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Module PE.PAS.U14.5 

Analysis of series/parallel systems comprised of 
non-repairable components
U14.1

Introduction

We have looked at evaluating reliability of an individual component
· Non-repairable

· Repairable

This module addresses reliability of systems comprised of multiple components. There are 2 broad classes of approaches.
· Approaches assuming all system components are non-repairable

· Markov modeling for systems having repairable components

We focus on the non-repairable case in Modules U14 and U15, reserving Markov modeling, the repairable case, for module U16.

The arrangement of material in your text is as follows:

Chapter 4: Network modeling and evaluation of simple systems (series/parallel systems using reliability block diagrams)
Chapter 5: Network modeling and evaluation of complex systems (methods for non-series/parallel systems including meshed systems, partially redundant (majority vote or r out of n), standby)
· Conditional probability approach

· Cut set method

· Tie set method

· Connection matrix method

· Event trees
· Fault trees

The above methods provide the ability to decompose non-series/parallel systems into series/parallel systems.

Chapter 7: System reliability evaluation using probability distributions (Chapters 4 & 5 assume failure/success probabilities are constant, single valued. Chapter 7 relieves this assumption by considering that component time to failures are described by a pdf)

· Series and parallel systems

· Partially redundant systems

· Standby

We follow a different approach by treating the material of chapters 4 and 7 first, within Module U14, and then move to the material of chapter 6 in Module U15.
U14.2 Logic Diagrams
Physical diagram: Describes physical connections between components

Reliability block diagram (logic or network diagram): indicates which combinations of the components result in system failure. The system is in its working state when there is a continuous path between the network endpoints; it is in its failed state when there is no path between the network endpoints.
Illustration: 4 identical parallel transmission lines, capacity 100 MW each [1].
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Fig U14.1: Physical Connection; Also Logical Connection for Total Flow of 100 MW
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Fig U14.2: Logical Connection for Total Flow of 400 MW

What is the logical connection for total flow of 300 MW…?
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Fig U14.3: Logic Diagram for Total Flow of 300 MW
This problem can be handled as an “r/n” configuration - see Section U14.6.
U14.3 Series systems
U14.3.1 Basic concepts 

Define:

· Si: Event that component i is working

· Fi: Event that component i is failed

· RS: probability of series system working (success) 

· QS: probability of series system failure

Note: We previously used 

· R(t): probability the component fails after T
· Q(t): probability the component fails before T

We assume RS​ and QS are given for a specified time interval.
Consider the general series system below:
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Fig U14.4: Series System
Its reliability may be expressed as a function of event probability:
RS=P(S1∩S2∩S3…∩Sn)=P(S1)P(S2|S1)P(S3|(S1∩S2)…P(Sn|S1∩S2…Sn-1​)
For example, if n=4 (see Fig. U14.4a):

RS=P(S1∩S2∩S3∩S4)
=P(S1∩S2∩S3)P(S4|S1∩S2∩S3)




=P(S1∩S2)P(S3| S1∩S2)P(S4|S1∩S2∩S3)




=P(S1)P(S2|S1) P(S3| S1∩S2)P(S4|S1∩S2∩S3)
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Fig U14.4a: Series System
The conditional probabilities reflect the case where dependencies exist in the system, i.e., 

reliability of one component influences
multiple system failure modes.
Examples: 

· Different system failure modes are caused by different combinations of line outages - Figure U14.3 illustrates one example of such a case. For example, with a 300 MW flow, the probability of line 3 failing, given lines 1 and 2 fail, is 1.
· Failure of a component affects other components’ failure rates – as when a component (e.g., a motor) failure creates additional heat in the system
If all components work or fail independently, then 
RS=P(S1∩S2∩S3…∩Sn)=P(S1)P(S2)P(S3)…P(Sn​)
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Once we obtain RS, it is very easy to obtain QS​ from
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Can we get QS (probability of system failure) without getting R​S?

