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a b s t r a c t

Reliability has an impact on wind energy project costs and benefits. Both life test data and field failure
data can be used for reliability analysis. In wind energy industry, wind farm operators have greater
interest in recording wind turbine operating data. However, field failure data may be tainted or
incomplete, and therefore it needs a more general mathematical model and algorithms to solve the
model. The aim of this paper is to provide a solution to this problem. A three-parameter Weibull failure
rate function is discussed for wind turbines and the parameters are estimated by maximum likelihood
and least squares. Two populations of German and Danish wind turbines are analyzed. The traditional
Weibull failure rate function is also employed for comparison. Analysis shows that the three-parameter
Weibull function can obtain more accuracy on reliability growth of wind turbines. This work will be
helpful in the understanding of the reliability growth of wind energy systems as wind energy
technologies evolving. The proposed three-parameter Weibull function is also applicable to the life test
of the components that have been used for a period of time, not only in wind energy but also in other
industries.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Wind turbines are a renewable source of energy and will play
an increasingly important role in providing electricity, because
wind turbines capacities and the number of grid-connected wind
turbines are increasing. Wind turbine reliability is a significant
factor in ensuring the success of a wind power project. Walford
outlined the issues relevant to wind turbine reliability for wind
turbine power generation projects and the relationship between
wind turbine reliability and operation and maintenance costs [1].
Reliability and condition monitoring apparently benefit the
maintenance management of wind power systems [2] by reducing
the O&M costs by giving advance warning of failures. Some
authors have combined wind power generation and wind speed
models to analyze power production reliability [3,4]. Others have
applied probabilistic safety assessment (PSA) to wind turbines to
assess system reliability qualitatively and quantitatively, based
upon component failures [5,6]. Another authors used the monthly
variation of energy production to weight the shutdown time,
which included both maintenance and fault hours. This showed a
large difference exists between the original downtime and
weighted downtime [7]. After a wide review, Herbert et al. [8]

concluded that fewer authors have worked on reliability evalua-
tion of wind turbine systems. Valuable information for wind
turbine reliability analysis can be derived from failure data by
statistical analysis [9,10]. Climate change can also be taken into
account using statistical data [11].

It is very common that reliability studies are based on field
data, but the field failure data are usually tainted, incomplete, or
lack sufficient detail, or does not satisfy the assumptions of a
model selected for analysis. Some research has been done with
regard to those situations. Xie et al. [17,18] proposed some
modified Weibull models that are able to fit the whole bathtub-
shaped failure rate. Ling and Pan [19] presented a simple and
general method for parameter estimations using the Kolmogor-
ov–Smirnov distance as objective, independent with specimen
probability distribution. Red-horse and Benjamin [20] used
polynomial chaos expansions to find the connection between
limited probabilistic information and the output of reliability
analysis. Coit and Dey [21] developed a hypothesis test to examine
the suitability of the exponential distribution for grouped data
with Type II censoring and an iid assumption. Sun et al. [22]
introduced an extended Weibull model, in which parameters are
no longer constants but functions of load. Hall and Strutt [23]
analyzed how uncertain input parameters affect resulted Weibull
model by using Monte Carlo method. Calabria et al. [24]
introduced an unbiased maximum likelihood estimator for the
shape parameter of Weibull model. Zhang et al. [25] showed a
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simple method to reduce the bias of least-square estimator for the
shape parameter of Weibull model. Murthy et al. [26] suggested a
systematic and graphical method to choose a suitable model from
several Weibull models when modelling a given data set.

In most cases of wind energy industry, data are grouped data
and not collected from the time of the installation of wind
turbines and the population of the investigated wind turbines
changes. Because of lack of reliability research dealing with the
available field data in wind energy and to study the reliability
growth using the data, a new model considering the above
problems is presented in this paper. From a practical point of view,
it is advantageous to use a continuous and parametric function as
the failure rate function for approximately evaluating the
reliability growth for wind turbines as wind turbine technologies
evolve. The new model is using a three-parameter Weibull failure
rate function that introduces a third parameter into two-
parameter Weibull function to look into the past running time.
The three parameters are estimated by two techniques, maximum
likelihood and least squares. Two wind turbine populations are
analyzed using the presented methods and traditional Weibull
function. The data are extracted from Windstats Newsletters [27].

