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Module Objectives:
 1. To gain an understanding of a Random Variable


2. To use a probability mass function and a cumulative distribution to compute probabilities related to a discrete random variable.

U6.0 Overview 

A random variable can be either discrete or continuous. We will study the discrete case first and leave the continuous one for Module U7.

U6.1  What is a Random Variable?

The concept of random variable is central to the study of probability because it is through it that we can associate numerical values to the outcomes and to the events that exist within the sample space of an experiment. The two words that are used to denote this concept are equally important. It is a variable in that it can take on different values within a range (and the range can be infinite). It is random in that it can take on any of the values within the range for any given trial of the experiment. Let’s look at an example for clarification.

Example PQ1: A special measuring device can be connected into any wall outlet to sample the voltage waveform, compute the fast Fourier transform (FFT) of the wave form, and subsequently provide the total harmonic distortion (THD) of the waveform, which is given by
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 are the magnitudes of the higher harmonics. Therefore, high THD indicates the presence of higher harmonics. Typically, the THD should be less than about 4%, although even this level may be problematic for some types of load. A power quality consulting engineer is asked to assess the power quality of the electric energy supplied to a certain industrial load site given a computer file containing THD measurements taken once every 5 minutes over a year.

In order to simplify the analysis results, the engineer assigned 9 integer levels to various intervals of THD, with each level corresponding to a quality indicator. These levels were as follows:

	Quality Indicator
	Level No. 
	THD Range (%)

	Excellent

Very good

Good

Fair

Poor

Very poor

Extremely poor

Damaging
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Very damaging
	1

2

3

4

5

6

7

8

9
	0.0-1.0

1.0-2.0

2.0-3.0

3.0-4.0

4.0-5.0

5.0-7.0

7.0-9.0

9.0-12.0

12.0-up


Considering each measurement to be an experiment, we can see that the sample space is discrete and finite, and an outcome for any experiment may be any of the 9 quality indicators. The random variable, in this case, is the level number; let us denote it as L. We see that it assigns a discrete numerical value to the outcome of the experiment, and that in each experiment, L can take on any of the values in the sample space. Since there is only one value of L for every outcome in the experiment, L may be though of as a function.

We now proceed to define a random variable.

DEFINITION:  A random variable (RV) is a real numerically valued function defined over a sample space; therefore a random variable maps all possible experimental outcomes to the real number line. If the values that the mapping on the number line can assume are countable, then the RV is a discrete RV. We note that there is nothing uncertain about the function, i.e., the mapping from the set of experimented outcomes to the real number line is precisely defined. However, before an experiment takes place, the value to be assumed by the RV is quite uncertain.

It is conventional in most literature on probability to denote a random variable with a capital letter; we will conform to this convention here. It is also conventional to denote the values it may assume, or its realization, using the lower case of the letter used to denote the RV. Therefore, in our example above, L is the RV, and l represents the values L may assume.

We may think of an RV as being an instrument that is used to measure a certain attribute of the experimental outcome. In some cases, it is convenient to define the RV as the outcome itself. The following example illustrates this situation.

Example DF1: An engineer employed by a distribution company desires a model that will allow prediction of how many faults per day may occur in her system. Such a model is desirable because faults generally require the attention of a distribution crew, and therefore the model will provide a basis on which to predict the number of on-call crews required each day. Therefore the engineer conducts an “experiment” each day whereby she identifies this number. This number, which is the outcome of the experiment, is also the (discrete) RV for the experiment. Let us denote it by N.

U6.2  Probability Mass Functions

We have introduced the notion of the RV, and we have seen how it maps each experimental outcome into a certain value. In the case of the THD measurements assessed by the power quality engineer, the RV was a number 1-9. In the case of the daily fault counts performed by the distribution engineer, the RV was the fault counts themselves. In both cases, however, the main point of interest for the engineers, in terms of using the information for decision making, is to obtain the probability that the RV will assume a certain value. We will illustrate this notion via these two previously introduced examples.

Example PQ2: The data gathered by the power quality engineer, consisting of THD calculations once every 5 minutes for a year, was classified according to the level numbers and is summarized in the fourth column of the following table.

