Linearized Analysis of the Synchronous Machine for PSS

Chapter 8 of VMAF does three basic things:

1. Shows how to linearize the 8-state model (model #1, IEEE #2.2,
called “full model without G-cct.”) of a synchronous machine
connected to an infinite bus using the current-state-space model
(sections 8.3-8.4) and using the flux-linkage state-space model
(section 8.5). This material is useful for understanding the
modeling required for power system eigenvalue calculation
programs in SSAT. Some information on these tools follow:

a. Kundur, Rogers, Wong, Wang, and Lauby, “A
comprehensive computer program package for small signal
stability analysis of power systems,” IEEE Transactions on
Power Systems, Vol. 5, No. 4, Nov., 1990 (on website).

b. Wang, Howell, Kundur, Chung, and Xu, “A tool for small-
signal security assessment of power systems,” IEEE
Transactions on Power Systems, ...(on website).

c. M. Crow, “Computational methods for electric power
systems,” chapter 7 on “Eigenvalue Problems,” CRC Press,
2003.

2. Shows how to develop the A matrix for multimachine systems
(Section 8.6).

3. Linearizes the one-axis model of a synchronous machine
connected to an infinite bus (sections 8.7). This material is useful
for the conceptual understanding of why power system stabilizers
are needed.

In these notes, we will address (3) and then return to (1) in the next
class.

Some additional references for you on this issue are references [10,
11] given at the end of chapter 8. These two references are:

[10] W. Heffron and R. Phillips, “Effect of modern amplidyne
voltage regulators on under-excited operation of large turbine
generators,” AIEE Transactions, pt. 111, vol. 71, pp. 692-696, 1952.



[11] F. deMello and C. Concordia, “Concepts of synchronous
machine stability as affected by excitation control,” IEEE
Transactions on Power Apparatus and Systems, PAS-88, pp 316-
329, 19609.

Reference [10] came first and produced what is commonly referred
to in the literature as the Heffron-Phillips model of the linearized
synchronous machine. Reference [11] extended the Heffron-Phillips
model and is the most well-known. Reference [11] is also viewed as
the seminal work that motivated the need for power system
stabilizers (PSS). This paper is on the web site for you to download,
read, and place in your notebook. You will note that it contains
material quite similar to what follows below.

VMAF also provides background on this issue in several separate
locations, found in the following sections:

e Section 3.5.1: Voltage regulator with one time lag

e Section 8.7: Simplified linear model

e Section 8.8: Block diagrams

e Section 9.8.2: Continuously regulated systems

Section 9.9: State-space representation of the excitation system
Section 10.4: Effect of excitation on small-signal stability
Section 10.5: Root-locus analysis of a regulated machine
connected to an infinite bus

e Section 10.7: Supplementary stabilizing signals

e Section 10.8: Linear analysis of the stabilized generator

e Section 10.9: PSS tuning in multimachine power systems

e Section 10.10: Alternate types of PSS

e Section 10.11.2: Effect of the power system stabilizer

| will provide the minimal analysis necessary to see the basic issue.



The analysis uses the simplest model possible for which the
excitation system may be represented — the one-axis model (model
7, IEEE #1.0), loaded through a connection to an infinite bus.

The one-axis model is a 3-state model, developed based on the
following main assumptions (see p. 312 of VMAF):

1. Only the field winding is represented (so no G-circuit and no
amortisseur windings).

No stator winding resistance.

Speed voltage terms assume o is fixed at rated speed.

dAg/dt = dAg/dt = 0 (no stator transients).

Saturation is neglected.
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The nonlinear equations for the one-axis model are given by egs.
(4.294) and (4.297) in VMAF, as follows (the below are in slightly
different, but equivalent form to (4.294) and (4.297)):
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To identify basic concepts, Concordia and deMello assumed a single
machine connected to an infinite bus through a transmission line
having series impedance of Re+jXe, as illustrated in Fig. 1.

