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Linearized Analysis of the Synchronous Machine for PSS 

 

Chapter 8 of VMAF does three basic things: 

1. Shows how to linearize the 8-state model (model #1, IEEE #2.2, 

called “full model without G-cct.”) of a synchronous machine 

connected to an infinite bus using the current-state-space model 

(sections 8.3-8.4) and using the flux-linkage state-space model 

(section 8.5). This material is useful for understanding the 

modeling required for power system eigenvalue calculation 

programs in SSAT. Some information on these tools follow: 

a. Kundur, Rogers, Wong, Wang, and Lauby, “A 

comprehensive computer program package for small signal 

stability analysis of power systems,” IEEE Transactions on 

Power Systems, Vol. 5, No. 4, Nov., 1990 (on website). 

b. Wang, Howell, Kundur, Chung, and Xu, “A tool for small-

signal security assessment of power systems,” IEEE 

Transactions on Power Systems, …(on website). 

c. M. Crow, “Computational methods for electric power 

systems,” chapter 7 on “Eigenvalue Problems,” CRC Press, 

2003. 

2. Shows how to develop the A matrix for multimachine systems 

(Section 8.6). 

3. Linearizes the one-axis model of a synchronous machine 

connected to an infinite bus (sections 8.7). This material is useful 

for the conceptual understanding of why power system stabilizers 

are needed.  

 

In these notes, we will address (3) and then return to (1) in the next 

class. 

 

Some additional references for you on this issue are references [10, 

11] given at the end of chapter 8. These two references are: 

[10] W. Heffron and R. Phillips, “Effect of modern amplidyne 

voltage regulators on under-excited operation of large turbine 

generators,” AIEE Transactions, pt. III, vol. 71, pp. 692-696, 1952.  
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[11] F. deMello and C. Concordia, “Concepts of synchronous 

machine stability as affected by excitation control,” IEEE 

Transactions on Power Apparatus and Systems, PAS-88, pp 316-

329, 1969. 

 

Reference [10] came first and produced what is commonly referred 

to in the literature as the Heffron-Phillips model of the linearized 

synchronous machine. Reference [11] extended the Heffron-Phillips 

model and is the most well-known. Reference [11] is also viewed as 

the seminal work that motivated the need for power system 

stabilizers (PSS). This paper is on the web site for you to download, 

read, and place in your notebook. You will note that it contains 

material quite similar to what follows below. 

 

VMAF also provides background on this issue in several separate 

locations, found in the following sections: 

• Section 3.5.1: Voltage regulator with one time lag 

• Section 8.7: Simplified linear model 

• Section 8.8: Block diagrams 

• Section 9.8.2: Continuously regulated systems 

• Section 9.9: State-space representation of the excitation system 

• Section 10.4: Effect of excitation on small-signal stability 

• Section 10.5: Root-locus analysis of a regulated machine 

connected to an infinite bus 

• Section 10.7: Supplementary stabilizing signals 

• Section 10.8: Linear analysis of the stabilized generator 

• Section 10.9: PSS tuning in multimachine power systems 

• Section 10.10: Alternate types of PSS 

• Section 10.11.2: Effect of the power system stabilizer 

 

I will provide the minimal analysis necessary to see the basic issue.  
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The analysis uses the simplest model possible for which the 

excitation system may be represented – the one-axis model (model 

7, IEEE #1.0), loaded through a connection to an infinite bus. 

The one-axis model is a 3-state model, developed based on the 

following main assumptions (see p. 312 of VMAF): 

1. Only the field winding is represented (so no G-circuit and no 

amortisseur windings). 

2. No stator winding resistance. 

3. Speed voltage terms assume ω is fixed at rated speed. 

4. dd/dt = dq/dt = 0 (no stator transients). 

5. Saturation is neglected. 

 

The nonlinear equations for the one-axis model are given by eqs. 

(4.294) and (4.297) in VMAF, as follows (the below are in slightly 

different, but equivalent form to (4.294) and (4.297)): 
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To identify basic concepts, Concordia and deMello assumed a single 

machine connected to an infinite bus through a transmission line 

having series impedance of Re+jXe, as illustrated in Fig. 1. 