The proposed three-parameter Weibull function is a generic
model of reliability analysis, although this paper is particularly
regarding to the reliability analysis of wind turbines. It can be
used for the reliability analysis of other products, either under the
situations where that record of failures is not available from the
time of usage in field operation or where used products are
considered for the life test to shorten testing time.

2. Windstats data

Windstats Newsletter is a quarterly international publication
that provides various information about the wind energy
converted in wind turbines in various countries in the world.
The data analyzed in this paper have been extracted from
Windstats Newsletters from wind turbines in Demark and
Germany. The data collects the numbers of wind turbine
subassembly failures in a fixed interval, 1 month for Danish
turbines and one quarter for German turbines. To simplify the
problem and concentrate on the methods demonstrated in this
paper, it is assumed that any subassembly failure will lead to a
wind turbine failure. By that assumption, the wind turbine
failures in an interval is equal to the sum of subassembly failures.

Danish data starts from October 1994 to December 2003 with
population varying from highest 2345 turbines to lowest 851
turbines; German data starts from March 1996 to September 2004
with population varying from highest 4285 turbines to lowest
1578. Danish data show a decreasing number of installed turbines,
while German wind turbines increase rapidly [9,10]. Data
examples are shown in Tables 1 and 2. Because there are 111
and 35 intervals for Danish data and German data, respectively,
Table 1 gives only the first 3 months of Danish data, while Table 2
gives only the first four quarters of German data. Since the
population changes, it is necessary to eliminate the population
difference by normalizing the wind turbine reliabilities. Further-
more, individual wind turbines have similar subassemblies and
architecture. Therefore, the number of failures in an interval is
divided by corresponding number of turbines to get the average
failure number of that interval, which means the number of
failures per interval per turbine and is suitable for modelling the
reliability of the wind turbines.

The interval of Danish data is not converted into a quarter (the
interval of the German data) by synthesizing data for 3 months,
because this paper is aimed at providing reliability analysis

methods for wind turbines using incomplete failure data recorded
in different intervals.

Windstats Newsletter also provides additional information,
besides failure numbers, about wind turbines such as production,
capacity factor, which can be used to analyze other aspects of
wind turbines [11].

3. Weibull failure rate function

The Weibull failure rate function is widely used to model the
non-homogeneous Poisson process. It has the form as below

lðtÞ ¼ f tm (1)

With mo0, m ¼ 0, m40, the Weibull model can depict infant
mortality stage, normal stage and wear-out stage of the so-called
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Table 1
Example of Danish data extracted from Windstats.

Turbine data 1994

October November December

No of DK turbines reporting 2036 2083 2164
Length of reporting period, h 744 720 744
Subassembly failures

Blades 15 6 6
Hub 0 0 0
Main shaft 2 0 0
Airbrakes 9 4 2
Gearbox 5 2 4
Coupling 1 1 6
Mechanical brake 9 4 6
Generator 6 11 11
Yaw System 7 11 19
Tower 0 0 0
Foundation 0 0 0
Grid 5 10 9
Electrical control 23 23 48
Mechanical control 3 3 2
Hydraulic system 7 8 19
Entire nacelle 1 1 1
Entire turbine 13 11 15
Other 47 35 27
Total subfailures 158 130 175

Table 2
Example of German data extracted from Windstats.

