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Module PE.PAS.U12.5 

Reliability for repairable components

U12.1

Introduction

Modeling of repairable components requires use of a random process. 

· Section 12.2: The ordinary renewal process.

· Section 12.3: Special case of the Poisson process. 

· Section 12.4 introduces the alternating renewal process.  

Random (stochastic) processes: 

· A set of random variables, with the variables ordered in a particular sequence.

· A rule for assigning to every γ a function x(t,γ).

· A collection of time functions depending on the parameter γ, or equivalently, a function of t and γ, together with an associated probability description. 
· The entire collection of time functions is considered to be an ensemble. 
· A particular time function within the ensemble may be designated as X(t) and is referred to as a sample function. 
· A specific time expression of a sample function X(t), call it X(t1), is a random variable. 
Therefore, in a random process, there is a different random variable for each instant of time (although there is usually some relation between two random variables corresponding to two different time instants). 
Examples of a random process include the following:

· The number of people waiting in a grocery store line
· The number of telephone calls received each hour at a hospital

· The hourly temperature reading from a weather station

Five different features of a random process which characterize it:
· Continuous or discrete index: 
If t must be integer, then it is a discrete-time process. 
If t is continuous, then it is a continuous time process. 
· Continuous or discrete state space: 
The state space is the values assumed by the random variables comprising the process. 
If the values must be integer (countable), it is a discrete-state process. 
If the values assumed by the random variables are continuous, then it is a continuous-state process. 
· Deterministic or nondeterministic process: 
Deterministic: future values of any sample function can be exactly predicted from knowledge of the past values. 
Nondeterministic: future values cannot be exactly predicted from the observed past values. 
Example: X(t)=Acos(ωt+ γ), where A and ω are constants and γ is a random variable with a specified probability distribution. The only random variation is over the ensemble – not with respect to time.
· Stationary or non-stationary process: 
Stationary: pdfs for each random variable are the same for all time t, 
Nonstationary: pdfs for one or more random variable changes with time.  

· Ergodic or non-ergodic process: 
Ergodic: all sample functions within the ensemble exhibits the same statistical behavior.

Nonergodic: sample functions have different statistics. 

Well-known random processes: 
Random walk, Poisson, 
Gaussian (white noise, Wiener, Brownian motion), 

Markov, 
Diffusion, 
Autoregressive moving-average (ARMA). 

Our treatment: 

Nondeterministic, stationary, ergodic random processes that have a continuous index and a discrete state space (a continuous-time, discrete-state process). 
We focus on so-called point processes, {N(t), t>0}, a continuous time random process characterized by events that occur randomly along the time continuum. 
A point process is a counting process if it represents the number of events that have occurred until time t, satisfying:

1. N(t)>0

2. N(t) is integer valued

3. If s<t, then N(s)<N(t)

4. For s<t, {N(t)-N(s)} is the number of events in the interval (s,t]

· Counting process

· Renewal process

· Poisson process
U12.2
Ordinary renewal process
For non-repairable components, the main question is “when will it fail” and so we study the random variable “failure time.”

In renewal theory, when the component fails, the repair will perfectly renew it. 
· applicable for situations where an item is renewed to its original state upon failure, 
( “ideal repair: the repair fully restores the component and does so instantly at the moment of failure. 
Lightbulb

Two-shot fuse

In renewal theory, since repair is possible, there can be multiple failures. 
We can investigate the number of failures during a certain time, denoted by N(t), 
( a renewal process is a counting process. 
We can investigate time between the 1rst, 2nd, …, and nth failures, respectively, and the failure just previous, defined as T1, T2, … Tn. 

Definition: A counting process {N(t), t>0} is an ordinary renewal process if

1. N(0)=0

2. Interevent times T1, T2,… are a sequence IID random variables, each having pdf f(t).

3. N(t)=Sup{n: sn<t}, where



[image: image1.wmf]å

=

³

=

=

n

i

i

n

n

T

S

S

1

0

1

,

,

0


(U12.1)
Sn: total time until the nth failure.