 

 

Re+jXe 

 
Fig. 1 

VMAF, in Section 8.7, linearizes the above state equations for the 

one-axis model for the Fig. 1 case, resulting in 
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 (8.148) 

VMAF also provide the following linearized expressions for torque 

and terminal voltage of a generator with one-axis model connected 

to an infinite bus, resulting in Eqs. (8.137) and (8.141) of VMAF.  
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the second one of (8.148), which results in 
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In (**), (8.149), K1-K6 are described on the next page.   
 

The LaPlace transform of the above equations (**) and (8.149), with 

some manipulation, results in the following relations: 
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where, in (*), the variables Te, Vt, E’q, , and  represent 

LaPlace transforms of their corresponding time-domain functions (a 

slight abuse of notation). 

 

Finally, we note that EFD, the stator EMF produced by the field 

current and corresponding to the field voltage vF, is a function of the 

voltage regulator. Under linearized conditions, the change in EFD is 

proportional to the difference between changes in the reference 

voltage and changes in the terminal voltage, i.e.,  

)VV)(s(GE trefeFD −=   (***) 

where Ge(s) is the transfer function of the excitation system. 

 

In the above equations (*) and (**), the various constants K1-K6 are: 

0''

1

qq EE

eT
K

=



=

   
0

'
2

 =



=

q

e

E

T
K      

ttanconsE

q

FD

'E

K
K

=


−
=

3

4

1
 

 

0''

5

qq EE

tV
K

=



=

   
0

'
6

 =



=

q

t

E

V
K

 

and K3 is an impedance factor that accounts for the loading effect of 

the external impedance (see (8.128). Your text, on pages 313, 314, 

and 315, provides exact expressions for these constants for the case 

of the one-axis model we are analyzing, under the condition that the 

line connecting the generator to the infinite bus has impedance of 

Ze=Re+jXe. I have attached an appendix to these notes that develop 

expressions for these constants under condition that Ze=jXe. The 

paper1 on the website also provides these constants both ways, i.e., 

for Ze=Re+jXe and for Ze=jXe. There are two comments worth 

mentioning here: 

1. K1 is the synchronizing power coefficient and will be assumed 

positive in all that we do here. 
 

1 P. de Mello and C. Concordia, “Concepts of synchronous machine stability as affected by excitation control,” IEEE Transactions on 

Power Apparatus and Systems, PAS-88: 316-329, 1969. 
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2. K2, K3, and K6 are always positive. 

3. VMAF express K4 as (see eq. 8.130) 
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However, K3, being an impedance factor, is positive. We want K4 

to also be positive; however, the above expression suggests that 

E’q would increase with an increase in angle (or loading). This is 

counter to the idea of armature reaction, where the internal flux 

decreases as a result of stator current, as indicated by our 

conceptual analysis in the notes called “ExcitationSystems” per 

the below figure: 

 
 

In fact, the book itself indicates as much via eq. (eq. 3.11) where 

it says that “K4 is the demagnetizing effect of a change in the rotor 

angle (at steady-state),” which is given by the following 

relationship: 
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where we note the negative sign out front. Therefore, the book 

expression (eq. 8.130), needs a negative sign. 

 

In eq.  (***), Ge(s) is the transfer function of the excitation system. 

Recall that there are several different kinds (DC, AC Alternator, and 

static), each requiring somewhat different modeling. One kind that 

has become quite common is the “static” excitation system, 
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represented by Fig. 2a, where KA is the exciter gain and TA is the 

exciter time constant. 

 

 
Fig. 2a 

 

Fig. 2a is characterized by the following transfer function. 
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The static excitation is typically very fast (no rotating machine in 

the loop). Fast excitation response is beneficial for transient stability 

because generator terminal voltages see less voltage depression for 

less time during and after network faults. Such speed of excitation 

response can, however, cause problems for damping, as we shall see 

in what follows. 

 

We repeat the equations (*) and (***) below. 
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We may extract from the above equations (*) and (***) a block 

diagram relation, as seen in Fig. 2. Note that in this block diagram, 

j=M (instead of j=MB as given in notes on “TorqueEquation”). 

