Per-unitization and Equivalent Circuits

1.0 Normalization of voltage equations

We desire to normalize the voltage equations, that is, we desire to express
them in per-unit. The advantages of doing so are:
The per-unit system offers computational simplicity:

o by eliminating units and expressing system quantities as
dimensionless ratios;

o by eliminating the need for using arbitrary constants and
simplifying some of the mathematical expressions so that they
may be expressed in terms of equivalent circuits.

The numerical values of currents and voltages are related to their rated
values irrespective of machine size!.

. Impedances, when given on the machine base, lie on a relatively
narrow range so that errors can be easily detected.

There are several different possible normalization schemes. What VMAF
does (see Appendix C in VMAF) is to carefully compare the merits of all of
these schemes. In doing so, they developed some criteria, guidelines, the
most important of which is that the form of the voltage equations and the
power expression must be independent of whether they are in pu or MKS.

Note that machine manufacturers, when expressing their machine data in per
unit, may use a different system that does not satisfy the power invariance
property - they use Park’s original transformation (called “Q” in VMAF, eq.
(4.22), instead of our “P”). Below is a typical machine data sheet?.

! K. Padiyar, “Power system dynamics: stability and control,” 2™ edition, BS Publications, 2008, p. 62.
2 https://www.skm.com/Synchronous_Generator_Input_Data.html
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Selected Model

Rated Current: 22553

Engine: 3512 Generator Frame: 824 Genset Rating (kW): 1500.0 | Line Voltage: 480
Fuel: Diesel Generator Arvangement: 2628102 | Genset Rating (KVA): 1875 OgPluse Voltage: 277
Frequency: 60 | Excitation Type: Permanent \dapeti Pur. Factor: 0.8

Duty: STANDBY Connection: SERIES STAR

Application: EPG

Starus: Current

Spec Information

~ Versien: 40400 40268 38380 16517

Generator ification
Frame: 824 Type: SR4B -~ No. of Bearings: 1 : gt inasge.
Winding Type: RANDOM WOUND Flywheel: 21.0 e U(;",;L“d ;;\;vo Emc;‘:';cy »
Connection: SERIES STAR Housing: 00 & ' :
z 0.5 7500 944

Phases: 3 No. of Leads: 6 0.75 11250 95.0
Poles: 4 Wires per Lead: 8 10 1500.0 049
Sync Speed: 1800 Generator Pitch: 0.6667

Reactances PerUnit  Ohms

SUBTRANSIENT - DIRECT AXIS X, 0.0225

SUBTRANSIENT - QUADRATURE AXIS X, 0.1676 0.0206

TRANSIENT - SATURATED Xy 0.0331

SYNCHRONOUS - DIRECT AXIS X, 04056

SYNCHRONOUS - QUADRATURE AXIS X, 15763 01937

NEGATIVE SEQUENCE X, 0.0215

ZERO SEQUENCE X, 0.0098 0.0012

Time Constants _ Seconds 1

OPEN CIRCUIT TRANSIENT - DIRECT AXIS Ty, 58770

SHORT CIRCUIT TRANSIENT - DIRECT AXIS T,

OPEN CIRCUIT SUBSTRANSIENT - DIRECT AXIS T, 0.0086

SHORT CIRCUIT SUBSTRANSIENT - DIRECTAXIS T,

OPEN CIRCUIT SUBSTRANSIENT - QUADRATURE AXIS T‘qo 0.0065

SHORT CIRCUIT SUBSTRANSIENT - QUADRATURE AXIS T, 0.0057

EXCITER TIME CONSTANT T, 02225

ARMATURE SHORT CIRCUIT T, 0.0497

Short Curcwit Ratio: 0.35 ||  Stator Resistance Field Resistance = 0.9324 Ohms
——
Voltage Regulation Generator Excitation

Voltage level adustment: +/- 5.0% No Load Full Load, (rated) pf
Voltage regulation, steady state: +/- 0.5% Series Parallel
Voltage regulation with 386 speed change: +/-  0.5%|| Excitation voltage: 673 Volts  32.63 Volts ~ Volts
Waveform deviation line - line, no load: less than 3.0% || Excitation current 177 Amps  7.06 Amps  Amps
Telephone influence factor: less than 50

The choice made by VMAF satisfies the above criteria; in addition, the
VMAF choice ensures that the numerical values of the per-unit impedances
are the same as those provided by manufacturers using their system of

normalization.




In most undergraduate power system analyses courses, we learn that per-
unitization requires selection of two base quantities out of the following four:
V, |, Z, and S, and then the base quantities for the other two are computed.
The situation is the same here, except that we also must deal with speed (or
frequency). This necessitates that we must also select a base for either
frequency (w or f) or time, t.

In addition, we will also have need to compute base quantities associated
with flux linkage (1) and inductance (L or M).

Our approach will be to obtain the bases for the stator side and then the bases
for the rotor side.

One may note two excellent references on the subject of per-unitizing

synchronous machine models:

1. A. Rankin, “Per-unit impedance of synchronous machines,” AIEE
Transactions, 64, Aug., 1945.

2. M. Harris, P. Lawrenson, and J. Stephenson, “Per-unit systems with

special reference to electrical machines,” Cambridge University press,
Cambridge, England, 1970.

Other references that address this subject, besides VMAF, include those by
- Sauer and Pai

- Concordia

- Padiyar

- Kundur

and also course notes from de Mello.

1.1 Stator side per-unitization:

We select our stator-side bases as:

e \/g: the stator rated line-neutral voltage, rms.

e Sg: the stator rated per-phase power, volt-amps

e g: the generator rated speed, in electrical rad/sec (=are=377)

We select per-phase power
and line-neutral voltage
bases for the voltage
equations because it
enables us develop the
voltage equations in terms
of per-phase circuits.