Fig. 1
VMAF, in Section 8.7, linearizes the above state equations for the
one-axis model for the Fig. 1 case, resulting in




i K
AE', =- : AE'—| =%+ |AS+ N
K3T Ido T 'do 3 Ido

M:_(;]M&{;]m 614

] ]
AS =(Aw)
VMAF also provide the following linearized expressions for torque

and terminal voltage of a generator with one-axis model connected
to an infinite bus, resulting in Egs. (8.137) and (8.141) of VMAF.

AT, = K,AS + K,AE' +DAw
AV, = K AS + K AE',

The first of equations (**) can be used to simplify the second one of
the second one of (8.148), which results in
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In (**), (8.149), K1-Kg are described on the next page.

The LaPlace transform of the above equations (**) and (8.149), with
some manipulation, results in the following relations:
AT, =K A6 + K, AE'  +DAw

AV, = KAS + KAE',

K K,.K
AE',=—— 3> AE, ——* A§
1+ K,7'y, S 1+ Ky7'yo S
Ao =1 (AT - AT,) .
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where, in (*), the variables ATe, AV:, AE’q, Aw, and Ad represent
LaPlace transforms of their corresponding time-domain functions (a
slight abuse of notation).

Finally, we note that Erp, the stator EMF produced by the field
current and corresponding to the field voltage Ve, is a function of the
voltage regulator. Under linearized conditions, the change in Erp is
proportional to the difference between changes in the reference
voltage and changes in the terminal voltage, i.e.,

AEFD — Ge( S )( AVref o A\/t ) (***)

where Gg(S) is the transfer function of the excitation system.

In the above equations (*) and (**), the various constants Ki-Kg are:

- ATe = ATe K _ _1 AElq
A5 E'q=E'q0 AE q15=s5, o K3 A5 Epp=constant
v, AV,
5 — 6 '
AO E'y=E'so AE q15=6,

and K3 is an impedance factor that accounts for the loading effect of
the external impedance (see (8.128). Your text, on pages 313, 314,
and 315, provides exact expressions for these constants for the case
of the one-axis model we are analyzing, under the condition that the
line connecting the generator to the infinite bus has impedance of
Z.=Re+]Xe. | have attached an appendix to these notes that develop
expressions for these constants under condition that Z.=jX.. The
paper! on the website also provides these constants both ways, i.e.,
for Ze=Re+jXe and for Ze=jXe. There are two comments worth
mentioning here:

1. Ky is the synchronizing power coefficient and will be assumed

positive in all that we do here.

1 P. de Mello and C. Concordia, “Concepts of synchronous machine stability as affected by excitation control,” IEEE Transactions on
Power Apparatus and Systems, PAS-88: 316-329, 1969.



2. Ky, K3, and Kg are always positive.
3. VMAF express K4 as (see eg. 8.130)
— 1 AElq

A=
K3 Ao Epp=constant

However, K3, being an impedance factor, is positive. We want K4
to also be positive; however, the above expression suggests that
E’q would increase with an increase in angle (or loading). This is
counter to the idea of armature reaction, where the internal flux
decreases as a result of stator current, as indicated by our
conceptual analysis in the notes called “ExcitationSystems™ per
the below figure:

Increased E; allows smaller §.

FIGURE 14
Phasor Diagram Hlustrating Relationship
Between Ej and & At Constant
Real Power

In fact, the book itself indicates as much via eq. (eq. 3.11) where
it says that “K4 is the demagnetizing effect of a change in the rotor
angle (at steady-state),” which is given by the following
relationship:
1.
K, =—=--limAE' (t )[ave-o (3.11)

K3 t—o0 Ad=u(t)

where we note the negative sign out front. Therefore, the book
expression (eq. 8.130), needs a negative sign.

Ineq. (***), Ge(S) is the transfer function of the excitation system.
Recall that there are several different kinds (DC, AC Alternator, and
static), each requiring somewhat different modeling. One kind that
has become quite common is the “static” excitation system,



represented by Fig. 2a, where Ka is the exciter gain and Ta is the
exciter time constant.