Careful comparison of this block diagram to Fig. 10.17 in your text 

will suggest they are the same. 

 

Fig. 2 

 

We will use this block diagram to analyze the stability behavior of 

the machine. Although one can use a variety of methods to perform 

this analysis (Root locus, Routh’s criterion, eigenanalysis), we will 

resort to a rather unconventional but quite intuitive analysis 

procedure that conforms to that originally done in the deMello-

Concordia paper. This analysis is based on the following 

observations made of the block diagram.  

 

1. Td, the damping torque, is in phase with speed deviation . 

2. Ts, synchronizing torque, is in phase with angle deviation . 

We call this synchronizing torque because the higher it is, the 

more “stable” the machine will be with respect to loss of 

synchronism. This is confirmed by noting that high K1 means low 

loading, as indicated by the fact that K1 is the slope of the tangent 

to the power-angle curve at the operating point. 
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3. Because =(1/s) , we see that angle deviation lags speed 

deviation by 90 degrees in phase. 

 

This leads to a “stability criterion”…. 

 

For stability, the composite electrical torque must have positive 

damping torque (it must have a component in phase with speed 

deviation) and positive synchronizing torque (it must have a 

component in phase with angle deviation). 

So we can perform a qualitative analysis using the following ideas: 

• Any electrical torque contribution in phase with angle deviation 

contributes positive synchronizing torque. 

• Any electrical torque contribution in phase with speed deviation 

contributes positive damping torque. 

 

Inertial torques: 

Let’s begin by just analyzing the “inertial” loops in the block 

diagram. These are the ones corresponding to D and K1, as indicated 

by the two bold arrows in Fig. 3. 

 

Fig. 3 
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• We see that the torque contribution through D, TD, is 

proportional to  so it contributes positive damping, as 

expected.  

• The torque contribution through K1, TS, is proportional to  so 

it contributes positive synchronizing torque, 90 degrees behind 

the damping torque. Figure 4 below illustrates. 
 

TI 

Ts 

Td 

Positive 

angle 

 axis 

 axis 

 
Fig. 4 

So as long as D is positive and there are no other effects, we obtain 

positive damping contributions from the inertial torques. 

 

Armature reaction torque: 

 

But now let’s consider the influence of armature reaction, when we 

get field weakening from the armature current. This effect is 

represented by the loop through K4, K3, and K2, and is represented 

on the diagram by Tar, as indicated by the bold arrow in Fig. 5. 
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Fig. 5 

 

The transfer function for Tar is given by: 
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Let’s evaluate the phase of this transfer function at s=josc where 

osc is the frequency corresponding to the weakly damped 

electromechanical modes of oscillation (from 0.2 Hz up to about 2.0 

Hz). From this last transfer function, we can identify the 

denominator as 1+jωoscK3τ’d0 which contributes a phase of              

tan-1(ωoscK3τ’d0), and being on the denominator, is subtracted from 

the -180° phase of the numerator. Therefore the electrical torque 

contribution to phase, relative to , is: 

oscdar K  03
1 'tan180 −−−=  

 

What does this do to the resulting torque? Since it is negative, we 

draw the vector with an angle measured opposite the positive angle. 
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We clearly get -180°, but we also get an additional negative angle 

from the tan-1 term. Since t’d0ωosc is positive, this additional angle 

must between 0 and 90°. The effect is shown in Fig. 6 below. 
 

TI+Tar 

ar 

Tar 
TI 

Positive 

angle 
 

 axis 

 axis 

 
Fig. 6 

Note that the effect of armature reaction on composite torque is to 

increase damping torque (in phase with ∆ω) and to decrease 

synchronizing torque (in phase with ∆δ). 