Try the case of just 2 series components:

Failure occurs when component 1 fails or component 2 fails:

QS=P(F1(F2)=P(F1)+P(F2)-P(F1∩F2)
QS=Q1+Q2-Q1Q2
Is this the same as 1-R​S? Use Qi=1-Ri to obtain

QS=1-R1+1-R2-(1-R1)(1-R2)=2-R​1-R2-1+R2+R1-R1R2=1-R1R2=1-RS
In general, 
QS= P(F1(F2(…(Fn)
which can be evaluated using repeated application of the 2-component case, but it is easier to just obtain RS first.
U14.3.2 Time dependent probabilities for the series case
If we characterize the reliability of each component using the time-dependent survivor function, R(t)=Pr(T>t), Q(t)=Pr(T<t), then all of what we have said for series systems still applies, i.e., 
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Recalling that each component i is non-repairable, we refer to Module 11 to retrieve the following:

· Hazard function: hi(t)

· pdf on time to failure: fi(t)

· Mean time to failure: MTTFi
Can we express corresponding system hazard hS(t), pdf fS(t), and MTTFS? We assume component independence.
Probability density function for series case: 

The system pdf on time to failure is given by (see module 11):
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The two-component case is: RS(t)=R1(t)R2(t), so that:
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The three-component case is: RS(t)=R1(t)R2(t)R3(t), so that:
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In general, for n-components in series, we can get the pdf on system time to failure from:
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Hazard function for series case: 

The system hazard function is given by (see module 11):
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Then 
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Comment: Billinton’s text indicates that the above relation holds only when all components have exponentially distributed failure times. The statement in the text, pg. 223, is:

“No simple analytical relationship between λe(t) and λi(t) can be deduced from equation 7.7.” Here, λe(t) and λi(t) are the same as hs(t) and hi(t), respectively. Equation 7.7 is given as:
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But note that the right hand side may be re-written as:
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from which it follows that 
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So I disagree with Billinton’s text on this issue (as do a number of other texts, including [3, 4]). I believe the above relation holds independent of what kind of failure time distributions the components have. In addition, the component failure time distributions do not have to be identical.
Interesting conclusion: Since, for a series system, the system hazard is just the sum of the component hazards, a series system comprised of components having constant hazards will also have a constant hazard.

( Series connection of components with exponentially distributed failure times results in a system with exponentially distributed failure times.
Mean time to failure for series case: 

The system MTTF is given by (see module 11):
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Substitution for fS(t) results in:
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We would like to be able to get an expression on the right-hand-side containing [image: image21.wmf]ò
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, as then we could express MTTFS in terms of the component MTTFi. It is unclear how to do this given the presence of Π Rj(τ) in the RHS of the above expression.

Let’s try using the expression for MTTF in terms of RS(t):
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Now replace Ri(t) with
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and you get:
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We can say no more about the above expression unless we make assumptions about the form of the hi(t). Implication:
(MTTFS are generally NOT expressible in terms of MTTFi
So assume a form for the hi(t), that they are constant (implying that failure times are exponentially distributed), i.e., hi(t)=λi. Then:

[image: image25.wmf]å

=

å

-

=

ò

=

ò

=

ò

=

=

¥

=

=

-

=

¥

-

¥

-

¥

å

-

å

å

å

ò

=

=

=

=

n

i

i

t

t

t

n

i

i

t

t

dt

S

n

i

i

n

i

i

n

i

i

t

n

i

i

e

d

e

d

e

d

e

MTTF

1

0

1

0

0

0

1

1

   

          

   

          

1

1

1

0

1

l

l

t

t

t

l

l

l

l


So what does this say? Billinton says it well at the top of pg 230:
“This could be intuitively deduced since it was established in Chapter 6 that the MTTF of an exponential distribution was the reciprocal of the failure rate. Since a series system of components having exponentially distributed reliabilities has an equivalent failure rate of ∑λi and the distribution is itself exponential, it would follow that the MTTF of such a series system would be the reciprocal of its equivalent failure rate.”
Example:

A system consists of three units whose logic diagram is in series. The failure rate for each unit is constant as follows: λ1=4.0(10-6 /hr, λ2=3.2(10-6 /hr, λ3=9.8(10-6 /hr. Determine the system failure rate, the system reliability at 1000 hours, and the mean time to failure. 