AVref /\ KA AEfd >
HH 1+STA
KF
1+ 5Ty
Fig. 2a

Fig. 2a is characterized by the following transfer function.
1+sT. )K
Ge (S) — ( F ) A
(A+sSTo)A+sT,) + KK,

The static excitation is typically very fast (no rotating machine in
the loop). Fast excitation response is beneficial for transient stability
because generator terminal voltages see less voltage depression for
less time during and after network faults. Such speed of excitation
response can, however, cause problems for damping, as we shall see
in what follows.

(****)

We repeat the equations (*) and (***) below.
AT, =K A6 + K, AE' +DAw

AV, = K,AS + KAE,

K K;K

AE' = ——2——AE, ————A§

1+ K,z'y, S 1+ K,y S

1
Aw=—(AT_—AT

@ - (AT, ) (*)
A§:1Aw
S

AE, =G,(s)(AV, —AV,) (**%)



We may extract from the above equations (*) and (***) a block
diagram relation, as seen in Fig. 2. Note that in this block diagram,
1i=M (instead of 1=Mwg as given in notes on “TorqueEquation”).
Careful comparison of this block diagram to Fig. 10.17 in your text
will suggest they are the same.

Fig. 2

We will use this block diagram to analyze the stability behavior of
the machine. Although one can use a variety of methods to perform
this analysis (Root locus, Routh’s criterion, eigenanalysis), we will
resort to a rather unconventional but quite intuitive analysis
procedure that conforms to that originally done in the deMello-
Concordia paper. This analysis is based on the following
observations made of the block diagram.

1. ATg, the damping torque, is in phase with speed deviation Aw.

2. ATs, synchronizing torque, is in phase with angle deviation AJ.
We call this synchronizing torque because the higher it is, the
more “stable” the machine will be with respect to loss of
synchronism. This is confirmed by noting that high K; means low
loading, as indicated by the fact that K; is the slope of the tangent
to the power-angle curve at the operating point.
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3. Because Abd=(1/s) Aw, we see that angle deviation lags speed
deviation by 90 degrees in phase.

This leads to a “stability criterion”. ...

For stability, the composite electrical torque must have positive

damping torque (it must have a component in phase with speed

deviation) and positive synchronizing torque (it must have a

component in phase with angle deviation).

So we can perform a qualitative analysis using the following ideas:

e Any electrical torque contribution in phase with angle deviation
contributes positive synchronizing torque.

e Any electrical torque contribution in phase with speed deviation
contributes positive damping torque.

Inertial torgues:

Let’s begin by just analyzing the “inertial” loops in the block
diagram. These are the ones corresponding to D and K4, as indicated
by the two bold arrows in Fig. 3.




e We see that the torque contribution through D, ATp, is
proportional to Aw so it contributes positive damping, as
expected.

e The torque contribution through K1, ATs, is proportional to Ad so
it contributes positive synchronizing torque, 90 degrees behind
the damping torque. Figure 4 below illustrates.

Positive

Aw axis V\ angle

ATy AT

\ 4

AT, )
Ad axis

Fig. 4
So as long as D is positive and there are no other effects, we obtain
positive damping contributions from the inertial torques.

Armature reaction torque:

But now let’s consider the influence of armature reaction, when we
get field weakening from the armature current. This effect is
represented by the loop through K4, K3, and K3, and is represented

on the diagram by ATy, as indicated by the bold arrow in Fig. 5.
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Fig. 5
The transfer function for AT, IS given by:

AT, —K,K.K, K,K,K,/-180°

ar

AS  1+sK,7'y, 1+ 5K, 7'y,

Let’s evaluate the phase of this transfer function at S=jmoesc Where
wosc 1S the frequency corresponding to the weakly damped
electromechanical modes of oscillation (from 0.2 Hz up to about 2.0
Hz). From this last transfer function, we can identify the
denominator as 1+jmoescK3t’go Which contributes a phase of
tan ! (woscK31’q0), and being on the denominator, is subtracted from
the -180° phase of the numerator. Therefore the electrical torque
contribution to phase, relative to A9, is:

¢ar =-180 —tan -1 Kgfld 0 Wosc

What does this do to the resulting torque? Since it is negative, we
draw the vector with an angle measured opposite the positive angle.