 

Excitation system torque: 

 

This is the electrical torque that results from the K5 and K6 loops, as 

shown in Fig. 7 below. 
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Fig. 7 

 

This torque may be expressed based on the block diagram as: 
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Ignoring Vref (it represents manual changes in the voltage setting), 
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We want to express each torque as a function of ∆δ or ∆ω. But the 

last expression has a ∆E’q. We can address this by noticing the 

relation (from the block diagram) that Texc=K2E’q➔ 

E’q=Texc/K2, and so we can write that 
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Now substitute equation (****) for the static excitation transfer 

function Ge(s), repeated here for convenience, 
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The above relation appears quite challenging to analyze, but we can 

simplify the task greatly by observing that the denominator is third 

order. Thus, it will be possible to write the above relation as: 
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where pi are the poles. We may have 3 real poles or 1 real with 2 

complex. We are aware that static excitation systems generally 

contribute 1 real with 2 complex. We express the real pole as p1=σ1 

and the two complex poles as p2=2+j2, and p3=3+j3, where σi>0 

(otherwise s=-pi will have a right-half-plane pole). Thus, the transfer 

function becomes: 

( )( )( )
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1 2 2 3 3

(1 )A F
exc

K K K K sT
T

s s j s j
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− +
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+ + + + +
 

We want to evaluate the transfer function at s=josc, where osc is 

the frequency of oscillation of concern (we assume this frequency 

to be an interarea oscillation between groups of generators). 

Therefore, 
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On combining imaginary terms in the denominator, we get: 
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We are interested in the phase of Texc relative to . 

 

Fact: When the generator is heavily loaded, it is possible for K5 to 

be negative. See Ex 8.7, Fig. 8.1 (copied below), and section 10.4.3 

in VMAF. This makes the numerator of the previous transfer 

function positive. 
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A simulation of such a case is shown in Fig. 8 below. The solid curve 

represents generators with fast high-gain excitation systems, but no 

PSS. The other two curves represent significantly fewer of such 

generators. 
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Fig. 8 

Repeating our transfer function: 
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Assuming K5<0 (so that the negative sign of the transfer function 

cancels the negative sign of K5), the phase of Texc relative to  is 

given by 
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Consider some typical data, where ωosc=4.396rad/sec (0.7Hz), 

σ1=0.2, σ2+jω2=5+j4.5, σ3+jω3=5-j4.5, TF=0.5. Then 

1 1 1 14.396 8.896 0.104
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0.2 5 5
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=65.536-87.395-60.662+1.192=-81.329 
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Using some typical data, the above identifies the phase lag to be 

-81.329°. In this case, our diagram will appear as in Fig. 9 below. 
 

TI+Tar 

Texc 

Positive 

angle 
 

 axis 

 axis 

TI+Tar+Texc 

 
Fig. 9 

 

and we see that the damping can go negative for fast (small TA)-high 

gain (large KA) excitation systems under heavy loading conditions! 

And this explains the effect observed in Fig. 8. 

 

So what do we do about this? 

 

Solution 1: Limit KA to as high as possible without causing 

undamped oscillations. This limits the magnitude (length) of the 

ΔTexc vector (see Fig. 9). But high-gain, fast response excitation 

systems are good for transient (early-swing) instability! This is 

indicated by the fact that, in Fig. 9, the ΔTexc vector increases the 

synchronizing torque (i.e., it causes the resultant torque to be further 

to the right along the Δδ axis). And so we would rather not do this. 

This is a “conflicting problem” in that increasing KA helps transient 

(early swing) stability but hurts oscillatory (damping). In the words 

of de Mello & Concordia (pg. 6 of the paper posted on the website):  
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Solution 2: Provide a supplementary torque component that offsets 

the negative damping torque caused by the excitation system. Again, 

in the words of de Mello and Concordia: 

 

 
➔Basically, the idea is to push (rotate forward) our torque vector 

back into the upper-right quadrant. Thus we need to phase-advance 

the torque vector by between 20 to 90 degrees. We will introduce a 

supplementary torque that does this, denoted by Tpss, as indicated 

in Fig. 10 below. 
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Fig. 10 

The transfer function KSGlead(s) is intended to provide the 

supplementary signal TPSS as illustrated in Fig. 11 below. 
 

Tpss 

Positive 

angle 
 

 axis 

 axis 

TI+Tar+Texc 

TI+Tar+Texc+Tpss 

 
Fig. 11 

We will take  as the feedback signal for our control loop to 

provide Tpss (we could also use angle deviation, but speed 

deviation is easier to obtain as a control signal). 
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We may provide “shaping” networks to process the feedback signal 

in providing it with the proper amount of phase (lead or lag). For 

example (see Dorf, pg. 362-363), a network to provide phase lead is 

shown in Fig. 12. 
 