Then we may compute bases for the following 5 quantities:

. | — SB
e current: Ig = ——
VB
V., V¢
e impedance: XB = RB = ZB — B_"8B
1 27T
o time: tB = — (We could have used tB = — but this would
Wy Wy

simply provide a different scaling and is therefore arbitrary. This choice
of ts is the time required for the rotor to move one electrical radian.)
e Fluxlinkage: A, =V t; (This comes from the fact that

V:MzM:A/1=VAt)
dt At
XB:VBtB_ VB _XB

5 5 _a)BIB_a)B

Inductance; L, =

Question: How does our choice of stator base quantities affect the per-unit
values of the d- and g-axis quantities? Note: although d- and g-axis quantities
associate with fictitious rotor windings, we view them to be stator quantities.

To answer this question, let V and I be the rms magnitudes of the a-phase
line-neutral voltage V-« and a-phase line current 1<%, respectively. Then
the per-unit phasors are

I

_ V _
Vi=—ZLa=V L« lv=—ZLy=1,ZLy
VB I B
Now let’s investigate the 0dq quantities.
To begin, recall that Peak=sgrt(2)*RMS; then the expressions for
instantaneous voltages and currents for each phase are:



vV, =2V sin(@ +a) i, =~/2Isin(@+7)
vV, = V2V sin(@+a —120°) i, =+/2Isin(@+ y —120°)
V, =V sin(@+a +120°) i, =~/2Isin(6 + y +120°)

Multiply the above by the Park’s transformation matrix P. Recalling P as:

11 1
2 V2 V2 V2
P=_/=|cos® cos(@—-120) cos(@+120)

sind sin(@—-120) sin(@ +120)

and performing th_e_necessary trigonometry, we obtain:

0 0 |
Voag =| NV sinar lpgg =| V3l siny
| V3V cosa V3lcosy

(This confirms our conclusion at the end of the last set of notes, “macheqts,” that,
for balanced conditions, the 0dg quantities are constants, i.e., DC.)

Now, per-unitize by dividing by Vs and ls:

73 0 0 0 0
Voaq = 3vsinac =| V3V, sina logq = @siny =| J/3l,siny
u VB u IB
V3V, cosa N V3l, cosy
CoSc ——CO0Sy
B L 'B i

Observe about the above that
1. The per-unit d and g voltages are equal to the per-unit a-phase voltage

scaled by /3sin & and+/3cos «, respectively.
2. The per-unit d and g currents are equal to the per-unit line current scaled

by /3sin y and/3cos y, respectively.



1.2 Rotor-side per-unitization:

Recall that in system per-unitization, we must select a single power base for
the entire system, independent of the fact that some sections of the system
are magnetically coupled through transformers, i.e., we do NOT choose
different power bases for different sides of a transformer.

The same restriction applies here, where the rotor circuit is magnetically
coupled to the stator circuit, i.e., the power base selected for the stator side
must also be the power base used on the rotor side. This is Sg.

In addition, we are required to select the same time (or frequency) base for
both the stator side and the rotor side. This is tg (or ws).

On the rotor side, we have one base left to choose (or compute). For
transformers, we typically choose the one remaining base as the voltage base
(or current base) according to the turns ratio. Here, however, we do not know
a “turns ratio,” and therefore we are left with problem of what, and how, to
choose. (One text treats the problem under the assumption that a “turns ratio”
Is known between stator and rotor circuits - see the text by Padiyar, “Power
System Dynamics,” pp. 73-77.)

In making this choice, a problem results from the fact that stator power levels
are typically several times the rotor power levels. VMAF give an interesting
comparison (see pg 103) of a typical stator-side per-phase power rating of
100 MVA and field winding ratings of 250v, 1000A (250kw), a power ratio
of 400:1. What are our choices of the one remaining rotor-side base quantity
in this case?

e Choose voltage base=rated voltage=250v, but then the current base is
Is=100E6/250=400000 amps, and per-unit values of field currents will be
very small.

e Choose current base=rated current=1000A, but then voltage base is
Ve=100E6/1000=100000 volts, and per-unit values of field voltages will
be very small.



Analogy to transformers:
Consider an illustration adapted from Krause, pp. 4-5. Fig. 1 shows
magnetizing and leakage flux for a transformer configuration.
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Fig. 1: Magnetizing and Leakage flux
Here we can write that

ﬂl — lell + N12I1 + N1N2|2

R R R, 1)
From | From I,

where the first two terms represent flux linkage with coil 1 from I; and the
third term flux linkage with coil 2 from I,. We observe that of the flux linkage
from 11 (first two terms), the first term represents leakage flux and the second
represents magnetizing flux. The first two terms comprise the flux linkage
attributable to the self-inductance and the third term the flux linkage
attributable to the mutual inductance. The first two terms attributable to self-
inductance may be further expressed as

le le N1N2
ﬂiz E'FE |1+ Rm |2 - Il +L1Lmd1 I1+M|2 (2)
h Lind1

where |1 is the leakage inductance, Lmqi IS the magnetizing inductance, and
M is the mutual inductance. Observe that the magnetizing inductance is not
the same as the mutual inductance, i.e., Lmg1 # M, if N1#N2. However, the
magnetizing flux Amgi=Lma1l1 is the same as the mutual flux Ml, since
N1l:=N2l, which we know to be true for transformers. We want to impose
a similar relationship on the synchronous machine mutual fluxes.




Representing the self inductance as L1, we have

Li=l1+Lmaz
which indicates that the self inductance is comprised of the leakage
inductance plus the magnetizing inductance.

Similar analysis results in Lo=Il>+Lmg>.

Back to synchronous machines:

Here, we will select the base quantities according to the following criteria:

We select the base currents for the four rotor-side windings F, D (G, Q) to
produce the same mutual flux in the air gap as produced by the stator-side
base current Ig flowing in the corresponding fictitious d-axis (g-axis) coil.