Turbine data 1996

March June September December

No of DE turbines reporting 1803 1830 1866 1902
Length of reporting period, h 2160 2134 2203 2208
Subassembly failures

Rotor 168 99 150 140
Air brake 30 31 18 23
Mechanical brake 25 29 18 21
Pitch control 24 42 36 46
Main shaft 9 7 1 18
Gearbox 29 46 56 42
Generator 37 47 48 100
Yaw system 52 43 50 63
Measurement system 419 29 28 90
Electrical controls 141 127 96 125
Electrical system 166 130 163 163
Hydraulics 82 62 58 45
Sensors 43 69 39 60
Other 84 55 91 58
Total subfailures 1314 816 857 999
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bathtub curve, respectively. Eq. (1) can also be written as the
popular Eq. (2), which simplifies calculating the integral of
intensity function,

lðtÞ ¼ rbtb$1 (2)

where b ¼ m+1 and r ¼ f/b. In some literatures, r is called the
scale parameter and b the shape parameter.

For a Poisson process, the probability of N events occurring
over period (a,b] is [12]

Pfnða; b% ¼ Ng ¼
½
R b

a lðxÞdx%Ne$
R b

a
lðxÞdx

N!
(3)

The failure data of wind turbines collected by Windstats is
grouped data, monthly for Danish wind turbines and quarterly for
German. It is assumed that the distribution of wind turbine
failures is of Weibull and individual groups are independent to
each other. Thus, a joint probability distribution function PDF of k
grouped data are

Pfnðt0; t1% ¼ N1;nðt1; t2% ¼ N2; . . . ;nðtk$1; tk% ¼ Nkg

¼
Yk

i¼1

Pðnðti$1; ti% ¼ NiÞ (4)

Combined with Eqs. (2) and (3), the following is derived:

Pfnðt0; t1% ¼ N1;nðt1; t2% ¼ N2; . . . ;nðtk$1; tk% ¼ Nkg

¼
Yk

i¼1

½rðtbi $ tbi$1Þ%
Ni e$rðt

b
i
$tb

i$1
Þ

Ni!
(5)

Next, calculate the maximum likelihood estimates of b and r.

Ln Pfnðt0; t1% ¼ N1;nðt1; t2% ¼ N2; . . . ;nðtk$1; tk% ¼ Nkg

¼
Xk

i¼1

NiLnrþ
Xk

i¼1

Ni Lnðtbi $ tbi$1Þ

$
Xk

i¼1

rðtbi $ tbi$1Þ $
Xk

i¼1

Ni! (6)

Then

@ Ln P
@r ¼

Xk

i¼1

Ni

r $
Xk

i¼1

ðtbi $ tbi$1Þ (7)

By Letting q Ln P/qr and if t0 ¼ 0, the estimate of r is

r̂ ¼
Pk

i¼1Ni

tbk
(8)

Substitute r in Eq. (6) by r̂ of Eq. (8)

Ln Pfnðt0; t1% ¼ N1;nðt1; t2% ¼ N2; . . . ;nðtk$1; tk% ¼ Nkg

¼
Xk

i¼1

Ni Ln
Xk

i¼1

Ni

 !

$
Xk

i¼1

Nib LnðtkÞ

þ
Xk

i¼1

Ni Lnðtbi $ tbi$1Þ $
Xk

i¼1

Ni $
Xk

i¼1

Ni!

Then

@ Ln P
@b
¼ $

Xk

i¼1

Ni LnðtkÞ þ
Xk

i¼1

Ni
tbi Ln ti $ tbi$1 Ln ti$1

tbi $ tbi$1

¼
Xk

i¼1

Ni
tbi Ln ti $ tbi$1 Ln ti$1

tbi $ tbi$1

$ Ln tk

" #

(9)

Again, by Letting q Ln P/qr and t0 Ln t0 ¼ 0, we can get b̂ by solving
the following formula:

Xk

i¼1

Ni
tbi Ln ti $ tbi$1 Ln ti$1

tbi $ tbi$1

$ Ln tk

" #

¼ 0 (10)

The above result is the same as that in [13]. If the time interval
T is fixed, which means ti ¼ iT, then the above formula is
changed to

Xk

i¼1

Ni
ib LnðiTÞ $ ði$ 1Þb Ln½ði$ 1ÞT%

ib $ ði$ 1Þb
$ LnðkTÞ

" #

¼ 0 (11)

Then, the estimates of f and m can be derived from r and b.

