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Module U5 

Introduction to Power System Uncertainty

U5.1.1  
Description of a Power System Problem 

Example, Security: 

· Generation at north end, buses 1 and 2, are much more economical than generation at south end, bus 3. As a consequence, the bus 3 generation is typically minimal and the generation at the north end of the system supplies the load at the south end of the system over the two existing transmission lines 1-4 and 2-3. 

· [image: image72.wmf][

]

[

]

[

]

B

P

B

D

P

B

D

P

Ç

=

/

If either of these lines are outaged, the other line may not have sufficient power carrying capability to supply the loads at buses 3 and 4, depending on the loading conditions. As a consequence, some or all of the load would require interruption or else damage could occur to the remaining transmission line. 

Figure U5.1 Simple Power System

· Planning solution: A new transmission line is constructed between buses 1 and 3 (dashed line) 

· the land right-of-way must be secured; 

· very capital intensive; who pays? who benefits?

· Operating solution 1: Limit the generation at the north end, thereby increasing generation at the south end, at all times, so that if the outage occurs, no equipment damage will result. Operating costs increase. 

· Operating solution 2: Take the risk associated with outage of the line, betting additional revenues from using the more economical generation facilities, when there is no outage, will exceed the cost of conductor damage and load interruption when there is an outage.

· Intermediate solution: Install special remedial actions that mitigate the damage to the conductor when the outage occurs. 

· operator initiated, 

· completely automated (RAS or SPS) 

U5.1.2  
Type of Uncertainty 

· Unpredictability 

· Imprecision 

· Vagueness 

U5.1.3  
Worst-Case Analysis

Simple! Identify a range of credible choices regarding each domain of uncertainty, and then incorporate within the alternative evaluation process the choice that leads to the most severe outcome. 

Worst-case analysis is deterministic in that all input parameters, for any particular time, are characterized by single numeric values, i.e., they are constants, and the analysis results in outputs that are also characterized by single numeric values. 

This is in contrast to probabilistic analysis where input parameters, for any particular time, are variables that are associated with particular numeric values only through a probability function.

Worst-case analysis leads to more expensive solutions, but it is frequently employed as its simplicity makes it very useful in many instances, particularly when it is necessary to generate a result quickly.

Any evaluation process can satisfy any two of 

fast, cheap, good, 

but never all three. Heavy use of worst-case philosophy often results in satisfying fast, cheap but not good, and provides a solution from which a discussion, and perhaps further study, can begin. 

U5.1.4  
Deterministic Versus Probabilistic Studies 

Some power systems engineering problems require deterministic solutions while others require probabilistic solutions. Which one is appropriate largely depends on the integrity of the input data and how the result will be used.

Which of the below require probabilistic modeling?

1. Economic dispatch

2. Production costing

3. State estimation

4. Load forecasting 

5. Generation reserve reliability evaluation 

6. Transmission reserve reliability evaluation 

7. Composite generation/transmission reliability evaluation

8. Transfer capability evaluation

9. Short circuit calculation 

10. Failure of protective systems 

11. Line design 

U5.2    
Basics of Probability Theory


U5.2.1    
Terminology in Probability Theory


· Experiment is a test or a trial in which the outcome is uncertain before the experiment is repeated under the same conditions

· A trial is a performance of the experiment, and an outcome is an observed result of the experiment. 

· The sample space of an experiment is the collection of all possible distinct outcomes. We normally denote the sample space with S.
· Event corresponding to an experiment as any collection of outcomes that are in the sample space of the experiment. 

· Elementary event: a single outcome. 

· Sure Event: the set of all outcomes

· Null Event: the set of no outcomes

U5.2.2  
Elementary Set Theory

U5.2.2.1   
Terminology and Nomenclature

A set is a collection of objects or elements. In probability, the elements are outcomes or events of the experiment. 

In our development, we will have reason to conceptually refer to the set of all elements; this we call the universal set and denote it with S. We will also have reason to refer to the empty set; this we will also call the null set and denote it with 
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. In terms of experiments, the universal set is the sample space, and the null set is the null event.

U5.2.2.2  
Venn Diagrams

U5.2.2.3  
Set Operations

1. Intersection or product of two sets A and B is denoted by 
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2. Union of two sets A and B is denoted by 
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3. Complement of a set A is denoted by 
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4. Difference between two sets A and B, sometimes called the relative complement of B in A, is denoted by A-B, which is often read “A take away B”.

5. Mutual exclusivity between two sets A and B if membership in one set implies no membership in the other. 

6. Sets 
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 are mutually exclusive if they are pairwise mutually exclusive, i.e., if 
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7. In terms of events, the intersection 
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 represents the event “A and B”, and the union 
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 represents the event “A or B” (or both). The complement 
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 represents the event “not 
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” and the difference A-B represents the event “A but not B”. Mutually exclusive events cannot occur simultaneously.

U5.2.2.4  
Set Algebra

Using the four basic operations previously introduced, it is possible to prove the following identities. 

· Idempotent:
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· Commutative:
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· Associative: 
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· Distributive: 
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· Consistency: The three conditions 
[image: image20.wmf]A

B

A

B

A

=

Ç

Ì

,

, and 
[image: image21.wmf]B

B

A

=

È

 are consistent and mutually equivalent.