We will begin by applying this idea to obtain the base current for the main
field winding.

Base-current for main field winding, approach 1:
One can visualize the above concept for the case of the relationship between
the F-winding and the d-winding, in Fig. 2.

d-winding

F-winding

Fig. 2: Base currents in d and F windings

The reason this is
beneficial is that it
will enable us to
develop a relatively
simple circuit to
represent direct-
axis pu quantities
and another one to
represent
quadrature axis pu
quantities. The
form of this cct will
be “tee”. (see App
C, top of p. 689)
and pg. 34 of these
notes.




We see from Fig. 2 that we select Igg, the field winding base current, as
that current when flowing in the F-winding will produce a

mutual flux Amg equal to the same mutual flux that is produced
by a current Ig flowing in the d-winding.

But how do we express (compute) Igg?

From our previous set of notes (p. 29, “macheqts”), and also eq. 4.20 in
VMAF, we derived

ya L, 0 0 0 0 0 0 1l |

24 0 L, 0 kM. 0 kM, 0 |i

4 0 0 L, 0 kMg 0 kM |l

Ao |=| 0 kM 0 L 0 M 0 |i

ﬂ,z 0 0 kM, 0 L 0 M, i: eq. (4.20)
Y 0 kM, 0 M, O L, 0 i,

| 0 0 kM, 0 M, 0 L |l

From the second equation in (4.20), we can see that
Ay =Lyl +KkM o +kM i, (eq. 3)
where k=V(3/2).

Lqig is all of the flux produced by the d-winding, but only a part of this flux
links with the F-winding. Call this flux from the d-winding that links with
the F-winding Amd, given by Amg=Lmdls, Where Lng IS the magnetizing
inductance associated with this flux.

The difference between the total flux from the d-winding and the mutual flux
Is attributed to the leakage flux A, so that,

laig=Laig- Lmgid (eq. 4)
Canceling the current iy, we see that
lg=Lg-Lmg=> La=lg+Lmg (eq. 5)
When Ig flows in the d-winding, so that ig=Ig, the mutual flux is given by
Amd=LmalB (eq 6)



Looking back at eq (3), we see that the flux from the F-winding that links the d-
axis winding is just KMrir.

Our criteria for selecting Irs says that when Ies flows in the F-winding, the mutual
flux linking the d-winding should equal the mutual flux from the d-winding
linking the F-winding when it carries Is. Thus, we write that

Amd=Lmdls=KMFIFs (eq. 7)
And we see that
| = Ling ., (ed. 8)
kM

Mr and Lmg are generally provided in (or can be obtained from) manufacturer’s
data for a given machine?®.
= Mg can be computed as illustrated in Example 4.1 (which we review
below), using the magnetization curve,
» |mg=Lg-l4, where manufacturer’s data sheets contain Lq and lg.
Therefore, once Ig is selected, Ire may be computed.

Base current for main field winding, approach 2:
One may also develop a relation for Irs from the perspective of the flux linking
the field winding, i.e., instead of using eq. (3) from (4.20°), use:

Ae =KM I,y + Ll + M, (eq. 9)
Similar to eq. (5), the self inductance Lr is comprised of the leakage and the
magnetizing, i.e.,

Le=l+Lir (eq 10)

Inspecting eq. (9), we see that the flux from the d-winding linking with the F-
winding is KMFrigq, so that when is=Is and ir=Irs, we have that

LmF|FB:kM|:|B (eq 11)

Iy = Me
FB LmF B

where, as before, Mg is obtained per Example 4.1 below, Lnr=Lg-Ig, and L,
Ir are obtained from manufacturer’s data sheet.

and we see that

(eq. 12)

% Note: in MKS units (i.e., henries), Lmg is not the same as KM , i.e., the reciprocal mutuals are not equal.
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Base current for D-winding:

We select the D-winding base current, Ipg according to the following criteria:
We select Ipg, the D-winding base current, as that current when
flowing in the D-winding will produce a mutual flux Amg equal to the
same mutual flux that is produced by a current Iz flowing in the d-
winding.

Similar analysis as for the F-winding results in

L kM,
DB kMD B’ DB LmF B

(eqg. 13)

We may also utilize a similar procedure between D and F windings to obtain

L
| SN (eq. 14)
DB M i FB

Base current for Q-winding:

We select Q-winding base current, lgg according to the following criteria:
We select Igs, the Q-winding base current, as that current when
flowing in the Q-winding will produce a mutual flux Amq equal to the
same mutual flux that is produced by a current Iz flowing in the g-

winding.
Similar analysis as for the F-winding results in
= kM—Ql 15
QB kM B QB — B (eq. 15)
Q mQ

Base current for G-winding:

We select the G-winding base current, Igg according to the following criteria:
We select Igs, G-winding base current, as that current when flowing
in the G-winding will produce a mutual flux Anq equal to the same
mutual flux that is produced by a current Ig flowing in the g-winding.

Similar analysis as for the F-winding results in
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o =m0 1, = Mo
GB — B GB —
kIVI G mG
We may also utilize a similar procedure between Q and G windings to obtain

L
I S I (eq. 17)
GB M ! QB

I B (eq. 16)

Summary:
Eqt. (8) together with eqts. (12-17) provide the ability to develop any of the

equations given as (4.54) in VMAF. These equations are referred to as the
“fundamental constraints among base currents” and are given by:

2 __ 2 2 _ _
deB _LmFIFB _LmDIDB _kMFIBIFB _kIVIDIBIDB _MRIFBIDB

IVIYIQBIGB

L - kM
_ _md IBand(12)|s | = F 1 We

mF

can multiply the left-hand-sidestagether and the right-hand-sides together to
bt . I 2 — I_md kM F I 2
optain: "rs kM F LmF B

Now define the following k-factors:

I I I I
_'B _ !B _ B _ 1
kF — —, kD I I—’ k — —, kG — I—
FB DB QB GB

Because we have the same power base on all stator and rotor circuits, we
obtain:

SB :VBIB :VFB | FB :VDB I DB — QBIQB — VGB IGB
Then the above k-factors may be expressed. For example,
V. I
Vel =Vigles = 2= = kF
VB IFB
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In summary,
V
Ke :\%’ kD:\%’ kQ:%’ Ke :\%
B B B B

Note that these k-factors may be considered to be effective turns ratios.

