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Representation of Saturation in Stability Studies 

(Sections 4.12.4, 4.12.3) 

Kundur writes (pg 110) that  

 

 “A rigorous treatment of synchronous machine performance 

including saturation effects is a futile exercise. Any practical method 

of accounting for saturation effects must be based on semi-heuristic 

reasoning and judiciously chosen approximations, with due 

consideration to simplicity of model structure, data availability, and 

accuracy of results.” 

 

Some assumptions (see Kundur pg. 112-113) : 

 

1. Leakage inductances are independent of saturation since the path 

of the leakage flux is mainly in the air. Therefore we may confine 

our analysis of saturation to the mutual inductances, represented 

by LAD and LAQ. 

2. The leakage fluxes do not contribute to the iron saturation. This 

is reasonable because these fluxes are small (since their paths are 

mainly in air, and air has high permeability), and their paths 

coincide with that of the main flux for only a small part of its 

path. So we may determine saturation of the inductances as a 

function of AD and AQ. 

3. The saturation relationship between the resultant air-gap flux and 

the mmf under loaded conditions is the same as under no-load 

conditions. This allows the saturation characteristics to be 

represented by the open-circuit saturation curve, which is usually 

the only saturation data readily available. 
 

An additional assumption that is sometimes made is that LAQ does 

not saturate, simply because the quadrature axis flux is usually quite 

small in comparison to the direct axis flux due to the effect of the 

main field winding. This assumption is quite good for salient pole 

machines but not so good for round-rotor machines. 

 

Interesting summary of Paul Anderson’s career. 

https://www.nap.edu/read/18477/chapter/3  

https://www.nap.edu/read/18477/chapter/3
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Recall, from our equivalent circuit (shown below), that  

AD=(id + iF + iD)LAD. 
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Direct-axis equivalent circuit: 

The above is the same as Fig. 4.5 in your text 

 

Define the following terms: 

• Magnetization current: iM=(id + iF + iD) ➔ AD=LAD iM 

• Maximum per-unit flux linkage without saturation: ADT 

• iM0: current that would produce AD if no saturation effects 

• iMS: current that produces AD with saturation effects 

• ’: Flux linkage resulting from iMS if no saturation effects 

 

Define LAD0 as the inductance corresponding to the air-gap line. It is 

the inductance when iM is small, i.e., it is the non-saturated 

inductance. Thus, . 

 

The magnetization curve appears as in the following figure: 
 

 

MSAD iL 0=

qDFdADdddd iiiLilriv −++−−−= ][   

][ DFdADFFFFF iiiLilirv  ++−−−=−  

][0 DFdADDDDDD iiiLilirv  ++−−−==  
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From the figure, we can write that:  

But from the air-gap line equation, , and substitution 

of this relation into the previous one yields: 

    (*) 

Define KS=iM0/iMS. KS is the fraction of the saturated current 

necessary to achieve the same flux linkage with no saturation (i.e., 

on the airgap line). Clearly, 0<KS<1, where KS close to 0 indicates 

a highly saturated iMS; KS close to 1 indicates a non-saturated iMS. 

So here we need to recognize a very important feature: KS depends 

on the saturation level which depends on λAD. Substitution of KS into 

(*) results in: 

 

So KS is a factor that we use to account for the difference between 

the magnetization curve and the air-gap line. Observation: We are 

trying to use KS to compute λAD, yet KS depends on λAD, that is,  

λAD=KS(λAD)LAD0iMS. This is why Kundur wrote, “A rigorous 

treatment of…saturation effects is a futile exercise” (see p. 1 of these 

notes). 
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So how might we determine KS? 

 

Observe: 
 

 

where iM=iMS-iM0. 

 

So evaluation of KS requires evaluation of iM, and our problem is 

now to get iM. 

 

Note from Fig. 1 below that iM grows exponentially larger with 

AD-ADT. 
 

 

Fig. 1 

So we reason that a good approximation to iM is given by 
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Now it is clear from the above that KS is a function of AD, i.e., 
 

 

 

So that the mutual flux is given by 
 

 

So how do we use it? 