4. A three-parameter Weibull function

Failure rate function described in Section 3 is suitable for the
situations where the data are recorded from the wind turbine
installation. However, the data collected in Windstats is not
necessarily from the date of wind turbine’s installation as it may
start from some years after later. Another parameter a called time
factor in this paper is reasonably introduced into the Weibull
function in order to describe the past running time. The a shifts
the intervals along the time axis from 0,T,y, kT to aT, aT+T,y,
aT+kT. T for Danish turbines is the number of hours of a month
and a quarter for German turbines. Therefore, the task has
changed to estimate the parameters a, b, r.

4.1. Maximum likelihood estimates

After a is introduced, Eq. (1) becomes

lðtÞ ¼ fðt þ aTÞm (12)

Correspondingly, Eq. (2) changes into

lðtÞ ¼ rbðt þ aTÞb$1 (13)

Following the same procedures in the last section, the estimate of
r can be derived as

r̂ ¼
Pk

i¼1Ni

½ðkþ aÞT%b $ ðaTÞb
(14)

and the estimates of a and b are the solutions of the
equations below which are solved by trust-region dogleg
method [14].

Xk

i¼1

Ni
ðiþ aÞb Ln½ðiþ aÞT% $ ði$ 1þ aÞb Ln½ði$ 1þ aÞT%

ðiþ aÞb $ ði$ 1þ aÞb

"

$
ðkþ aÞb Ln½ðkþ aÞT% $ ab LnðaTÞ

ðkþ aÞb $ ab

#

¼ 0 (15)

b
T

Xk

i¼1

Ni
ðiþ aÞb$1 $ ði$ 1þ aÞb$1

ðiþ aÞb $ ði$ 1þ aÞb
$
ðkþ aÞb$1 $ ab$1

ðkþ aÞb $ ab

" #
¼ 0 (16)

Observed Ni is calculated through dividing the total subassem-
bly failures by the number of turbines reporting of the
corresponding interval (see data example in Tables 1 and 2).
Then, the estimates of f and m can be derived from r and b.

4.2. Least-squares estimates

By calculating the integral of failure rate, the number of
failures, N, over period (ta,tb) can be determined as below:

NðtÞ ¼
Z tb

ta

lðxÞdx ¼ rtbb $ rtba (17)
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From Eq. (17), the average number of failures in each interval is
given by

N1 ¼ rtbjð1þaÞTaT ¼ rðð1þ aÞTÞb $ rðaTÞb

N2 ¼ rtbjð2þaÞTð1þaÞT ¼ r ð2þ aÞTð Þb $ rðð1þ aÞTÞb

..

.

Nk ¼ rtbjðkþaÞTðk$1þaÞT ¼ rððkþ aÞTÞb $ rððk$ 1þ aÞTÞb

Thus, for the interval i, the average number of failures is

Ni ¼ rððiþ aÞTÞb $ r ði$ 1þ aÞTð Þb i ¼ 1; . . . ; k (18)

Define

x ¼ rTb (19)

then Eq. (18) becomes

Ni ¼ fðiþ aÞb $ ði$ 1þ aÞbgx; i ¼ 1; . . . ; k (20)

Eq. (20) can then be written in matrix form as

N ¼ Cx (21)

where

C ¼

ð1þ aÞb $ ð0þ aÞb

ð2þ aÞb $ ð1þ aÞb

..

.

ðkþ aÞb $ ðk$ 1þ aÞb

2

666664

3

777775
(22)

and

N ¼

N1

N2

..

.

