
Sri Sritharan 

Wilson Engineering Professor 

Civil, Construction and Environmental Engineering  

June 2, 2011 



Design vs. construction 
 Design process 

 Identify loads and limit states 

 Establish critical demands for all elements 

 Ensure capacity is greater than demand in each element 

 Design from the top down 

 Roof  building   foundation 

 Construct from the bottom up 
 Foundation  building   roof 

 How do you determine the best design solution? 



Shallow vs. Deep Foundations 



Poorly designed foundations 
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Wind Turbine Tower Design 
Presentation Topics 

 Material Choices 

 Steel 

 Concrete 

 Hybrid 

 Design Methods 

 Limit States/Specifications 



Status Quo 
Most common design: 

 Tubular Steel 

Source: trinitytowers.com 



Typical Steel Towers 
 (Photos of Zearing Towers) 

 (Typical Dimensions) 







Why is steel popular? 
 Most prominent design alternative, established 

manufacturers 

 High strength to weight ratio 

 Competitive cost in the current market 



Tower Mass vs. Power 



 Department of Energy’s 20% Wind Energy by 2030: 

“Continued reduction in wind capital cost and 

improvement in turbine performance” 

 A call for towers of greater height 

 Faster wind loads 

 Higher power output/more efficient 

 Increase in turbine capacity 

 

 

 
 

 

Moving Forward 



MultiMW wind turbines 
 Twice as much rated power by applying 5 MW machines 

 Relatively lower costs for grid connection, land, road 

construction and wind farm operation 

 Lower Total Costs of Energy when WT-price of 5 MW < 1150 

€/kW 



There is evidence showing economical benefits 

of increased tower heights 

 E.g., Hybrid tower designed by ATS 

100m Steel Tower vs. 133m Steel/Concrete Hybrid 

Tower 

100m: 5090 MWh/yr vs. 133m: 5945 MWh/yr (17%, 

$110,00 increase in income per year) 

Additional $450,000 to build 133m tower (~4 year cost 

recovery time vs. 20+ year typical turbine life) 

 

 
 

 

Moving Forward 



Moving Forward 
Challenges of steel construction 

 Large sections necessary for taller towers 

 Transportation concerns/increased costs 

 Transportation limits diameters to 14.1 ft (4.3m) 

 Higher site development cost 

 Large crane requirement 

 Potentially long lead time 

 



100m Steel Tower (ISU Design) 
 For a 100m tower, 

 Base Shell Thickness: 1.5 in (38.1 mm) 

 Base Diameter:18 ft (5.5m) 

 Top Diameter: 10 ft 

 Top Shell Thickness: 0.80 in (20.3 mm) 

 Increases the volume of steel by 2 

 Life span is still limited to 25 years 

 

 

 Clearly room for innovation in tower design 

 



Source: http://tfargo.files.wordpress.com 

Bell curve 



Design Alternatives 
Other emerging options: 

Concrete 

Concrete/Steel Hybrid 

Advanced materials 



Concrete 

Advantages: 
 Potential cost savings 

 Transportation/Development 

 No local buckling concerns (thicker sections required for 

concrete strength) 

 More corrosion resistance  

 Multiple constructions options (more on this to follow) 

 



Concrete 
 Segmental Construction 

 Multiple precast sections would define the cross section 

 Sections are bolted or post-tensioned together 

 Many precasters available who could produce these sections 

 More competition of suppliers could reduce prices 

 Smaller precast modules could be more easily transported 

 Smaller crane required for construction 

 Re-use: 20 year turbine life vs. 50+ year tower life 



Design Alternatives 
Cast-in-Place Option 

 Industrial chimneys similar in scope, construction 

 Could prove to be most competitive in price 

 



Source: 

www.inneo.es 



Design Alternatives 
Advantage of the Hybrid: 

 Combines the advantage of steel on top, concrete on 

bottom 

 Large diameter steel-tubes not necessary (fewer 

transportation difficulties) 

 Lower seismic weight than concrete tower 

 Self-jacking tower could limit crane costs 

 



Design Alternatives 

Advantage of the Hybrid: 

 Combines the advantage of steel on top, concrete on 

bottom 

 Large diameter steel-tubes not necessary (fewer 

transportation difficulties) 

 Lower seismic weight than concrete tower 

 Innovative construction methods 

 

Source: www.atlasctb.com/anatomy.html 



Wind Turbine Tower Design 
Topics: 

 Design Loads 

 Sources 

 Specifications 

 Steel  

 Limit States 

 Specifications 

 Concrete 

 Limit States 

 Specifications 

 Dynamic Concerns 



Design Loads 
Need to account for the following loads on the structure: 

 Dead Load 

 Direct Wind Pressure 

 Applied as a static load 

 Turbine Wind Load 

 Applied dynamically, or as an amplified static load 

 Earthquake (depending on tower location) 

 



Applicable Design Specifications 

for Loading 
 Direct Wind Loading: 

 IEC 61400-1 

 ASCE 7 

 Wind Turbine Loading: 

 Typically specified by turbine manufacturers, or simulated 

 Earthquake: 

 ASCE 7 



Load Combinations 

1.4D (Will not govern) 

1.2D + 1.6W + 1.35TWL 

1.2D + 1.0E 

*1.0D + 1.0W + 1.0TWL 

**1.0D + ΔTWL 

*Serviceability 

**Fatigue  



Limit States 
Steel Limit States: 

 Strength (LRFD or ASD) 

 Buckling (local and global), yielding, shear 

yielding/buckling, torsional yielding/buckling  

 Interaction 

 Fatigue 

 Serviceability 

 Deflections - Less defined, guidelines for chimneys exist 

 

 



Applicable Standards for Limit 

States 
No standardized US code for wind turbines 

 Strength:  

 ANSI AISC 360-05 

 Eurocode 3 

 Fatigue 

 Eurocode  

 Damage Equivalent Load Method 

 



Limit States  
Prestressed Concrete Limit States: 

 Strength: 

 Cracking/No Tension Service Level Loading 

 Ultimate Capacity – crushing of concrete or fracture of 

longitudinal steel 

 Shear ultimate capacity – cracking/crushing of concrete, 

fracture of shear reinforcement (stirrups or fibers) 

 Fatigue of concrete, steel 

 Serviceability - Deflections 



Applicable Standards for Limit 

States 
 Strength:  

 ACI 318 

 Eurocode 2 

 Fatigue 

 CEB-FIP Model Code 1990 (U.S. codes do not currently 

address high-cycle fatigue) 

 Serviceability 

 ACI 307 (Design and Construction of Reinforced Concrete 

Chimneys) 



Dynamic Concerns 
Natural Frequency of Tower 

 Rotor operation produces time varying loads 

 Want to avoid excessive dynamic amplification 

 For small damping, resonance condition occurs approx. 

when driving freq. = natural freq. of structure 

 1P and 3P 

 For a 3MW turbine,  

 1P = 0.22 Hz 

 3P = 0.66 Hz 

 



Source: NREL/SR-500-36777  



Expected Controlling Limit State 
Hybrid: 

  Steel fatigue controls the ultimate limit state 

Prestressed Concrete:  

 In a seismic region, strength controls 

 In a wind-controlled region, concrete fatigue and tension 

strength control 

Steel: 

 Steel fatigue controls the ultimate limit state 

 



Questions? 


