EE 559 Homework #3 Due Monday September 26, 2016

A. Using previous relations provided in the "Set 1" slides, derive the following torque expressions:

1.
$$T_{em} = 3p \operatorname{Im} \left\{ \underline{\lambda}_{s}^{*} \underline{I}_{s} \right\}$$

2. $T_{em} = 3p \operatorname{Im} \left\{ \underline{\lambda}_{r} \underline{I}_{r}^{*} \right\}$
3. $T_{em} = 3p \frac{L_{m}}{\sigma L_{r} L_{s}} \operatorname{Im} \left\{ \underline{\lambda}_{r}^{*} \underline{\lambda}_{s} \right\}$ (and identify σ)

- B. Use $Q = 3Im\{\underline{V} \underline{I}^*\}$ and the equivalent circuit to derive reactive power expressions, in terms of \underline{I}_s and \underline{I}_r for
 - 1. The stator, Q_s
 - 2. The rotor, Q_r
- C. For each DFIG condition below, compute P_{airgap} and P_{slip} and draw the power flows similar to slide 30 in the "Set 1" slides.
 - 1. $P_{mech}=-1$ MW with s=+0.30 (subsynchronous operation).
 - 2. P_{mech} =-1MW with s=-0.30 (supersynchronous operation).
- D. Complete the table on below (the boxed section) by computing the per-unit values of the indicated five resistances/inductances for the 2 MW machine.

		Characteristic	. 5 kW	15 kW	250 kW	2 MV
		Synchronous speed (rev/min)	1500	1500	1500	1500
		Rated power (kW)	5	15	250	2000
		Rated line-to-line stator voltage (Vrns)	380	380	400	690
		Rated stator current (Arma)	8.36	32	370	1760
		Rated torque (N·m)	31.8	95.5	1591	1273
		Stator connection	Star	Star	Star	Star
		p	2	2	2	2
	u (or a)	Rated \underline{V}_r (V _{ms})	205	380	400	2070
	R` Í	Rotor connection	Star	Star	Star	Star
	l's	u	0.54	1	1	0.34
	L _{os}	R_{j} (m Ω)	720	161	20	2.6
	L	L_{xy} (mH)	5.8	3	0.2	0.087
	D'	L_m (mH)	85.8	46.5	4.2	2.5
	n r	$R'_{,}(m\Omega)$	2566	178	20	26.1
	L _{or}	$L'_{\sigma r}(\mathbf{mH})$	19.85	3	0.2	0.783
	R.	$R_r(m\Omega)$	750	178	20	2.9
		L _{er} (mH)	6	3	0.2	0.087
	Lσr	L_{x} (mH)	91.6	49.5	4.4	2 587
	$L_s \rightarrow$	L ₇ (mH)	91.6	49.5	4.4	2 587
	L.	Vhase	220	220	231	308.4
	V	Ibase	8.36	32	370	1760
	base	r,	0.027	0.023	0.032	
r	Dase	l _a	0.069	0.137	0.1	
	s	la.	0.976	2.12	211	
Per-unit _ values	lσs	r,	0.028	0.025	0.032	
	l _m	lor	0.071	0.137	0.1	
	r _r					
	l					