	Quality indicator
	Level No.
	THD Range (%)
	No. of measurements
	Probability

	Excellent

Very good

Good

Fair

Poor

Very poor

Extremely poor

Damaging

Very damaging
	1

2

3

4

5

6

7

8

9
	0.0-1.0

1.0-2.0

2.0-3.0

3.0-4.0

4.0-5.0

5.0-7.0

7.0-9.0

9.0-12.0

12.0-up
	11503

16749

23427

18911

15351

12263

5474

1090

352
	0.1094

0.1593

0.2229

0.1799

0.1460

0.1167

0.0521

0.0104

0.0033

	
	
	
	105120
	1.0000


Since there are 105120 measurements 
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, it is possible to compute probabilities associated with each level. For example, the probability of any given measurement having a level 1 (excellent) power quality indicator is 11503/105120=0.1094, as indicated in the fifth (last) column of the first row. Note that the sum of the probabilities over the entire sample space equals 1.0, which satisfies the second axiom of probabilities, 
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=1.0 where S is the entire sample space (i.e., the universal event). A visual image of how the probabilities vary with the value of the random variable is obtained via Figure U6.1. This kind of plot can also be shown as a histogram or a bar chart.
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Figure U6.1 Plot of Probability versus RV Value for Power Quality Example

Example DF2: The distribution engineer records the daily number of faults each day over the course of a year. This data is summarized in the following table.

	Number of faults
	Number of days having corresponding number of faults
	Probability

	0

1

2

3

4

5
	95

149

83

29

7

2
	0.2603

0.4082

0.2274

0.0794

0.0192

0.0055
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As in the power quality example, we see that the sum of the probabilities over the entire sample space equals 1.0, and once again, we may obtain a visual image of how the probabilities vary with the value of the random variable, as in Figure U6.2.

Figure U6.2 Plot of Probability versus RV Value for Distribution Fault Example

In figure (U6.1) and (U6.2), the probability mass is plotted against the value of the RV; these figures are therefore plots of probability mass functions (PMFs). PMF plots always appear as (perhaps uneven) “picket fences”.

Definition: A PMF, for a discrete RV, provides for each value that the RV may assume, the probability of occurrence for the corresponding outcome of an experimental trial. Notationally, we write 
[image: image6.wmf](

)

x

f

X

to denote the PMF of the RV X. It may be interpreted as 
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, or, in words, “the probability that X equals x”, where x is any specific value that X may assume.

In the case of the power quality example, we have 
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, etc. In the case of the distribution fault example, we have 
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The word  “mass” results from conceptualizing the total probability of the sample space as being analogous to a mass of 1 unit (using any kind of appropriate unit of mass). Then the value of the PMF for each outcome is analogous to the contribution of each outcome in the sample space to the total mass of 1 unit.

The PMF is also sometimes called a probability function or a probability distribution function. We choose to use PMF in order to clearly distinguish the discrete case from the continuous case
.

If the PMF is to provide probabilities, then it must satisfy the axioms. Assume that there are m values 
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 that the RV X may assume, i.e., i=1,…,m. Then 
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U6.3  Cumulative Distribution Functions

In many cases, one may be interested in identifying a probability that a RV is within range of values. Extension of our two previous examples should help motivate this idea.

Example PQ3: In the power quality example, during a presentation to management, the engineer is asked “What is the probability that a given measurement would indicate that the power quality is fair or better?” The engineer quickly realizes that, mathematically, this means that he wants to compute 
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. This can be done by summing the probabilities for l=1, l=2, l=3,and l=4, i.e.,
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The vice-president is not happy, because this implies the probability that a given measurement is poor or worse is 1-0.6715=0.3285, which is certainly non-negligible. The VP then asks, “What is the probability that the power quality may be damaging to the customer’s equipment? Again, the engineer interprets this question as 
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. Obtaining the probability that a given measurement is not damaging, we compute
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which indicates the answer to the VP’s question is 1-0.9863=0.0137.

Example DF3: In the distribution fault example, the engineer is leaning towards cutting back from three crews to two. She therefore is interested in identifying the probability that, with only two crews, all faults that occur in one day will be covered by a crew as well as the probability that one or more faults will not be covered by a crew (she is assuming that a single crew can only attend to one fault in one day…   which is a type of “worst-case” assumption). This means she wants to compute 
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. This can be done by summing the probabilities for n=0, n=1 and n=2, i.e.,
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Then she easily computes the probability that here will be one or more faults that are not covered by a crew as 

1-0.8959=0.1041.