We may also derive expressions for the resistance and inductance bases. Our
desire is to be able to compute rotor-side bases as a function of stator-side
bases. The k-factors given above will be very handy here.

Rotor-side resistance bases:

V Ve, IV
RFBEIFB: B8 U8 _ 2R

FB VB IFB IB

Likewise,
R.s =k2R,, R

Rotor-side inductance bases:

_VFBtB _VFB IB VBtB

=kZR;, Ree = kSR,

QB Q

L . = = —kZL
" IFB VB IFB IB o
Likewise,
LDB — ké LB’ LQB — ké LB’ LGB — ké LB

Rotor-stator mutuals:

Your text, pg. 103 refers to HW problem 4.18 which states that base mutuals
must be the geometric mean of the base self-inductances, i.e.,

MlZB = V LlB LZB

Thus, we have that the base for the field winding to stator winding mutual
terms is given by (see eq. 4.57 in VMAF):

13



MFB — LBLFB :\/LBkIELB :kFLB

Note that Mg Is not the same as the base self inductance Lgg given above.
Likewise, we get (see eq. 4.57 in VMAF):

MDB:kDLB’ MQB:kQLB’ MGB:kGLB

Rotor-rotor mutuals:
There are just 2 of them (see eq. 4.57 in VMAF):

MRB Y LFBLDB :\/kéLBk[z)LB :kaDLB

Likewise,

Mg = KgkoL

2.3 Example 4.1, pg 105 of text
This is a good example that you should review carefully. Here is the first part
of it (p. 106-107 continues with it).

Example 4.1. Fmd the pu values of the parameters of the synchronous machine for which the fol-
i ata é an actual machine with some quantities, denoted by an asterisk,

€ Why are some values “estimated for
academic study”? (See pg. 20 below)

being estimated for academic study)

Rated MVA = 160MVA Lo=1423x1073H*
Rated voltage = 15kV Y connected ty =1, (unsaturated) = 0.5595 x 1073 H
Excitation voltage =375V kMp=5.782x 10" H*
Stator current=6158.40 A kMg=5.0x10"3H*
Field current =926 A kMg =2.T79 x 1073 H*
Power factor =0.85 r(125°C)=1.542% 107 Q
Ly=6341x1073H rr(125°C)=0.371Q
Lr=2.189H rp=18.421x 1073 Q*
Lp=5989x 107 H* rg=6.64x107° Q"
L,=6.118x 107 H ro=18.969x 1073 "
Lg=531x10"3H* Inertia constant=1.765kW s /hp

From the no-load magnetization curve, the value of field current corresponding to the rated voltage on

. ) e -
the air gap line is 365 A. €Note this statement; What is “air gap line”?

See Fig. 3 and Fig. 4 below and related
comments.
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Solution
Stator base quantities:
Sg=160/3=53.3333MVA /phase
Vg =15,000//3 =8660.25V
Ip=0615840A
t5=2.6526x107"s
Ag=8660x%2.65x 1077 =22.972 Wb turn /phase
Rp=8660.25/6158.40=1.406Q

Lp=8660/(377x6158)=3.730x 103 H 4.11 relates abcFGDQ flux
Lya=Lg—13=(6.341-0.5595)10"2=5.79x 10 H linkages to abcFGDQ currents,
-3 -3 e.d.,
Lpg=L,—~1,=(6.118-0.5595)1073=556x 103 H kaiLaaia+Labib+Lacic+LafiF+LaGiG
To obtain M, we use (4.11), (4.16), and (4.23). At open circuit the mutual inductance L, an Lapip*Lagio. At open cct, this is
the flux linkage in phase a are given by Aa=Larir Which is, by 4.16,
Aa=(MgcosO)i.

Loyp=Mpcos@ A, =ipMpcost € [Also. see detail in these notes below.]

The instantaneous open circuit voltage of phase a is! v, = ipwpMp sin 0, lwhere @y is the rated syn- €4.23 gives Va=-rai,-dA./dt; for
chronous speed. Thusl[he peak phase voltage Vjeac corresponds to the product ipwgMp{so that open cct, iz=0 and So va is

Mp=Vead(i Fa)R)I From the air gap line of the no-load saturation curve, the value of the field current negative of the derivative of Aa.
at rated voltage is 365 A. Therefore

€Note “peak phase voltage”.

> Mp=8660v/2/(377x365)=89.006x 10* H
kMp=1/3/2%89.006x 107 =109.01 x 107*H

Then ky = kMy/L,,; = 18.854.
Then we compute, from (4.55) to (4.57),

Irp = 6158.4/18.854=326.64A From (4.55) in VMAF, and bottom p. 12, leg=lg/ke

Mpp=18.854x3.73x 107 =70.329x 107*H  From (4.57) in VMAF, and top of p. 14, Mre=keLs
Vip = (53.33 X 106)/326‘64= 163,280.68 V From (4.55) in VMAF, and bottom of p. 12, Vrs=Vsls/lre=Ss/Irs

Rpp = ]63,280.68/3 26.64 =499 890 From (4.??) in VMAF, and bottom of p. , Rrs=Vrs/lrs

Lep=(18.845)*x3.73x 107 =1.326 H

The only thing that is perhaps not too clear is the computation of Mg. | will
just review that part of it here.