11



We clearly get -180°, but we also get an additional negative angle
from the tan™ term. Since t’gomosc IS POSitive, this additional angle
must between 0 and 90°. The effect is shown in Fig. 6 below.

A® axis

ATy

Positive

angle
AT|+ATar \

AT

Qar

Ad axis

Fig. 6

Note that the effect of armature reaction on composite torque is to
increase damping torque (in phase with Aw) and to decrease
synchronizing torque (in phase with Ad).

EXxcitation system torque:

This is the electrical torque that results from the Ks and Kg loops, as

shown in Fig. 7 below.

12



Fig. 7

This torque may be expressed based on the block diagram as:

K,K
ATexc - o Ge (S)(Avref o AVt)
1+s7',, K,

Ignoring AV s (it represents manual changes in the voltage setting),
and using (from eq. (**)):

AV, = K,AS + K AE,

we obtain

AT

exc

_ K, K,
1+s7',, K,

We want to express each torque as a function of Ad or Aw. But the

last expression has a AE’q. We can address this by noticing the

relation (from the block diagram) that ATe=KAE’=>
AE’=ATexc/K2, and so we can write that

G.(5)(- K,AS - K AE', )
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K,K K
ATeyc = 2. & Ge (s)| — KgAd — —GATeXC
1+s7'49 Kj K,
Solving for ATexc
ATexc = K K ———G ( ){ K5A5_&ATexcj:MGe(s) K K A-l-excc':'e(‘r"’)
1+s7'40 Kq K, 1+s7'y, K, 1+s7'y, K,
AT, [1 K5KeSe (S)j KRKAI G ()
1+s7'y, K, 1+s7',, K,
KKK 6 (a0
AT = _ 18ty Ky -K,K,KG, (s)Ad
R KRG Tise ‘10 Ky + KoK G, (5)
1+sr'y, K,
- K,K,K
ATge = 220 G, (s)(A5)

14 st'yo Ky + KK G, (S)
Now substitute equation (****) for the static excitation transfer
function Ge(s), repeated here for convenience,
1+sT. )K
Ge(S) — ( +S F) A
(A+sTo)A+sT,) + KK,

_K2K3K5( (1+5T; )K, j

AT (A+sT-)@A+sT,)+ KK, (A5)

e 1+sT,. )K
l+3r'd0K3+K3K6£ ( L ]

(****)

(@+sT)@+sT,)+ KK,
Multiply top and bottom by @+sT.)@+sT,)+K.K,:
_ ~K,K KK, (1+5T;) (A5)
"¢ @+ ST )1+5sT, )+ KoK, J1+s7',, Ky )+ KKK, (1+5T,)

The above relation appears quite challenging to analyze, but we can
simplify the task greatly by observing that the denominator is third
order. Thus, it will be possible to write the above relation as:

~ K,K, KK, (L+5T,)
exc = A5
(s+ p. Ns+p, s+ pg)( )

AT

AT

14



where p; are the poles. We may have 3 real poles or 1 real with 2
complex. We are aware that static excitation systems generally
contribute 1 real with 2 complex. We express the real pole as p1=c1
and the two complex poles as p2=c2+jw2, and ps=cs+jms, where ;>0
(otherwise s=-p; will have a right-half-plane pole). Thus, the transfer

function becomes:
A-l_EEXC = _K2 K3K5}.<A(1+STF) - (Aa)
(s+0,)(s+0,+ ja,)(s+0,+ jay)
We want to evaluate the transfer function at s=jwosc, Where wosc 1S
the frequency of oscillation of concern (we assume this frequency
to be an interarea oscillation between groups of generators).

Therefore,

AT, =— _|_<2 KSKSKA(]:+ ja)o?CTF) _ (A5)
([ +0,) (104 +0, + j@,)(JO, + 03+ @)

On combining imaginary terms in the denominator, we get:

AT = _KZ KS KSKA(1+ Ja)oscTF) (A5)

> (Gl + j(a)osc))(O-Z + J(wZ + a)osc))(as + J(w3 + a)osc))
We are interested in the phase of ATeyc relative to Ad.