 

Assume that we have values for d, F, D, q, Q, and G. Then the 

steps for including saturation are: 
 

1. Usually, two values of saturation are given that allow 

computation of AS and BS (these are usually called S1.0 and S1.2 

– more on that on p. 8 below and in Section 5.9 of VMAF). 

2. Use the auxiliary equations to obtain the unsaturated values of 

AD and AQ: 
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3. For a salient pole machine, let =AD.  

For a round-rotor machine, let =sqrt{AD
2+AQ

2} 

4. Check if >ADT. If not, use the above unsaturated values. If so, 

proceed to step 5. 

5. Obtain currents from 4.124, shown below: 

)( ADSS KK =

MSADADSAD iLK 0)( =
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 (4.124) 

 

6. Compute the magnetizing current as 

DFdM iiii ++=0  

7. Compute KS according to: 
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8. Update AD and AQ according to 

a. Replace LAD with LADKSLAD, and then compute: 
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b. If salient pole, then AQ=AQ (i.e., no change), but if round-

rotor, then replace LAQ with LAQKSLAQ, and then 

compute: 
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And then you can use the updated values of AD and AQ in the 

following to perform a numerical integration and get the next time 

step… 
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Relation to input data to most commercial stability programs: 

 

The input requirements for characterizing generator saturation for 

most commercial-grade stability programs are in terms of a 

parameter called S, defined by 
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The relation between S and KS is derived from the below: 
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The specific data entry into most programs (including PSS/E) is 

• S(1.0): value of S when open circuit terminal voltage is 1.0pu 

• S(1.2): value of S when open circuit terminal voltage is 1.2pu 

Note that S(1.2) should always be larger than S(1.0). In the Diablo 

Canyon data, S(1.0) is 0.0769 and S(1.2) is 0.41. The corresponding 

values of KS are 0.9286 and 0.7092, respectively. Use of S(1.0) and 

S(1.2) to compute AS and BS is provided in Section 5.9.1. 
 

Final note on saturation. Section 4.12.3 develops a model where 

saturation is neglected. Such a model is useful for linearized analysis 

(although so is the current state-space model).  

 

The approach for developing the flux-linkage model without 

saturation, as in Section 4.12.3) is simple – just substitute the 

auxiliary equations, i.e., the expressions for λAD and λAQ, i.e.,  
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VMAF does this for the d-axis equations (λd, λF, and λD) on p. 121 

but just gives the results for the q-axis equations (λq, λG, and λQ). 

And so we will do it for the q-axis equations, starting with the G-

equation (4.131a); we also do it for the torque equation. 

 

First, we handle the state equation for λG. 
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Now for the λq equation (4.130):  
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And now for the λQ equation (4.131b): 
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And finally for the torque equation (4.133): 
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The above state equations are included in the state equations as 

follows: 
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Comments: 

1. There is a very good treatment of saturation in IEEE Std 1110-

2002, “IEEE Guide for Synchronous Generator Modeling 

Practices and Applications in Power System Stability 

Analyses,” see chapter 6. Indeed, this is a very good standard 

to complement our entire course, and I encourage you to 

download, print, and include in your binder/folder. 

 

2. Note the presence of vd and vq on the right-hand-side. Recall 

that v0dq=Pvabc and so vd and vq come from the phase voltages 

va, vb, and vc. Since the phase voltages are affected by the load 

currents, so are vd and vq. So, we need to represent the load in 

order to complete the model. This is the subject of section 

4.13. It is done in Section 4.13.2 for the current-state space 

model and in Section 4.13.3 for the flux linkage state space 

model. I have already addressed it in class, in the notes called 

“LoadEquations,” for the current state space model only. I will 

leave you to read Section 4.13.3 for the flux linkage state space 

model. There is also a nice example (Ex 4.4, p. 128) which 

illustrates integration of the load equations. 

 

3. Section 4.12.4 is the first instance in VMAF where saturation 

is addressed, but not the last. It is also addressed in Section 

5.9.1 and in Appendix D.1.2. 