Computation of Mr: VMAF make the statement (see above):

“From the no-load magnetization curve, the value of field current
corresponding to the rated voltage on the air-gap line is 365 A.”

15



The “open-circuit characteristic” or “magnetization curve” plots

e Something proportional to exciting (field) current on horizontal axis

e Something proportional to the flux on the vertical axis.
under open-circuit conditions (phase windings are open). Figure 3 below
illustrates.

a

Air-gap line,

w6 <L

Due to saturation of
the iron (a decrease in
permeability or

increase in reluctance)
for high MMF

IF
F:NiF
H=F/I

Fig. 3

The air-gap line is the Va vs. ir relation that results if the iron has constant
permeability. The solid line that bends to the right is the actual characteristic
that occurs, which shows that terminal voltage falls away from the air-gap
line as the field current is raised beyond a certain point. This falling away is
caused by saturation of the ferromagnetic material, resulting from the
decrease in permeability under high flux conditions. Figure 4 illustrates a
magnetization curve for a real 13.8 kV synchronous machine. The vertical
axis is line-to-line voltage.

16
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This synch gen is separately excited, and so
its field current I; (here designated as “rotor
amps”) is supplied from the armature of a
separate DC gen. The separate DC gen has
field current lpcgen (0n DC gen stator)
which creates field flux ¢. The current Iy,
which is the armature current of the DC gen
and the field current of the synch gen,
increases with DC gen armature voltage E,,

and E;=ko¢, where ¢ increases with Ipcgen.
And s0 It and Ipcgen are both indicators of
synch gen field strength.

The two magnetization curves to the left
plot line-to-line open cct voltage of the
synch gen against (&) locgen and (b) Is.

What is done in Ex. 4.1 (and what can be done in industry to obtain Mg), is
that the field current is determined corresponding to steady-state rated open
circuit terminal voltage. This voltage is Ve=V\| L -rated/Sqrt(3). For Ex. 4.1, this
Is Ve=15kV/sqrt(3)=8660 volts. This is the rms voltage, but VMAF indicate
that we need the corresponding peak voltage: Vpea=\2(8660)=12,247.1
volts. But why do we need the peak voltage?

Let’s consider this question.
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From first page of previous notes titled “Machine Equations,” or from eq.

(4.11) in VMAF, we have
A = Laala + Ll + Ll + Lple + Lplp + Lglo + Lol

But i,=i1p=1c=0 under open circuit conditions.

And damper currents ip=ig=0 under steady-state conditions. Therefore

A, = Ll + Lol

Recall that the G-winding models the Q-axis flux produced by the eddy-
current effects in the rotor during the transient period. But we are now
considering only the steady-state condition, ic=0. Therefore

/1 — LaFiF (*)

a

Now recall from first page of previous notes titled “macheqts,” or from eq.
(4.16°) in VMAF, that Lar=MEecos0, and substitution into (*) yields

A, =M_I_ cosé (**)

Differentiating (**) results in

dA . . da -
~=—Mci.SIN0— =-w;, M_I-Sin g (%)
dt dt
Now recall the voltage equation for the a-phase:
vV, =—I ., — A, +V, #)

Substituting (***) into (#), we obtain
V, =—I,I, + 0, M I-SINO+V,
But under open circuit conditions, i,=0, i,=0 (implying v,=0) and we have

V, =@y M_i.siné@ (#*)
From (#*), we see that, under these conditions
V
_ . __ peak
Vpeak T a)ReM FIF — M F

| O
So we choose a point from the magnetization curve, for example, VMAF
chose iF=365A, Vpea=12,247.1volts (365A is the value of field current
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corresponding to the rated voltage on the air-gap line, and
12,247.1/sqrt(2)=8660volts is the rated RMS line-to-neutral voltage
(corresponding to 8660sqrt(3)=15kV). Then

\Y 12,247.1

M, = 28 = —89.006x107% henries
i_w., (365)(377)
And from this we can compute
- kMg _ kM
Lmd Ld o Id

where the denominator is comprised of data provided by the manufacturer
(see “Last comment” at the end of these notes).
The rest of Ex. 4.1 is just an application of our per-unitization formula.

There is an interesting paragraph in Appendix C, pg. 693 of your text, to

which | want to draw your attention. It says,
“Note that a key element in determining the factor kg, and hence all the
rotor base quantities, is the value of Mg (in H). This is obtained from the
air gap line of the magnetization curve provided by the manufacturer.
Unfortunately, no such data is given for any of the amortisseur circuits.
Thus, while the pu values of the various amortisseur elements can be
determined, their corresponding MKS data are not known.

| provide some comments on certain sentences in this paragraph:

= “Note that a key element in determining the factor kg, and hence all the
rotor base quantities,” refers to the fact that we use kr to obtain Lrg, Rrs
and Mgg from:

LFB:kéLB MFB:kFLB
RFB — ké RB

» “This is obtained from the air gap line of the magnetization curve
provided by the manufacturer,” as we have seen above by using