Fact: When the generator is heavily loaded, it is possible for Ks to
be negative. See Ex 8.7, Fig. 8.1 (copied below), and section 10.4.3
in VMAF. This makes the numerator of the previous transfer
function positive.
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Figure 8.1 Variation of parameters K, ... , Kgwith loading: (a) K; versus P (real power)and Q (reactive power)
as parameter, (b) K> versus P and Q, (¢) K versus Pand Q, (d) K5 versus P and @, (e) K¢ versus Pand Q. (Source:
© IEEE. Reprinted from [12].)

A simulation of such a case is shown in Fig. 8 below. The solid curve
represents generators with fast high-gain excitation systems, but no
PSS. The other two curves represent significantly fewer of such
generators.
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Repeating our transfer function:
AT = —K KKK L+ o Te)

Ao
> (Gl + J( osc))(o-z + J(a)Z osc))(o-3 + J(a)s osc))( )

Assuming Ks<0 (so that the negative sign of the transfer function

cancels the negative sign of Ks), the phase of ATexc relative to Ad is
given by

_tan_lw_tan

0 0, O3
Consider some typical data, where mosc=4.396rad/sec (0.7Hz),
01=0.2, o2tjw2=5+}4.5, 63+jw3=5-}4.5, Tr=0.5. Then

0. = tan4.396(0.5)—tan* 330 _ 1518896 4y 70104

: 5 5
P =tan™ 2.198—tan " 21.98 —tan"1.7792 — tan"'—0.0208

=65.536-87.395-60.662+1.192=-81.329

IR0
P, =tan" e, T —tan™ g a3
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Using some typical data, the above identifies the phase lag to be
-81.329°. In this case, our diagram will appear as in Fig. 9 below.

Positive
A axis \ angle
ATI+ATar

Ad axis

ATIHATart+ATexc

ATexc

Fig. 9

and we see that the damping can go negative for fast (small Ta)-high
gain (large Ka) excitation systems under heavy loading conditions!
And this explains the effect observed in Fig. 8.

So what do we do about this?

Solution 1: Limit Ka to as high as possible without causing
undamped oscillations. This limits the magnitude (length) of the
ATexc Vector (see Fig. 9). But high-gain, fast response excitation
systems are good for transient (early-swing) instability! This is
indicated by the fact that, in Fig. 9, the ATex Vector increases the
synchronizing torque (i.e., it causes the resultant torque to be further
to the right along the Ad axis). And so we would rather not do this.
This is a “conflicting problem” in that increasing Ka helps transient
(early swing) stability but hurts oscillatory (damping). In the words
of de Mello & Concordia (pg. 6 of the paper posted on the website):

18



We thus have a conflicting problem, In those
cases where K. is negative and which are generally
the cases im'glving stability problems, a voltage
regulator is of major help in providing synchro-
nizing torques and curing that part of the sta=
bility problem. However, in so doing it destroys
the natural damping of the machine which is small
to start with.  The recourse has been to have
just enough regulator gain to provide synchronizing
power coefficient without cancelling all of the
inherent machins damping,

Solution 2: Provide a supplementary torque component that offsets
the negative damping torque caused by the excitation system. Again,

in the words of de Mello and Concordia:

This can be a satisfactory solution in most
cases; however, there can be instances where sta-
bility is provided by the regulator with very
poor damping, making opsration extremsly oscil-
latory. In some special cases of very long lines
requiring operation near the line limit, the solu-
tion is to have a fairly high regulator gzain to
provide the necessary synchronizing power coef-
ficient. In these cases, one sffective way to
solve the damping problem is to provide a special

stabilizing sigmal derived from machine sveed,
terminal frequency, or power, )

=>»Basically, the idea is to push (rotate forward) our torque vector
back into the upper-right quadrant. Thus we need to phase-advance
the torque vector by between 20 to 90 degrees. We will introduce a
supplementary torque that does this, denoted by AT,ss, as indicated

in Fig. 10 below.
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The transfer function KsGiead(S) is intended to provide the
supplementary signal ATpss as illustrated in Fig. 11 below.