R1 

V1 V2 
C R2 

 
Fig. 12 

(One can alternatively use digital signal processing techniques.)  

In the phase lead network above, we get that 
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Dorf shows that the maximum value of phase lead given by the 

above network occurs at a frequency of  




1
=m      (eqt. a) 

and the corresponding phase lead you get at this frequency is given 

by  
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1

1
sin

+

−
=



m      (eqt. b) 

So the idea is that you know how much phase lead you want (this is 

φm), and from that you can solve for α in (eqt. b). You also know the 

frequency m that you want to provide the maximum phase lead (the 

frequency of your most troublesome electromechanical mode and is 

considered to be the PSS tuning mode), and therefore with α and m, 

you can use (eqt. a) to solve for τ. 

 

Note from the above diagram that the desired supplementary signal 

∆TPSS is actually lagging , so one might think that we should 

provide phase lag, not phase lead, to the input signal (which is 

actuated by ∆ω). This would in fact be the case if we could introduce 

the “shaped” signal (the output of Glead) directly at the machine 

shaft. 

 

However, this is not very easy to do because we cannot produce a 

mechanical torque directly from an electrical signal transduced from 

rotor speed. 

 

In fact, the only place we can introduce an electrical signal is at the 

voltage regulator, i.e., the input to the excitation system, Ge(s).  

 

This causes a problem in that we now incur the phase lag introduced 

by Ge(s) and the ’d0 block, which is typically around exc= -80 

degrees as discussed previously. 

 

So this means that we must think about it in the following way: 

1. We start with the  signal.  

2. We introduce a phase lead of an amount equal to X. What is X? 

3. We incur ~80 degrees of phase lag, caused by exc. 

4. We provide Tpss lagging  by, say ~25 degrees. This means 

that X-80-25 degrees ➔ X=55 degrees. 
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Therefore X must be about 55 degrees. So we must provide an 

appropriate shaping network. This shaping network is referred to as 

Glead(s). 

 

Therefore we can write 

1

1
55sin

+

−
=



 

And solve for α: 

1
sin 55 0.819 0.819( 1) 1

1

0.819 0.819 1 0.181 1.819

10.05


 



  



−
= =  + = −

+

+ = −  − = −

 =
 

Then choose τ based on  

1
osc m 

 
= =  

where ωm=2π(fosc), and fosc is the frequency of the oscillation 

“problem mode.” That is,  

1 1 1
osc

osc osc

   
   

=  =  =  

and for ωosc=4.396rad/sec (0.7Hz), we have: 

1
0.0718

4.396 10.05
 = =  

Then, if you are using an RC phase lead network, you can choose R 

and C according to 

2

21

R

RR +
= , C

RR

RR

21

21

+
=  

Note the principle behind the power system stabilizer:  

• Cancel the phase lags introduced by the excitation system with  

o the right amount of lead compensation so that  
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▪ the total torque exerted on the shaft by the excitation control 

effect will be  

• in phase with speed deviation and  

o thus provide positive damping. 

So the PSS introduces a supplementary signal into the voltage 

regulator with proper phase and gain adjustments to produce a 

component of damping that will be sufficient to cancel the negative 

damping from the exciters. 

 

=============================================== 

Final Exam Question #1: 

Your book provides expressions for K1-K6 on pp. 313-314 for 

the case that the transmission line connecting the generator to 

the infinite bus has impedance of Ze=Re+jXe. Also, at the end 

of these notes, the same constants K1-K6 are derived for the 

case that the transmission line connecting the generator to the 

infinite bus has impedance of Ze=jXe (i.e., Re=0). Starting from 

the expressions given in your book, set Re=0 and show that 

those expressions collapse to the expressions given at the end 

of these notes. 

Final Exam Question #2: 

Work  problem 10.1 in your text. Observe the transfer function  

Ge(s) associated with equation (10.14) differs from the transfer 

function that we used in the above notes. 

Final Exam Question #3: 

 Work problem 10.2 in your text. 

=============================================== 
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