λS= λ1+ λ2+ λ3=4.0(10-6+3.2(10-6+9.8(10-6=1.7(10-5 /hr.
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MTTFS=1/(1.7(10-5/hr)=58,823.5 hrs.
It is interesting to compare system and component MTTF:
MTTF1=1/(4.0(10-6/hr)=250,000 hrs.

MTTF2=1/(3.2(10-6/hr)=312,500 hrs.

MTTF3=1/(9.8(10-6/hr)=102,041 hrs.
U14.4 Parallel systems
U14.4.1 Basic concepts
Define:

· Si: Event that component i is working

· Fi: Event that component i is failed

· RP: probability of parallel system working (success) 

· QP: probability of parallel system failure

Note: We previously used 

· R(t): probability the component fails after T

· Q(t): probability the component fails before T

We assume RP​ and QP are given for a specified time interval.

Consider the general series system below:
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Fig U14.5: Parallel System

Its unreliability may be expressed as a function of event probability.

QP=P(F1∩F2∩F3…∩Fn)=P(F1)P(F2|F1)P(F3|(F1∩F2)…P(Fn|F1∩F2…Fn-1​)
For example, if n=4 (see Fig. U14.5a):

QP=P(F1∩F2∩F3∩F4)
=P(F1∩F2∩F3)P(F4|F1∩F2∩F3)




=P(F1∩F2)P(F3| F1∩F2)P(F4|F1∩F2∩F3)




=P(F1)P(F2|F1) P(F3| F1∩F2)P(F4|F1∩F2∩F3)
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Fig U14.5a: Series System
If all components work or fail independently, then 

QP=P(F1∩F2∩F3…∩Fn)=P(F1)P(F2)P(F3)…P(Fn​)
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Once we obtain QP, it is very easy to obtain RP​ from
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Can we obtain RP (probability of system success) without obtaining Q​P?

Try the case of just 2 components:

Success occurs when component 1 works or component 2 works:

RP=P(S1(S2)=P(S1)+P(S2)-P(S1∩S2)

RP=R1+R2-R1R2
Is this the same as 1-Q​P? Use Ri=1-Qi to obtain

RP=1-Q1+1-Q2-(1-Q1)(1-Q2)=2-Q​1-Q2-1+Q2+Q1-Q1Q2=1-Q1Q2=1-QP
In general, 

RP= P(S1(S2(…(Sn)

which can be evaluated using repeated application of the 2-component case, but it is easier to just obtain QP first.

U14.4.2 Time dependent probabilities for the parallel case
If we characterize the reliability of each component using the time-dependent survivor function, R(t)=Pr(T>t), Q(t)=Pr(T<t), then all of what we have said for parallel systems still applies, i.e., 
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Recalling that each component i is non-repairable, we refer to Module 11 to retrieve the following:

· Hazard function: hi(t)

· pdf on time to failure: fi(t)

· Mean time to failure: MTTFi
Can we express corresponding system hazard hP(t), pdf fP(t), and MTTFP? We assume component independence.

Probability density function for parallel case: 

The system pdf on time to failure is given by (see module 11):
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But RP(t)=1-QP(t), therefore,
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 The two-component case is: QS(t)=Q1(t)Q2(t), so that:
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The three-component case is: QS(t)=Q1(t)Q2(t)Q3(t), so that:


[image: image36]
In general, for n-components in series, we can get the pdf on system time to failure from:
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Hazard function for parallel case: 

The system hazard function is given by (see module 11):
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Then 
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Comment: The above expression on the right does not simplify into a function of only the individual failure rates as it did for the series connection. The conclusion is then, for a general parallel connection, a single equivalent hazard function cannot be derived to represent the complete parallel system. 
Question: Can we do better if we take a simpler case? 
Let’s try to derive a single equivalent hazard function for a 2 component system both of which have exponentially distributed failure times.
This means that
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Recall that:
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Substitution yields: 
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Even for the simple case of only 2 exponentially distributed components, this hazard function expression offers no simple conclusion regarding the relationship between the system and component hazards. 