Positive
Aw axis w angle
ATpss ATHAT 4+ AT exFAT
| ar exc pss
A axis
AT|+ATar+ATeXC
Fig. 11

We will take Aw as the feedback signal for our control loop to
provide ATpss (we could also use angle deviation, but speed
deviation is easier to obtain as a control signal).

20
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We may provide “shaping” networks to process the feedback signal
in providing it with the proper amount of phase (lead or lag). For
example (see Dorf, pg. 362-363), a network to provide phase lead is
shown in Fig. 12.

AC}

|
|
C Ro
V1 V2

Fig. 12
(One can alternatively use digital signal processing techniques.)
In the phase lead network above, we get that

V, (s R 1+ ars
Cea (9) = Vzés)) B 1 2 " a(l+m)
LT
R, + Cs
2 {R, +1/Cs}
where
o R, +R, o RR, c
R, R, +R,

Dorf shows that the maximum value of phase lead given by the
above network occurs at a frequency of

1

W, =
o (eqt. a)

and the corresponding phase lead you get at this frequency is given
by
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a-1

SIn ¢m — —a N 1 (eqt. b)

So the idea is that you know how much phase lead you want (this is
¢m), and from that you can solve for o in (eqt. b). You also know the
frequency om that you want to provide the maximum phase lead (the
frequency of your most troublesome electromechanical mode and is
considered to be the PSS tuning mode), and therefore with o and wm,
you can use (eqt. a) to solve for 7.

Note from the above diagram that the desired supplementary signal
ATpss is actually lagging A, so one might think that we should
provide phase lag, not phase lead, to the input signal (which is
actuated by Aw). This would in fact be the case if we could introduce
the “shaped” signal (the output of Gieaq) directly at the machine
shaft.

However, this is not very easy to do because we cannot produce a
mechanical torque directly from an electrical signal transduced from
rotor speed.

In fact, the only place we can introduce an electrical signal is at the
voltage regulator, i.e., the input to the excitation system, Ge(S).

This causes a problem in that we now incur the phase lag introduced
by Ge(s) and the t’qo block, which is typically around ¢ex.= -80
degrees as discussed previously.

So this means that we must think about it in the following way:

1. We start with the Aw signal.

2. We introduce a phase lead of an amount equal to X. What is X?

3. We incur ~80 degrees of phase lag, caused by ¢exc.

4. We provide ATpss lagging Aw by, say ~25 degrees. This means
that X-80~-25 degrees =» X=55 degrees.
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Therefore X must be about 55 degrees. So we must provide an
appropriate shaping network. This shaping network is referred to as
Glead(s)-

Therefore we can write

sin55= 21
a+l
And solve for a:
§in55=0.819= "1 = 0.819( +1) = 1
a+1
0.819¢+0.819=-1= -0.181¢ =-1.819

— a =10.05

Then choose t based on

a)OSC:a)m:T\/E

where om=27n(fosc), and fosc IS the frequency of the oscillation
“problem mode.” That iS

[0 :>T\/_ — =T =

1
0sC ’Z'»\/_ a)osc a)osc \/;

and for mesc=4.396rad/sec (0.7Hz), we have:

1
= =0.0718
4.396+/10.05

Then, if you are using an RC phase lead network, you can choose R
and C according to

R, +R, RR,
T=—"—
R, R, + R,
Note the principle behind the power system stabilizer:

e Cancel the phase lags introduced by the excitation system with
o the right amount of lead compensation so that

o=
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= the total torque exerted on the shaft by the excitation control
effect will be
¢ in phase with speed deviation and
o thus provide positive damping.

So the PSS introduces a supplementary signal into the voltage
regulator with proper phase and gain adjustments to produce a
component of damping that will be sufficient to cancel the negative
damping from the exciters.

Final Exam Question #1:
Your book provides expressions for Ki-Kg on pp. 313-314 for
the case that the transmission line connecting the generator to
the infinite bus has impedance of Z.=R¢+jX.. Also, at the end
of these notes, the same constants Ki-Kg are derived for the
case that the transmission line connecting the generator to the
infinite bus has impedance of Z.=jX. (i.e., Re=0). Starting from
the expressions given in your book, set Re=0 and show that
those expressions collapse to the expressions given at the end
of these notes.