That is, N(t) is given by the least upper bound (supremum) on the count, n, such that the summation Sn of the n failure times is less than the evaluation time, t. 
( N(t) counts the number of failures that occur before t. 
Since each of the Tj are IID, each with pdf f(t), then the pdf of S1=T1 is f1(t)=f(t). 
What is the pdf of S2=T1+T2? Denote it by f2(t). 
A is the event of the first failure, occurring at time 0+((=(
B is the event of the second failure, occurring at time t, where (<t.

P(A(B)=Probability of second failure occurring in any time (t


=f2(t)(t=P(A)P(B) for independent events. 
Duration of the second lifetime, between the first and second failures, is t-(. Then,

· probability of first failure, P(A), occurring in the interval (0, (() is f1(()((,

· probability of second failure, P(B), occurring in the interval ((, t) can be obtained as if it were the first failure and we wanted to get its probability of occurring in the interval (0,t-(). This is f1(t-()(t.
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(U12.2)
Dividing both sides by (t,
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(U12.3)

In the limit as (((0, we have that
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(U12.4)

( Convolution!

Another approach: Recall that the pdf of the sum of two random variables is the convolution of their individual pdfs:

f2(t) is the desired pdf of the RV S2=T1+T2, 
T1 and T2 both have distributions of f(t)=f1(t).

Likewise, 
the pdf of S3=T1+T2+T3=S2+T3, which is the convolution of 
· the pdf for S2, f2(t) and 
· the pdf for T1, f(t)=f1(t). 
Continuing in this way, we deduce that the failure time pdf for the rth failure, is
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(U12.5)

Use LaPlace transforms:
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(U12.6)
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(U12.8)

Define: renewal function as K(t)=E[N(t)]. 

Mean value of the number of renewals in the interval (t1,t2) = K(t2)-K(t1). 
Dividing by Δt=t2-t1 leads to the renewal density k(t):
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(U12.9)

so that for small Δt, we have:
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(U12.10)
Numerator: E[N(t+Δt)]-E[N(t)], the expected number of renewals in the interval t+Δt. 
Choose Δt so that numerator = 1. 
The numerator is

· 0.5 if we choose half the interval, 
· 0.333 if we choose a third of it, and so on. 
But this only works if we choose Δt small enough so that the occurrence of two or more renewals during Δt has negligible probability next to that of a single one.

In this case, the numerator of (U12.10) gives the probability of a renewal in the interval (t, t+Δt). 
So for Δt small, k(t) gives a probability density of renewals occurring during the Δt period following time t:
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Interpretation: k(t) gives:

the probability that a failure (or a renewal) occurs in the interval       (t, t+Δt), if the interval is small. 
Note: 

· pdf of the rth failure, fr(t), gives the density on the specific rth failure

· k(t) gives the density on any failure

Significance: 

Since the probability of observing a failure in a time interval (t, t+Δt), with Δt small, is just the sum of the probabilities of observing the first, second, …., ∞ failures, k(t) is:
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(U12.11)
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Fig. U12.1: Illustration of renewal density and densities for rth failure [1]
PROOF OF (U12.11)

We can get to this in another way. Recall that K(t) is the expected values of the number of renewals in time (0,t). Recall also that N(t) is the number of renewals in time (0,t). Then K(t)=E[N(t)], as we had before, or, using the definition of expected values for discrete random variables,


[image: image14.wmf]å

¥

=

=

=

1

]

)

(

Pr[

)

(

n

n

t

N

n

t

K


(U12.11a)

where n is the values that the random variable N(t) can take. The probability Pr[N(t)=n] can be obtained as the difference between the probability that N(t)<n and that N(t)<n-1, i.e., 
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(U12.11b)

Now we note: 

( The probability that the count at time t, N(t), is less than equal to n, is the same as the probability that the total time to the n th renewal, Sn is less than or equal to t, and this is the same as the probability that the total time to the (n+1)th renewal is greater than or equal to t. Thus we see that 
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(U12.11c)

