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Module U9
Moments & Expectations

U9.1 
Expected Value

The expected value of a PDF is 
· the first moment, 
· the mean, 
· the average
· centroid

· balance point

· center of mass
Game: 

There are five different outcomes (number ranges) and a reward associated with each of them. The outcome-reward table that describes the terms of the game is given below.

	Range
	Reward
	Probability

	1-50
	2.00
	50/100 or 0.5

	51-80
	5.00
	30/100 or 0.3

	81-95
	10.00
	15/100 or 0.15

	96-100
	50.00
	5/100 or 0.05


The expected value for a play in this game is determined by adding together the products of each reward multiplied by the likelihood that it will happen. In equation form: 
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U9.1.1 
Expected Value for a Discrete Random Variable
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U9.1.2 
Expected Value for a Continuous Random Variable
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U9.2 
Definition 

The rth moment (denoted 
[image: image4.wmf]'

r

m

) about the origin of a random variable X is the expected value of 
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X

. 
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( the expected value of a random variable is the first moment of the random variable about the origin, 
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1

m

. This is also the mean, and we will denote it as
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.
The rth Moment (denoted 
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m

) about the mean of a random variable X is slightly different. It is equal to the expected value of 
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U9.3 
Variance

The second moment about the mean, or variance, of a random variable is indicative of the “spread” or “dispersion” of a random variable. i.e., it tells how concentrated about the expected value the distribution is. 
Variance is denoted by the symbol 
[image: image14.wmf]2

s

. The positive square root, 
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, of the variance is called the standard deviation of a random variable and can be obtained by using (U9.8) as follows:
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So the variance is equal to the second moment about the origin minus the square of the mean.
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Figure U9.2 High-Variance Example
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Figure U9.3 Low-Variance Example

U9.4 Moments for Bivariate Case

The mn-th joint moment about the origin is:
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The mn-th joint moment about (a,b) is:
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The mn-th moment about the origin, with m=1,n=0, gives E[X]=µX.

Similarly, 
the mn-th moment about the origin, with m=0,n=1, gives E[Y] =µY.

The mn-th moment about the means, with m=2,n=0, gives 
E[(X-µX)2]=σX2.

Similarly, the mn-th moment about the origin, with m=0,n=2, gives E[(Y-µY) 2]= σY2.

Correlation: The mn-th moment about the origin, with m=n=1, gives E[XY], called the correlation, i.e., the expectation of the product of the two random variables.
Covariance: The mn-th moment about the means, with m=n=1, gives cov[X,Y]=E[(X-µX)(Y-µY)], called the covariance.

Cov[X,Y]=E[XY]- µXµY
So covariance is equal to the correlation minus the product of the means.
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