Final Exam Question #2:
Work problem 10.1 in your text. Observe the transfer function
Ge(s) associated with equation (10.14) differs from the transfer
function that we used in the above notes.

Final Exam Question #3:
Work problem 10.2 in your text.
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APPENDIX 3
DERIVATION OF BLOCK DIAGRAM MODEL
FOR LOADED GENERATOR CONDITIONS

Under losded conditions, a disturbance will cause the power angle, §, between the voltage behind the transient
reactance, and the infinite bus voltage, Vi, to deviate from its non-zero steady-state value and then oscillate. The

E)
oscillations Jie out in the damped or stable case, and they grow in the undamped or unstable case. From the phasor
diagram in Figure AS-1, it is apparent that the change in 4 is related to the change in B‘; and the change in V..

‘;.l

We derive the relationships between these quantities in what follows, assuming a synchronous generator is connected to
an infinite bus, as above, and that the armature and external resistances are zero. 2

Derivation of Relationship Between £y, and 8.

We define all reactances as the generator reactance plus the line reactance, i.e.,

Xe¢= Xggen+ X

X¢= X}Jﬂt + XL
Xy = Xggen + X0 v_
With these definitions, the phasor diagram indicates that ~

where
Ky = ;ﬁ ~— /4 rte s le )(/‘,/
d ; " ) r‘ ” f’ ~

Solution of the above equation for E, in terms of Ky yields e L S

o ey cd T

1
E'=T\";+V°°“-K—;l°“6 Re= 0O, qume )]

The equation for the generator field winding in terms of field quantities is abeve { /lwcﬂz $

vy = rpip 4 %L (2)

To get this equation in terms of stator quantities, we define a constant, k /7, analagous to a transformer turns ratio, that
allows us Lo refer quantities from the rolor side to the stator side. The field voltage referred Lo the stator side is therefore

. o2
Eja= ;"l Sy = 3 Eya
Because iyry s equal to the field voltage vy under steady-state conditions, it follows that By is

E. = %ilr; = c',r, = %E'

3-1
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This leaves only the voltage behind the transient reactance, which may be defined as
o b LdE

Substitulion of the above three expressions into equation 2 vields

T r Ly dE]

NI
Multipling through by /vy gives

it 5
Epa = Ep+ Thy—5t = By = Epa - Tpo— (3}

where Tj, = Ly /vy is the open cireult Lransient time constant. Substitution of equation 3 inte equation 1, multipling by
K3 and rearranging, we have

dE
J'fﬂ'},T' +E; = KaEpa + Vio|l = Kaf cosé (4]
We assume that all voltages in equation 4 are normalizged to the same base voltage,

Fecalling the swing equation,

a4 b
MFq-BI-]-F,:P., (5]

where Fg and oy are the electrical and mechanical powers, respeetively, and P, may be expressed as
BV <0 S
= 64 = —
P wﬁuim 5 II,. PE;I““H

Linearizing equations 4 and b about Uhe sleady-slale operating peint, B, f,, we have

dJAE;
J’faj":,-T'_i.aE‘;:HaﬁErd—Vm{l—.’f&}.ﬁﬁﬂlﬂﬁp i)
d* A ddé  fF, P _
Mg+ D g T Ioomi 88+ gy e, A5 = AP @

Defining the constants &, throogh Ky as .
Ky= B g = S cos by + VA B cos s,
K:. = 5& II...E;_,= -Hﬂ"iﬂ ;p

Ky = ﬁ )
{previously defined ) Ky= H: =1V sind, = -J'—*z'-',lll-l.’wtih £,
Substiluting these constants into linearized squations & and T,
KsTL,AF, + AE) = KaAEps - KaKAb (B
MAS + DAS + KyAd + K>AE, = AP ()
Lallace tramsforming equations § and 9, and noting that AEJ(0™) = AH0™) =0, we have
KaTi,aAE (8] + AE(s) = KaAEpg(s) = KoKy Ab(s) (10)
{Ma® + Ds + Ky)Ad{s) + Iy AE][2) = AFn(s) 1
Heasranging equaticns 10 and 11, we have
[FaTy, 5+ 1)A E,;,[i] = KA Epg(z) — Ky KyAb(s) (12)
(Ms™ 4 Ds b K1)AS = AP, - K3AE, {13)
3i-1
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Inspecting equations 12 and 13, we can draw the sssociated block diagram, given in Figore Ad-Z.