\

7 peak
Mg =-

I- (g

e
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We are able to get Mg in this way because we can directly control the
current ig, with no other circuits energized (as a result of the open-circuit,
steady-state conditions), and directly measure the induced voltage at the
a-phase terminals.
“Unfortunately, no such data is given for any of the amortisseur
circuits.” It is not possible to directly control the currents ip, i, and ig,
since their corresponding circuits do not have sources. The only way to
energize these circuits is via a transient condition, but there is no way to
provide a transient condition that will also not energize other circuits,
which would result in the measured terminal voltage being induced from
the mutual inductance between itself and the other circuits as well.
“Thus, while the pu values of the various amortisseur elements can be
determined, their corresponding MKS data are not known.” In example
4.1, the text puts an asterisk by some of the parameters (Lp, Lo, kMp,
kMg, rp, and rg), indicating they were “estimated for academic study”).
This is because manufacturer’s datasheets do not usually include the
parameters for the amortisseur (and G-winding) circuits, simply because
they are hard to measure (based on the comments of the previous bullet).
However, if one can obtain any g-axis mutual inductance, then others are
also identified because, as we shall see in Section 3.0 below, in per-unit,
all direct-axis mutuals are equal and all quadrature-axis mutuals are
equal! In other words:
= D-axis mutuals:

F-d winding mutual, kMg

D-d winding mutual, kMp

F-D winding mutual, Mg (is called Mx in some texts)

That is, we will show that in per-unit, kM Fu — kM Du — M Ru
= (Q-axis mutuals:
G-q winding mutual, kMg
Q-q winding mutual, kMq
G-Q winding mutual, My

That is, we will show that in per-unit, kMQu =kMg, =M,
(See “Last Comment” at end of these notes.)
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2.4 Applying the bases to voltage equations (section 4.8 in VMAF):
Recall our voltage equation as written in MKS units:

Yo t+3r 0 0 0 0 0 0o b
Yo 0 Lo ol 0 @ gMG 0 @ gMQ !d
V l
q q
3 3 )
V. |=— 0 ] P —a)\/;MF 0 —a)\/;MD 0 i
0 0 0o 0 r 0 0 0 i
0 0 0 i) [ 0 0 _
0 0 0 0 0 0 5 0 Iy
0 0 0 0 0 0 o g,
L, +3L, 0 0 0 0 0 0
0 L, 0 gMF 0 glle 0 'o
3 3 ly
0 0 0 M 0 M, ||+
Lq 2 G 2 Q Iq
-0 \EMF 0 L 0 M, 0 Ie
3 Is
0 0 \/;MG 0 L, 0 M, ||
D
0 gl\/ID 0 M, 0 L, 0 Iy
3
0 0 Mo 0 M, 0 L,

Let’s normalize them using our chosen bases to obtain the equations in per-
unit. The per-unit equations should appear as above when done, except that
everything must be in per-unit.
Step 1: Replace all MKS voltages on the left with
e the product of their per-unit value and their base value (use Vg
for the first 3 equations and Ve, Vpg, Vog, Ves for the last four
equations),
and replace all currents on the right with
e the product of their per-unit value and their base value (use Is
for the first 3 equations and Irs, Ips, lgs, lcs for the last four
equations).
This results in eq. 4.60 in the text, as follows....
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[ Vo, Vg 1 _r+3rn 0 0 0 0 0 0 __iOulB ]
VaVe 0 r ol, 0 wkM 0 kM, || il
VoVe 0 oL, r —wkM 0 —wkM 0 Iwls
Ve Ve [=—| O 0 0 re 0 0 0 (1
0 O 0 O 0 rG 0 0 iGu IGB
0 0 0 0 0 0 ' 0 iouloe
i 0 | i 0 0 0 0 0 0 | _iQu los
ML, +3L, 0 0 0 0 0 0 7 foule
0 L, 0 kM 0 kM, 0 iy le
0 0 L, 0 kMg 0 kMg || Tale
- o0 kM 0 L, 0 M, 0 ie, | g
0 0 kM, 0 L 0 My ||, les
0 kM, 0 M, 0 Ly 0 il
L O O kMG O MY O LQ ] i.Qu IQB (eq.
4.60)

Step2: For each of the equations in the above, we need to divide through by
the voltage base. For those equations containing o, we replace it with
w=myar (os=are). Then we do some algebra on each equation to express
the coefficients of each current and current derivative as per-unitized self or
mutual inductances. As an example, the 2" equation is done for you in
VMAF (p.109); here, I do the 5™ equation, corresponding to the G-winding.

O(VGB) :_rGIGulGB _ EMGIqUIB _ MYIQUIQB o LGIGUIGB

Step 2a: Divide through by Vgg to obtain:

3 Y | LG

— |
Qu Gu
GB VGB

0=

V

B IQB IGB
The first term has a denominator of Rgg. The last 3 terms are not so obvious.
We desire them to have denominators of Mgg, Myg, and Lgg, respectively,
where, from above (p. 14), we recall M, =k;Lg, My =kkoLg, Les =kaLy, Where
Vg |

G v, IGB,and Q

o]

QB
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Step 2b: Let’s multiply the denominator of the last three terms by Vg/Vs.
This results in:

—r . 3 M G ¢ M v . LG .
O:—IGu_ - Iqu_—IQu_—IGu
Res 2 Vg Vg Veg Ve Veg Ve

V. 1,V

Step 2c: Let’s multiply the denominator of the last two terms by Ig/lg. This
results in:

Step 2d: Recall  k-factors (pg 104 of text): ks =
Substitution yields:
O _ iieu _\/§ MG i-qu _ MY i-Qu . LG i.Gu
Res 2 Ks \i ko k Vi 2 Ve

IB

Step 2e: We are close now, as we need Mge=kclLs, Mys=kckolLs, and
Les=(ks)’Ls, respectively, on the denominator of the last three terms. Recall
that Ls=Vg/(arls), SO we need to divide top and bottom on the denominators
of the last three terms by we. Doing so yields:

0o _\E M . M, - L, :
R Gu 2 V qu V Qu ) V Gu
GB K Bla)B kaQE;a)B ks E;a)B
Wglp Wglp Wglp

Step 2f: And substituting in Lg results in:
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- rG " 3 MG o MY - LG -
O:—IGu_ _—Iqu_ IQu_z—IGu
Res 2 ke Lo KekoLgwg ke Lgog