These examples lead us to define the Cumulative Distribution Function (CDF)

Definition: The CDF provides the probability that the RV X is less than or equal to a given value x. Notationally, we use 
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 to denote the CDF of the RV X. It may be interpreted as 
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, or, in words, “the probability that X is less than or equal to x”. It is computed as
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where we assume that there are m values 
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 that the RV X may assume, i=1,…,m.

Two important properties of the CDF are

1. Its lower bound is zero, 
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2. Its upper bound is one, 
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, which must be the case since
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One point that we should not overlook is that PMFs always give zero probability for non-integer arguments, whereas CDFs can give non-zero probability for non-integer values. PMFs give zero values because discrete random variables cannot equal non-integer numbers, and the probability of doing so is therefore zero. In the power quality eample, the probability of a measurement being classified as l=4.5 is of course zero, since there is no such classification. Likewise, in the distribution fault example, the probability of there being 2.5 faults on a given day is zero, since we cannot have a half of a fault. This is the reason why a plot of a PMF (Figures (U6.1) and (U6.2)) appears as a “picket fence” such that only integer values are non-zero.

On the other hand, the probability that the RV X is less than a non-integer value can be non-zero if the probability that the RV X is less than the next lower integer is non-zero. For example, in the power quality example, the probability of a measurement being classified 
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is the same as the probability that the measurement will be classified 
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, which happens to be in this case 0.6715. Similarly, in the distribution fault example, the probability of having 
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 faults in one day is the same as the probability of having 
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faults in one day, which happens to be in this case 0.8959.

Therefore, the plot of a CDF in between one integer value and another is flat. At each integer value, the CDF may jump to another level and then go flat again until the next jump at an integer value.

We also note that 
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, i.e., the plot of a CDF is non-decreasing, This point and the previous one suggest that a discrete CDF must always appear as a staircase function going up to the right. Figures U6.3 and U6.4 provide CDF plots for the power quality example and the distribution fault example, respectively.
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Figure U6.3 CDF for Power Quality Example
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Figure U6.4 CDF for Distribution Fault Example

Observe that in both examples, we were required to compute the probability that the RV was greater than a certain value. This was done by first computing the probability that the RV was less than or equal to the value and then subtracting this probability from 1. In general, we can say
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(U6.1)

One may also use the CDF to obtain the probability that the RV is greater than or equal to a value, i.e.,
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(U6.2)

Finally, we can show that
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(U6.3)

Proof of Eq. (U6.3): We define the following sets (or events): 

· 
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Consider taking the union of sets
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 and C. Since 
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 contains all X that are less than or equal to 
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and C contains all X that are greater than 
[image: image50.wmf]j

x

 but less than 
[image: image51.wmf]k

x

, then the union of the two sets (where we take all elements in 
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. Mathematically, we write this as 
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The events 
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 and C are mutually exclusive since X cannot be both less than or equal to 
[image: image57.wmf]j

x

 (from event 
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 (from event C). Therefore, by the third axiom of probability, we have that
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We solve for 
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and eq. (U6.3) follows. QED

Equation (U6.3) provides that we may obtain the PMF from the CDF. Since
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we can use eq. (U6.3) to write that 
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P R O B L E M S


Problem 1

An engineer at a large industrial is looking for an energy seller to supply its electric energy needs. He has the names of five energy sellers, A, B, C, D, and E, and email addresses. He wants to know which ones have load following capability, so he sends them a message.

A and B are the only ones that have load following capability. If we assume that the order of reply is random, then we can define the number of replies necessary before a load following supplier is identified a the random variable Y, e.g., y=1 indicates that the first supplier to reply is a load following generator.

(a) Find and plot the probability mass function for Y. Hint: Evaluate 
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 one at a time. The multiplication rule may help.

(b) Find and plot the cumulative distribution function for Y.
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� In the continuous case, as we shall see in Module U7, the analogous function is the probability density function (PDF) which is fundamentally different from the PMF in that it provides a zero probability for � EMBED Equation.3  ���
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