Likewise,

( The probability that the count at time t, N(t), is less than equal to n-1, is the same as the probability that the total time to the (n-1) th renewal, Sn-1 is less than or equal to t, and this is the same that the probability that the total time to the nth renewal is greater than or equal to t. Thus we see that 
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(U12.11d)

Substituting (U12.11c) and (U12.11d) into U(U12.11b), we have that:
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(U12.11e)
We recognize the terms on the right hand side as complements of the cumulative distribution functions on the time to the n+1 and n renewals, respectively, i.e., 1-Fn(t) and 1-Fn+1(t). Thus,
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(U12.11f)
Substituting (U12.11f) into (U12.11a), we get
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(U12 .11g)
Breaking up the summation:
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(U12.11h)

Extracting the first term from the first summation and adjusting indices within the summation,
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(U12.11i)

Distributing Fn+1(t) through the factor (n+1) in the first summation yields
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(U12.11j)

Breaking up the first summation:
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(U12.11k)

And we see that the second and fourth term can be eliminated to yield:
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(U12.11l)

Differentiating both sides yields: 
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which is eq. (U12.11). 

k(t) is related to the various fj(t). The various fj(t) are all related to f1(t). So we expect to obtain k(t) in terms of f1(t). This is done as follows.
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(U12.13)
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(U12.15)
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(U12.16)
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(U12.17)
Equation (U12.17) is known as the renewal density equation. 
The integral in (U12.17) is recognized as convolution. 
LaPlace transform:
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(U12.18)

Solving for k(s):
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(U12.19)

Example U12.1 [10]
Component:constant failure rate, replaced on failing by identical component. 
The pdf of the failure-time distribution is f(t)=λe-λt. 
Expected number of failures during the interval (0,t)?

LaPlace transform f(t): 
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Taking inverse LaPlace transform, we get 
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, t>0, 
( Time rate of change in the expected number of renewals is constant. 
( Also: K(t)=λt, t>0, i.e., the expected number of failures in (0,t) is λt.

Mean time between failures (MTBF) (( Mean time to failure (MTTF)
MTBF has no relevance to non-repairable component. 
Repairable components may fail the first time, so MTTF is relevant.

They may also fail again and again, so MTBF is relevant. 
( For repairable systems, how is MTBF related to MTTF? 
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(U12.20)
where f(t) is the pdf for first failure time. 
For ordinary renewal process, all times between failures are IID.

( f(t) is also the pdf on any of the time between failures. 
Therefore, MTBF=MTTF for the ordinary renewal process.

U12.3
Poisson process

Whereas the renewal process requires interevent times that are IID with arbitrary distribution, the Poisson process requires interevent times that are IID with an exponential distribution. 
( So the Poisson process is a special case of the renewal process.

Two definitions of a stationary Poisson process:
Definition 1: A counting process {N(t), t>0} is a Poisson process if:

1. N(0)=0

2. The process has independent increments. This means that, for all choices of 0<t1<t2<t3<…<tn, the (n-1) random variables {N(t2)-N(t1)}, {N(t3)-N(t2)},…, {N(tn)-N(tn-1)} are independent.  

3. The number of events in any interval of length t is distributed according to Poisson distribution with parameter λt, i.e., 
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(U12.21)
Definition 2: For a counting process, let T1 denote the time instant of the first event occurrence, and for j>2, let Tj denote the time interval between the (j-1) and jth events. The counting process is a stationary Poisson process with parameter λt if the sequence Tj, j>1, are independent and identically distributed (IID) exponential random variables with mean (1/λ), such that 
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Def 1: The distribution of the number of events be Poisson, 
Def 2: The distribution of the time interval between events be exponential. 
U12.4
Alternating renewal process 
Two types of components with respective failure times 
{Ta1,Ta2, …} and {Tb1,Tb2,…}
and all failure times are statistically independent. 
A process whereby, on failure, a component is replaced by one of the other type is called an alternating renewal process.
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Fig. U12.2: Illustration of alternating renewal process [11]
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Fig. U12.3: An alternating renewal process for a component with up and down times
Note difference:

· Ordinary RP:  repair fully restores component, instantly. 