Interesting conclusion: Unlike the series case, the failure time distribution of a parallel system is not exponential even if all the component failure time distributions are exponential.
There is one more thing that we can do: assume the components are identical so that λ =λ1= λ2. In this case, we have:


[image: image51.wmf]t

t

t

t

P

e

e

e

e

t

h

l

l

l

l

l

l

2

2

2

2

2

)

(

-

-

-

-

-

-

=


This still offers no conclusion regarding the component and system hazard functions.
An exercise: Consider the survivor function for this case of 2 identically exponentially distributed parallel components, which is just the denominator of the hazard function. 
Recall e-x = 1 – x + x2/2! - x3/3! + …; for x very small, e-x(1–x. Application of this approximation to the survivor function….
· for only 1 component (which is R=e-λt) results in R=1- λt. 
· for 2 parallel components results in RP=1. Thus, we take another term in the series: e-x = 1 – x + x2/2!. Applying this to the survivor function results in RP=1-(λt)2. 
Conclusion: The addition of the second component significantly improves the system reliability, as RP=1-(λt)2 is much closer to 1 than R=1-λt.
Mean time to failure for parallel case: 

The system MTTF is given by (see module 11):
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Let’s try the expression with RP(t) for the general case, which is 
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So let’s go back to our 2-component system, with each component having exponentially distributed failure time. In this case:
1-QP(t)= 
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The above expression may be interpreted as the MTTF1 (term 1) plus the MTTF2 (term 2) minus the MTTFS (term 3), where the MTTFS is the MTTF of the two components if they were connected in series. It is necessary to subtract MTTFS to account for the fact that MTTF1 and MTTF2 included in each the time that both components will survive (so it is included twice), and so we need to subtract it off once.
Ref. [5] derives the following for the n-component parallel case, with exponentially distributed failure times for all components.
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If all components are identical and each component has a failure rate of λ, then RP(t) has a nice form:
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The MTTF is given by:

[image: image60.wmf]ò

-

-

=

ò

=

¥

-

¥

0

0

)

1

(

1

)

(

t

t

t

l

d

e

d

R

MTTF

n

t

P

P


If we expand the term in parenthesis, we will find that the result has a nice structure which easily admits integration, resulting in:
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Ref [5] says:

“This expression implies that in active redundancy where each component exhibits one type of failure mode, the MTTF of the system exceeds the MTTF of the individual component and the contribution of the second component and other additional components would have a diminishing return on the system’s MTTF as n increases. In other words, there is an optimum n at which the cost of adding a component in parallel far exceeds the gained benefit in the MTTF.”
Example: [4] 
A system consists of 3 units whose logic diagram is in parallel. The failure rate for each unit is constant as follows: 
λ1=4.0(10-6 /hr, λ2=3.2(10-6 /hr, λ3=9.8(10-6 /hr. 
Determine the system reliability at 1000 hours and the MTTF.
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Compare to series case: RS=0.983 and MTTFS=58,823.5 hours.
U14.5
Combined series/parallel systems
Reduce sequentially the configuration by combining appropriate series and parallel branches of logic diagram until single equivalent element remains. 
For each parallel subsystem encountered:

· Compute 
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· Compute RP=1-QP
For each series subsystem encountered:
· Compute 
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· Compute QS=1-RS
See examples 4.7 and 4.8 in Billinton’s text.

Example: Express system reliability in terms of component R, Q:
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Special note on dependencies:
Consider the diagram below: 
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Following our procedure, we obtain QP=Q1Q2( RP=1-Q1Q2

( RS=R1(1-Q1Q2)=R1-R1Q1Q2
However, if 1 works, the system works (also, if 1 fails, the system fails). Therefore, we should obtain: RS=R1. What is wrong? 

The problem is that we have the same block appearing twice in our logic diagram. This means that there is dependency among these two blocks, and it is a very strong dependency: the second block in the parallel configuration does exactly what the first block in the series configuration does. 
We could account for this using conditional probabilities, as follows.

