol{w}_{k}-\mu \boldsymbol{x}_{k}\left(\left|y_{k}\right|^{2}-1\right) y_{k}^{*}
\end{aligned}
$$

Advantages:

- The algorithm is extremely simple to implement
- Adaptive tracking of sources
- Converges to minima close to the Wiener beamformers (for each source)

Disadvantages:

- Noisy and slow
- Step size μ should be small, else unstable
- Only one source is recovered (which one?)
- Possible convergence to local minimum (with finite data)

Other CMAs

Alternative cost function: $\operatorname{CMA}(1,2)$

$$
J(\boldsymbol{w})=\mathrm{E}\left[\left(\left|y_{k}\right|-1\right)^{2}\right]=\mathrm{E}\left[\left(\left|\boldsymbol{w}^{H} \boldsymbol{x}_{k}\right|-1\right)^{2}\right] .
$$

Corresponding CMA iteration:

$$
\begin{aligned}
y_{k} & =\boldsymbol{w}_{k}^{H} \boldsymbol{x}_{k} \\
\epsilon_{k} & =\frac{y_{k}}{\left|y_{k}\right|}-y_{k} \\
\boldsymbol{w}_{k+1} & =\boldsymbol{w}_{k}+\mu \boldsymbol{x}_{k} \epsilon_{k}^{*} .
\end{aligned}
$$

Similar to LMS, with update error $\frac{y_{k}}{\left|y_{k}\right|}-y_{k}$. The desired signal is estimated by $\frac{y_{k}}{\left|y_{k}\right|}$.

Other CMAs (cont.)

- Normalized CMA (NCMA; μ becomes scaling independent)

$$
\boldsymbol{w}_{k+1}=\boldsymbol{w}_{k}+\frac{\mu}{\left\|\boldsymbol{x}_{k}\right\|^{2}} \boldsymbol{x}_{k} \epsilon_{k}^{*}
$$

- Orthogonal CMA (OCMA): whiten using data covariance R

$$
\boldsymbol{w}_{k+1}=\boldsymbol{w}_{k}+\mu R_{k}^{-1} \boldsymbol{x}_{k} \epsilon_{k}^{*}
$$

- Least squares CMA (LSCMA): block update, trying to optimize iteratively

$$
\min _{\boldsymbol{w}}\left\|\widehat{\boldsymbol{s}}^{H}-\boldsymbol{w}^{H} X\right\|^{2}
$$

where $X=\left[\boldsymbol{x}_{1} \boldsymbol{x}_{2} \cdots \boldsymbol{x}_{T}\right]$ and $\widehat{\boldsymbol{s}}^{H}$ is the best blind estimate at step k of the complete source vector (at all time points $t=1,2, \ldots, T$)

$$
\widehat{\boldsymbol{s}}^{H}=\left[\frac{y_{1}}{\left|y_{1}\right|}, \frac{y_{2}}{\left|y_{2}\right|}, \ldots, \frac{y_{T}}{\left|y_{T}\right|}\right]
$$

where

$$
y_{t}=\boldsymbol{w}_{k}^{H} \boldsymbol{x}_{t}, \quad t=1,2, \ldots, K
$$

and

$$
\boldsymbol{w}_{k}^{H}=\widehat{\boldsymbol{s}}^{H} X^{H}\left(X X^{H}\right)^{-1} .
$$