Nk

2

666664

3

777775
(23)

Next, the least-squares estimate of x can be derived as following:

x̂ ¼ ðCT CÞ$1CT N (24)

which is a function of a and b. Inserting Eq. (24) into Eq. (20) gives
the estimate of Ni

N̂i ¼ ½ðiþ aÞb $ ði$ 1þ aÞb%x̂ðb;aÞ (25)

Now the problem becomes

min
b;a

Q ðb;aÞ (26)

where

Q ðb;aÞ ¼
Xk

i¼1

ðNi $ N̂iÞ
2

(27)

Since Q is highly non-linear, the above minimum is solved by a
large-scale algorithm, which is a subspace trust-region method
and is based on the interior-reflective Newton method [15,16].
Observed Ni is calculated through dividing the total subassembly
failures by the number of turbines reporting of the corresponding
interval (see data examples in Tables 1 and 2).

With the values a and b, by Eqs. (19) and (24) an estimate for
the parameter r can be obtained. Then, the estimates of f and m
can be derived from r and b.

5. Modelling results analysis examples

The two algorithms presented above are applied to Danish and
German populations of Windstats data, analyzing the reliability
growth. Before applying both algorithms, Ni in those equations
should be calculated first. Table 3 gives an example of N1–N4 for
German data. Note that there are 111 and 35 intervals for Danish
data and German data, respectively. In order to simplify the
discussion, T is set to 730(h) for Danish data and 2190(h) for
German data. Table 4 gives estimated parameters for three-
parameter and traditional Weibull functions. Regarding the
results of three-parameter model in Table 4, ML means those of
maximum likelihood estimates and LS means those of least-
square estimates.

Danish population has a larger time factor(a) than German,
which implies that Danish wind turbines are put into use earlier
than German wind turbines. Windstats data in 2003 confirms
Danish first turbine installations were in 1987 and German first
turbine installations were in 1990. Therefore, combined with the
starting points of data of two populations (Danish is October 1994
and German is March 1996), those a estimated by ML approxi-
mately show their consistence. Those a achieved by LS have a
little bit larger deviation. The ML estimates coincide with the LS
estimates when the noise is zero-mean Gaussian distributed. The
noise in Windstats data are not of that characteristic [11].

Failure rate functions can be derived from the estimated
parameters of Table 4. See Table 5. The unit of failure rates is h$1.
Failure rate curves of Danish wind turbines are shown in Fig. 1,
while failure rate curves of German wind turbines are shown in
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Table 3
Example of average failure numbers calculated (German).

1996

March June September December

No of DE turbines reporting 1803 1830 1866 1902
Total subassembly failures 1314 816 857 999
Average number of failures, N

i 0.73 0.45 0.46 0.53

Table 4
Parameters estimated.

Population Three-parameter Weibull model Weibull model

a b r b r

ML LS ML LS ML LS

Denmark 93.70 (7.8 y) 111.96 (9.33 y) 0.0149 1.025(104 491.90 9.648(104 0.8468 0.0005
Germany 22.96 (5.74) 28.20 (7.05) 0.0010 1.005(104 15,364 1.713(105 0.7984 0.0017

Table 5
Failure rate functions estimated.

Population Three-parameter Weibull model Weibull model

ML LS

Denmark 7.33(t+68401)$0.9851 9.89(t+81731)$0.9999 0.0004t$0.1532

Germany 15.36(t+50282)$0.9990 17.22(t+61758)$0.9999 0.0014t$0.2016

H. Guo et al. / Reliability Engineering and System Safety 94 (2009) 1057–10631060



Fig. 2. Results of traditional Weibull function and three-parameter
Weibull function are illustrated in the figures. The starting time
points(aT) are marked out. Because ML and LS give close b
parameters, ML and LS curves have similar shapes. In order to
have an intuitive prediction of future reliability growth, all curves
in Figs. 1 and 2 are extended by 10 years after the end of data
reporting. There is a bold part in each curve, which represents the
period when turbine failures are reported. Failure rates at the end
of data reporting and 10 years after that are calculated using
failure rate functions of Table 5. They are shown in Table 6 and 7
for Danish and German turbines, respectively.