&Py
Y| Ka oF. I é-g I b
LN ﬂ
el - \ 1‘5“;“« Hg f e

Maes Doty

Hy

Derivation of Relationship Between & and Ve,

The block diagram model abave produces coly A and AE]. The excitalion system, however, senses the terminal
voltage Vo and feeds it back to the exciter inpot. We now determine how changes in & and £ affect the feedback quantity
Vr. In other words, we desize to find two constants Ky and Ky such thal

AVp = Kyhé + KeAE, (14)
From the phasor diagram in Figare A3-1, we can write
Eyeft = Vi 4 X j10e0 4 X Bt
Multipling by £~ and converting to trig functions,
Ey = Vegeosd = Vg sin§ = Xoly 4 55,04

Equating real and imaginary parts,

Vo s
E) = Viocoad— Xila= la= ""';“'i (18}
Vi sin 6 = X, 1, = 1, = Y tind (16)
x!
The gensrator termminal vollage ¥p s related lo the mfinite bas volinge Vg by the equation
Ve =V + X, T (17}
where the bar over Vi and [ imply phasor quantities. Mow we introduce the d and g quantities Vg, Vy, Ig, and 1, as
V= (¥ +jVi)e? (18)
T= (I +jlape?* (19}
Substituting equations 18 and 18 into 17, we have
(Ve + Va)e* = Vg + J X0, + jla)e
Muliipling through by e~ gives
Wy + Vg = Vig cos§ — Vg sin 6+ jXp 1, — Xpl4
Equating real and imaginary parls, we have - P
Vy = Voo comd = Xy = Veeo?T ZLNESE 20)
V.!.’I:';.h-'ll"ﬁtinﬁa; xh Eﬁ,p._&':""‘s_ \Lﬁ- L"&-.J {2”
Substituting equations 15 and 16 into equations 20 and 21, respectively, we have J"':!li
X X X
b';=Vumiun—z[i’bm-ﬁuE‘:,|=Fhemﬁ[l—x—E]+x—;E‘; ()
vom Xy b vy s 01 3
4= 5, Voo = Veasin -—unm[x—‘—] %, (23}
33
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Noting that

' 1= :‘75 = x_‘ - "
and \ _4\;1;_1 XL-X_ Ko
Xy Xy X
equations 22 and 23 may be simplified to
Xa X 24
Vi = —xf-"-VmeonS + 575 (24)
X .
Vo= - x:" Ve 5in § (25)

Also, . o
" Vi = VeV = (Vy + VeV, = jVa)e!

= Vr= V47 (26)

Equaticns 24, 25, and 26 give the dependence of Vr on E; snd 6§, ie, Vo = Vr(E;,§). We now find the linearized
dependence of AV on AEy and AS, ie.,

a avy
AVyp = 8_‘;" l'o.lf;. Ab 4+ ﬁ .25, AB; = KsAb+ KoAE; (27)

Using equations 24, 25, and 26, and the chain rale for differentiation, we can compute K and Ky as
. XigenVee
Ks = Viago [ BE Is..s;;,= XpapVes . ": cos 8, — ~pH= sin 4]
: X
Ko = §5 In..e,.= xhvs

where Vi, Vo, and Vi, are computed using equations 24, 25, and 26 with the steady-state values §, and Ey, substituted
in for & and E‘;. respectively.

Modeling equation 27 in block diagram form, together with the block diagram of AEy.fAS (Figure A3-2) and the

block diagram of the excitation system (Figure 15), we have the block diagram for the entire excitation control system,
Figure A3-3.

, aVr Ks
Sea)
aEq)
|
e Ke |
'3 | +<Te 1+ KaTds Ms*40st W
K
aky !
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