P(SS)=P(S1∩(S1(S2))= P(S1∩SA) where SA=(S1(S2).
Then, P(SS)=P(S1)P(SA|S1)=R1(1)=R1
This can get very complicated, and other methods are preferable if dependencies are present. Thus, in general, we restrict the type of block diagrams to include only those in which each component is represented by only a single block.
U14.6
Special Cases
14.6.1 Partially redundant configurations
Redundancy is functional duplication. 
In a logic diagram, 

· the parallel connection of components indicates redundancy, i.e., if one component fails, the system does not because other components can act on behalf of the failed component. 
· the series connection of components indicates non-redundancy, i.e., the system fails if one component fails.
See Fig 5 in [2] and Fig 3.10 in [1].
Full redundancy: 

A fully redundant parallel configuration means that only one component among all the components in the configuration must be working in order for the system to be working. 

Partial redundancy: 

A partially redundant parallel configuration is one involving n components in parallel out of which r must be working for the system to be working. Such a configuration is also called “r out of n,” “r/n,” or “majority vote” configuration. Such configurations are typically illustrated as below, which illustrates the 2 out of 3 configuration.

[image: image67.emf] 

1  

2  

3  

2/3  


For this systems, QP≠Q1Q2Q3 since:

· failure of just 2 components (rather than all 3) will fail the system, and there are several ways that this can happen (1 and 2, 2 and 3, or 1 and 3 can fail; or all 3 can fail)
· success of 2 components (rather than just 1) is required for system success, and there are several ways that this can happen (1 and 2, 1 and 3, 2 or 3, or all 3 can be working).

(We enumerated all possible outcomes for this arrangement and can see the probability of failure is 4/8).
So we want the probability of exactly r successes out of n trials. There are two possibilities: the components are identical, or not.
Identical components: 
If the components are identical, the probability of exactly r successes out of n trials is:

· the probability that we observe X=r successes and n-r failures, which is RrQn-r multiplied by

· the number of combinations of n distinguishable elements taken r at a time, which is n!/(r!(n-r)!)
as indicated by the binomial theorem (see Section U10.2 in module 10). Denote X as the random variable for the number of working components.
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The success probability for the r/n branch is then:
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The failure probability for the r/n branch is Qr/n=1-Rr/n, or: 
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Example:

Compute the probability of success for identical components in a 2/3 configuration if the failure probability of a component is 0.05:
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Note that the 2/3 configuration is somewhat less reliable than a fully redundant system having 3 components each of R=0.95, which would have Qsystem=0.053=0.000125, Rsystem=0.999875.
Non-identical components:

If the components are not identical, i.e., if they have different failure probabilities Qi, i=1,…,n, then each term in the sum 
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must be expanded to account for the different probabilities associated with the various ways its corresponding event can occur. 
For example, in a 2/3 branch, consider the event that r-1 components (or in this case, 2-1=1 component) works. For the case of identical components, the term would be 
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The interpretation is that there are 3 possible ways that the event “1 component works” can occur, with each way having probability of RQ2.
In the case of non-identical components, there are still 3 possible ways that the event “1 component works” can occur, but each way has a unique probability. In this case, the term PX=r-1 becomes:
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Other terms in the above summation must be similarly treated.

Three comments:

· Once Rr/n and Qr/n are determined, then the r/n block may be treated as any other block within a logic diagram.

· In the case of time-dependent probabilities (chapter 7), the component success and failure probabilities used above become Ri(t) and Qi(t), respectively.

· As we have seen, partially redundant systems have a lower reliability than fully redundant systems. So why use it?

· In some cases, partially redundant systems are a good way to analyze some systems that that have operating conditions which reflect r/n behavior (e.g., transmission line illustration at the beginning of this module).
· The dependency (ability to work when needed and avoid “fail-dangerous” failure modes), which we have referred to as the reliability, is certainly lower, but the security (ability to avoid inadvertent operation and avoid “fail-safe” failure modes) improves, since we need r components to operate inadvertently rather than just 1. This is why the r/n configuration is also called a “majority vote” system. It is heavily used in special protection systems. This points to the fact that “fail-dangerous” modes of redundancy are analyzed using parallel logic, and “fail-safe” modes of redundancy are analyzed using series logic. See [6].
14.6.2 Standby systems
A system is called a standby redundant system when some of its units remain idle until they are called for service by a sensing and switching device. The system reliability of a redundant standby system is heavily influenced by the reliability of the sensing device and the switch. 
Good treatment of this system is found in Billinton, Sections 4.6 and 7.6, and also in [5], pg. 203-205.
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