Step 29: Recalling that Mgg=ksLs, Mys=kgkolLs, and Lecg=(ks)’Ls, we may
write:

- rG - 3 MG o MY - LG -
O: IGU T _—Iqu _—IQU _—IGU
Ree 2 M gog Mg @g Lo g

which results in

O_—r | _ 3MGui' _MYui' _LGui'
o Gu'Gu 2 qu Qu Gu
g g g

Step 2h: However, we still have one problem. Recall that we want the
equations to be identical in pu to their form in MKS units. But in the last

equation, we still have ws, which does not appear in our MKS equation. We
can take care of it, however, by recalling that ws=1/tg, so that:

: 1 dig, diy,  dig
dt t/) dr’
R 9 ()
: 1 dig, dig,  dig,
dt () dr’
TR )
: 1 dig, dig, dig,

y dt (%B)_dr

where =t/tg is the normalized time.
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With this last change, we can write, finally, that

O:_rGiGu _\/gMGui.qu o I\/IYui.Qu o

which is the per-unitized form of the last equation in eq. (4.60).

Note that it is exactly the same form as the original equation in MKS units!

Similar work can be done for the other equations (and you should try to do

one of the others yourself), resulting in equation 4.74 in your text:

v, 1 [ 1 0 0 lawl, okMg kM, |l
v, 0 r, 0 0 0 0 |l
0 0 0 r 0 0 0 i,
v, | el —okM. —okM, i r 0 0 |i,
0 0 0 0 0 0 i
0 | 0 0 0o 0 0 o ||

L, kM. kM, ! 0 0 0 i, ]

kM L M, : 0 0 0 i

Mo Mp Lo 0 0 0 0 iy

0 0 0 L kMg kMg |l

0 0 0 kMg L M, |i

0 0 0 (kMg M, Ly ||i]

Note that in the above equation,

(eq. 4.74)

e The “u” subscript is dropped; however, all parameters are in pu.
e \We have dropped the zero-sequence voltage equation since we
will be interested in balanced conditions for stability studies. (A
system having a three-phase fault, considered to be, usually, the
most severe, is still a balanced system. This does not mean that
we cannot analyze unbalanced faults using stability programs. It
Is possible to analyze the effects of unbalanced faults on the
positive sequence network represented in stability programs — see
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Kimbark Vol I, pp. 220-221). Otherwise, eq. (4.74) is precisely
the same as eqt. 4.39 in VMAF (see the same equation as 4.39, in
the notes called “macheqts™).

The equations are rearranged from stator then rotor equations to

d-axis then g-axis equations to better display coupling and

decoupling between various circuits. This coupling is well

illustrated by Fig. 4.3 in VMAF, given below. Note that coupling

between F and D windings is captured by Mg. Some works call
this mutual inductance Mx. We use Mg to remain consistent with
VMAF. These are physically-realizable circuits for which KVL
in each of the 6 circuits results in the 6 equations of 4.74 above.

F
VA
+ — iy |,
O 3w A
_ k kMp N
R\
'p MR ng Va
. —» ip .* M O B
— L _
w=0() "3 a” oy

“Dot” convention:
a. If the reference current direction enters the dotted terminal of a coil, the reference polarity
of the voltage that it induces in the other coil is positive at its dotted terminal.

g b. If the reference current direction leaves the dotted terminal of a coil, the reference polarity
VAN of the voltage that it induces in the other coil is negative at its dotted terminal.
+ . IiG . , tq
0 <> LG§ W AN
— \ kMo ~g +
ro My L q Vg
VAN , 0
+ | —® . -
kM _
vo=0 () Ly 0 +
h / m)“d

Fig 4.3

Now let’s make some definitions:
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r 00000 0 0 0 L, kM,
’ 0 0 0 0 0
R—O 6 L 00 0 N=| O 0 0 0 0
R=lo o 6 r 0 0 S5, kM. kM, 0 0
00 00T O 0 0 0~ 0 O
00 00 0 0 0 0 0 0
- kM. kM, 0 0 0
kbiF |\5IFF M, 0 0 O
| KMy Mg 0 0 0
Tloo0 0 o w M
G Y
| 0 0 0 kM, |\ITY L,
v, | ;
-V |F
_ 0 |. .|
AV all
0 e
L 0] o

With these definitions, we rewrite eqt. (4.74) in compact notation:

V= _(B + a)N)l —Li (eq. 4.75)

We may solve eq. (4.75) for di/dt so that it is in state-space form:

= —l_—_l (R+wN)I— L__l\_/ (eq. 4.76)

It is useful, once again, to recall the power of Park: the above
(although just for 1 machine and no network) is a set of ODESs with
constant coefficients!!!

3.0 Per-unit mutuals (See Section 4.11)

A useful observation regarding per-unit values of Mg, Mp, and Mg:

Recall our definitions of the D-axis k-factors:
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(/ and the fundamental constraints among base currents that we

developed (see eqgs. 4.54, pg 12 of these notes):

Lmdlé = LmFIEB - I—mD DB _kMFIBIFB _kMDIBIDB = Mgl g (18)
1 2 3 4 5 6

From the first and fourth expression in eq (18), we have:

I(I\/IF B FB

AN ls _ kM (19)
I L.