· Alternating RP: repair fully restores component, not instantly.
Denote:

· failure time (Ta) pdf as w(t) 
· repair time (Tb) pdf as g(t). 
Pdf on total (cycle) time (T=Ta+Tb), as f(t) ( underlying pdf of the renewal process.

Because the random variable T is the sum of the random variables Ta and Tb, 
( the pdf of T is the convolution of the pdfs of Ta and Tb according to:
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(U12.22)
( 
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(U12.23)
Important observation:

· Results of ordinary renewal process based only on the proposition that we know the pdf on the time to failure: f(t). 
· Replace the time to failure with the total (cycle) time T, and nothing changes…

(
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Substitution of (U12.23) into (U12.24) results in
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(U12.25)

Useful in obtaining the renewal density and in deriving availability.
Availability A(t):  
probability that the component is properly functioning at time t.
· Non-repairable components: A(t)=R(t)=Pr(T>t). 
· Repairable components with instant renewal: A(t)=?

· If repair is not instant…. 
Two possible ways the component may be functioning at time t.

· Event A: The component has not failed during the interval (0,t); Pr(A)=R(t).

· Event B: The component failed and was renewed before t, i.e., the component
· has failed some time during the interval (0,t), say, at τ such that 0<τ<t (call this event B1). The probability P(B1)=R(t-τ).

· has been renewed during the time period between τ and t (call this event B2). The probability P(B2)=k(τ)Δτ. 
One way that B can happen is Pr(B1)Pr(B2)=R(t-τ)k(τ)Δτ, but τ may range between 0 and t, providing an infinite number of ways B can happen, which we can account for through integration over τ from 0 to t.
A and B are mutually exclusive events, so that P(A U B)=P(A)+P(B), resulting in
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(U12.26)
LaPlace transform:
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(U12.27)
Substitute k(s):
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But R(t) and w(t) are related through the CDF Q(t), that is
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(U12.29)
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(U12.30)

Substituting Q(t) into expression for R(t) and take LaPlace transform:
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(U12.31)
Substitute R(s) into A(s)
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(U12.32)

Example U12.2 [10]

A component that has failure and repair times distributed according to w(t)=λe-λt and g(t)=µe-µt. 
Find the renewal density, availability, and steady-state values of both.
LaPlace transforms of w(t) and g(t):
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Renewal density: 

Substitution of 
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Applying partial fraction expansion:
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Inverse LaPlace transform gives the renewal density:
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Steady-state renewal density obtained from limit as t(∞ of k(t):
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Availability: 

Substitution of 
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Applying partial fraction expansion:
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Inverse LaPlace transform:
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Steady-state availability obtained from limit as t(∞ of A(t):
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The result of Example U12.2 says that, for exponentially distributed failure and repair times, 
· steady-state renewal density is the ratio of 
· the product failure and repair rates (λμ) to 
· the sum of failure and repair rates (μ+λ). 
· the steady-state availability is the ratio of 
· the repair rate (µ) to 
· the sum of failure and repair rates (μ+λ). 

Different interpretation: Recall that
· For exponentially distributed failure time, MTTF=1/λ (λ is failure rate)
· For exponentially distributed repair time, MTTR=1/µ (µ is repair rate)
The following applies for exponentially distributed failure & repair times. 

Substitution into k:
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(U12.33a)

If the repair time is zero, then steady-state value of k(t) is just (1/MTTF)=λ.
Substitution MTTF=1/λ and MTTR=1/μ into A:  
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(U12.33b)
What if failure and/or repair time not exponentially distributed?

Apply final value theorem to (U12.32):
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(U12.34)

Definition of the LaPlace transform:
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(U12.35)

When s is small, e-st=1-st, and (U12.35) becomes
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(U12.36)
(
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(U12.37)
Similarly, 
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(U12.38)

Substitution of w(s) and g(s) into A(s) with final value theorem results in
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(U12.39)
( So this result is independent of the type of distribution associated with time to failure and time to repair.
� INCLUDEPICTURE "http://powerlearn.ee.iastate.edu/test/test3_files/PLLogoSmall.gif" \* MERGEFORMATINET ���
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