· Universal bounds: 
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· Null and universal set intersection: 
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· Null and universal set union: 
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· Complementary: 
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· De Morgan’s first law: 
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· De Morgan’s second law: 
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U5.2.3  
The Relative Frequency Approach

Let A be a certain event in the sample space of an experiment, and let 
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 be the relative frequency of this event. Then the probability of the event A is given as 
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where 
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 is the number of times event A occurs in the experiment and N is the number of times the experiment is performed.

Although the relative frequency approach to probability has practical value in that it provides the link between theory and application, its use to develop a rigorous theory is problematic because of the fact that N must always be finite. We therefore turn to the axiomatic approach to probability.
U5.2.4  
The Axiomatic Approach

1. Probability must be non-negative:



[image: image31.wmf][

]

i

A

P

i

"

³

0


(U5.2.3)

2. The event S is certain, i.e., its probability is unity: 
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3. The probability of the union of mutually exclusive events is the sum of their individual probabilities: 
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(U5.2.5)

For the special case where n=2, then
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Corollaries:

1. The probabilities for an event and its complement add to 1:
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2. The probability of any event must be less than or equal to 1.
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3. The probability of the null event is 0.
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4. The probability of the union of two events which are not mutually exclusive is the sum of their individual probabilities less the probability of their intersection: 
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This result can be extended to the case of three events:
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Figure U5.2.5 Venn Diagram Illustrating Probability Calculation of the Union of Non-Mutual Exclusive Events.

U5.2.5  
Conditional Probability
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(U5.2.6)
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(U5.2.7)
Multiplication Rule:
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(U5.2.8)
U5.2.6  
Total Probability and Bayes Theorem

The Law of Total Probability states that if B is comprised by Ai and the Ai are mutually exclusive and exhaustive, then
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where there are N events 
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 into which B has been partitioned. 
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From conditional probability,
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Now assume that B can occur in N different ways A1, A2, …, AN.  By the Law of Total Probability,
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And then substitution yields Baye’s Theorem.
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And this expresses Baye’s Theorem, which is just an application of the conditional probability definition when B occurs in several ways, i.e., for N = 1,
U5.2.7  
Independence

Let’s assume that we do not know whether knowledge of occurrence of 
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. If they are different, then the two events 
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do not depend on each other at all; we call them independent events.

If 
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which says that probability of occurrence for two independent events is simply the product of their individual probabilities. 

Note that if two events with non-zero probability are mutual exclusive, then 
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. So mutual exclusiveness implies dependence.
U5.3
Computing Probabilities with Counting Techniques

Assume that all possible outcomes of an experiment are equally likely. 

Then identification of probabilities of the various events is a matter of counting. 

If one counts that the number of ways that A can occur is 
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. This seems simple, yet in many situations, one cannot easily enumerate; instead one needs to use established counting formulas.

In general, if the ith of r successive trials can be carried out in ni ways, then the total number of ways to carry out all r trials is 
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(U5.3.1)
We use the above in developing other formula for specific cases. 

U5.3.1
Sampling with Replacement and with Ordering

In this case, since we replace or “put back” the elements of each trail, then the number of ways in which the trial can be carried out remains constant at N, i.e., 
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U5.3.2
Sampling without Replacement, with Ordering (permutations)

In this case, since we do not replace or “put back” the elements of each trial, then the number of ways in which the trail can be carried out decreases by one element from one trial to the next. Therefore, if the number of ways that the first trial can be carried out is N, then eq. (U5.3.1) becomes
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(U5.3.3)
This provides the number of arrangements or permutations of N distinguishable elements taken r at a time, denoted by 
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Example: A power system has 1000 transmission circuits. An engineer has the job of testing, using simulation, this power system for sequential double contingency outages (sequential loss of 2 elements). For example, a simulation will consist of outage of circuit a and then outage of circuit b. This simulation would differ from the one consisting of outage of circuit b and then outage of circuit a.  Determine the total number of so-called “N-2 sequential outages.”

In this problem, ordering makes a difference. We are now looking for the total number of permutations of 1000 circuits taken 2 at a time. So,
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U5.3.3
Sampling without replacement, without ordering (combinations)

When one ordering of r elements is considered the same as any other ordering or r elements, then the number of different ways that we can select r distinguishable elements out of N distinguishable elements is the number of permutations divided by the number of orderings of any set of r elements. 

But the number of orderings of any set of r elements is just the number of permutations of r things taken r at a time, which is r!/(r-r)!=r!. 
Therefore, the number of combinations of N distinguishable elements of size r, denoted by 
[image: image68.wmf]N

r

C

 is given by


[image: image69.wmf](

)

!

!

!

r

N

r

N

C

N

r

-

=


Example: A particular power system has 1000 transmission circuits. An engineer has the job of testing, using simulation, this power system for simultaneous double contingency outage (simultaneous loss of 2 elements). Determine the total number of so-called “N-2 simultaneous outages”.

This is a typical combinatorial problem where we desire to choose 2 elements at a time from a pool of 1000. We are not “putting back” the selection after each trial because the number of ways in which the trail may be carried out decreases by one with each selection. Further, ordering makes no difference since outage of two circuits i and j is the same as outage of two circuits j and i. Therefore, the total number of “N-2” outage is given by 
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