It can be seen that:

) The Danish and German curves have similar shapes in
accordance with the estimated values of b, which are close
between the two populations.
) Failure rates of three-parameter functions are rather high

(infinite) when the time is close to the first installation of wind
turbines, whereas those of two-parameter functions are rather
high (infinite) when the time is close to aT (the beginning of
turbines reporting). That is a shortcoming of Weibull model-
ling. Because observed failure rate at time aT cannot be as high
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as that predicted by two-parameter Weibull function, three-
parameter Weibull functions have more accurate predictions
after the point when the failure data of wind turbines were
collected.
) The three-parameter model provides more information about

the period before failure data were collected, but two-
parameter model can only be used to predict reliability
performance for the subsequent period.
) The wind turbines are all shown to be in the stage of infant

mortality, because all the values of b are less than one.
) Similar curves are obtained by applying ML and LS techniques

to three-parameter Weibull functions.
) LS gives a larger a than ML, but the time factor differences

between two populations using two techniques are close to
each other. From Table 4, it can be calculated that the time
factor difference is 2.28 years for LS and 2.06 years for ML.
) It is predicted that reliability of Danish turbines would be

improved by around 35% in extended 10 years (ML: 36.69%; LS:
34.87%) and reliability of German turbines would be improved
by around 40% (ML: 40.93%; LS: 38.96%). For example,
according to ML prediction, failure rate of Danish wind
turbines will be improved from 5.86(10$5 to 3.71(10$5 h$1,
which means the mean time between failures will be increased
from 1.95 to 3.08 years.

It should be noted that the populations of wind turbines were
changing. New technologies were put into new wind turbines,
which became more reliable than the elders. Clearly, older
turbines and new turbines had different failure rates, so the
trends were going down, which is in accordance with the results
in this paper. It is not the case that there was a fixed population
with its failure rate going down. Thus, examples in this section
illustrate a method to evaluate wind turbine reliability growth as
a function of wind turbine technologies. However, the X-axis is
time not the wind turbine technologies. That is because no
enough information is available to quantify the evolvement of
technologies, but it is sure that technologies are improving along
time axis.

If the population concerned is a fixed one and consists of the
same components, the method presented in this paper can be
used to estimate the intensity function of a non-homogeneous
Poisson process for that specific component.

6. Conclusions

Windstats Newsletters provide failure data of wind turbines,
but it is incomplete. In order to take such incompletion into
account and obtain a more accurate reliability growth of wind
turbines, a three-parameter Weibull failure rate function is
presented to depict the reliability growth and its parameters are
estimated by two techniques, maximum likelihood and least
squares. Similar results have been achieved by the two techniques.

Three-parameter Weibull model presented in this paper has
advantages over traditional Weibull in dealing with incomplete
data. Three-parameter Weibull model is more accurate to predict
the reliability trend. However, three-parameter Weibull model
shrinks to the traditional Weibull model on the condition that a is
set to 0. That is in accordance with the fact that three-parameter
Weibull model is promoted from traditional Weibull model by
introducing a into it. Therefore, the proposed three-parameter
Weibull model is a general model that is applicable to both
complete data, like life test data, and incomplete data, like field
failure data in Windstats. Because three-parameter Weibull model
provides an extra earlier part of reliability curve, it is helpful in
planning a better maintenance schedule for wind energy systems.
In other words, the remaining life time of a wind turbine can be
estimated as a reference of the maintenance schedule, if a period
of data is available for reliability analysis.

Examples show that three-parameter Weibull model can be
used to evaluate reliability growth as a function of technologies
for a mixed and changing population of device concerned.
However, if the population concerned is a fixed one and consists
of the same components, the method presented in this paper can
be used to estimate the intensity function of a non-homogeneous
Poisson process for that specific component.

The data used in examples of this paper are about wind
turbines, but the presented method can be applied to not only
Windstats grouped data but also other grouped data in any other
industry. Therefore, it is a general technique.
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