Likewise, from the first and fifth, and from the fourth and sixth

expressions ineq (18) we have:

Lmd B kMD s | bB kMFIBIFB:MRIFBIDB
Thus,
Iy, kMg > 1, M

and (20)
| DB I-md | DB kM F
From the definitions of the k-factors (top of this page), and egs (19)
and (20), we have:
kF:kMF and kD:kMD: My (21)
md I—md kM F
And from eq. 4.57 in text (also see p. 14 of these notes), we find
2| Mg =kelg, Mpg =Kplg, Mgy =kekply (22
which we obtained by using the fact that base mutuals must be the
geometric mean of the base self-inductances (see prob 4.18).
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Now, recall the elements in the per-unitized voltage equations as
given by_eq. 4.74 (see page 25 of these notes).

v, r 0 0 lol, okMg okM, |l
v, 0 r. 0 10 0 0 |
0 0 0 b 0 0 |lip
v, | |el, —ekM. —ekMy T 00 |
0 0 0 0 {0 r 0 |l
0 | 0 0 o o0 0o o i
L, kM. kM, ] 0 0 0 i, ] 4.74

3 kM. L. M, | O 0 0 |,

kM, M, L, | 0 0 0 [i

0 0 0 : L, kMg kM, |li,

0 0 0 kM, Lo M, |i

0 0 0 kM, M, L, |i

In particular, consider the mutual terms in the last matrix for the
direct axis. These are in the upper left-hand 3x3 block, in the blue
box. These terms, in pu, are by definition the ratio of the term in
MKS to the appropriate base. Therefore:

kM

o Stator-field mutual: k|\/| fy = . 3.

FB L.
(22) and then ke from eq. (21)

RN

Substituting for Meg from'e

results in:

M~ Me KMo kML L

md _—

M. kL, kM.L, L,

mdu

So this comes
from (i) ke
definition;
(if)fundamental
constraints among
base currents (eq.
454), &
(iii)definition of
pu mutual kMg,

KMy [3
e  Stator-D-winding damper mutual: KM DU — b |~
2. M DB
Substituting for Mpg fromleq.(22) and then kp from eq. (21)

results in:
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" _kMD_kI\/ID_kMDLmd_Lmd=L
M, koL, kML, L, ™
|\/IR

o Field-D-winding damper mutual: M RU —

2. M RB

Substituting for Mgg from eq.(22) and then ke and kp from eq.
(21) (using the 2" expression for kp in eq. (4)) results in:

MR_ MR _MRLmdkMF_Lmd=L
Y Mg, kokoLy kM oML, L,

Important fact: In per-unit, all d-axis mutuals are numerically equal to
Lmau (per p. 9, Lmd is the magnetizing inductance, i.e., La=Lmd+ld). We
will define a new term for them, Lap, as the per-unit value of any d-
axis mutual inductance, so that:

LAD = I—mdu — kI\/IFu — kI\/IDu — MRu
Also note that the mutual is the difference between the self and the
leakage, so that

mdu

Lau-lav=Lpu-lpu=LrFu-Iruv=Lap
The above relations are given in eqgs. 4.107 and 4.108 in VMAF.

We can go through a similar process for the g-axis mutuals (from

4.74, we see that these are the terms in the lower right-hand block
of the matrix, kMg, kMg, and My). I will leave this for you to do. The

result is:
LAQ = I—mqu = kMQu = kMGu =My,

Lqu'lqu:LQu'IQu:LGu‘IGu:LAQ
The above relations are given by eq. 4.109 in your text.

Lap and Lag are very important for drawing the equivalent circuits.
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definition;
(ii)fundamental
constraints among
base currents (eq.
454), &
(iii)definition of
pu mutual kMpy

1.

So this comes
from (i) ke, ko
definitions;
(if)fundamental
constraints among
base currents (eq.
454), &
(iii)definition of
pu mutual kMgy




They are also important in dealing with saturation because they
provide for the definition of the per-unit mutual flux (we will see
this in our development of the flux-linkage state-space model).

4.0 Equivalent Circuits (See Section 4.11)
Let’s return to the voltage equations that we had before we folded

in the speed voltage terms. They were:

L, 0 0 0 0 0 0
— — _— 3 3 —i.—
Vo r. 00000 0 0 L, 0 SMe 0 Mo 0|
7 0r, 0000 0i 3 3 I
. 0 0 0 M 0 M, || ¢
v, 00r 000 Offi N 2°° 2%
~V |==|0 00 00 Olii|-| 0 gMF L 0 M, 0 I
0 0000T 0O0]i 3 A
. 0 0 M 0 0 M, ||,
0 00000O0T 0|i . >Me L i
_0_ _OOOOOOI’Q_IQ_ 0 EMD 0 MR 0 LD 0 |Q
3
0 0 Mo 0 M, 0 L
3r — 3L, |
0 0
—wh, 0
Q.
+ éﬁ+ 0
0
0 0
0 0
0

Assume all of the above is in per-unit (but we have dropped the u-
subscript).

There is some advantage to re-writing these equations in terms of
Lap and Lag. For example, consider the d-axis equation. It is:

v, =—riy — Lyi, —kM_i. —kM i, — oA

q

Recall that Lq=Lmq+l4= Lmg=Lqg-lg
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Let’s modify the d-axis voltage equation by adding and subtracting
lq (dig/dt):

vV, =—Ti —Ldi'GI +I0|i'OI —Idi'OI —kM i
which can be written as:

v, =—riy =l i, —[(L, —1,)i, + kM i +kMDi'D]—a)ﬂLq

The advantage to this is that, in per-unit, we recall that
La-ls=kMe=kMp=Lap. Therefore,

v, =—ri, i, —Lg[iy +i, +i'D]—a)/1q

—kMyip — w4,

Let’s repeat this for the G-axis equation, which is, from the matrix
equation at the beginning of this section:

Vg =0=—Tgig —kMgi, —Myi, — Lgi

Let’s modify the G-winding voltage equation by adding and
subtracting Ig (dig/dt):

Vg =0=—Tgig —kMgi, =M, i, — Leig +lgig —lgi
which can be written as:

Vg =0=—Tgig —kMgi, =M, i —(Lg —1g)is —lgig

The advantage to this is that, in pu, we have Lg-lc=kMg=My=Lx0.

Therefore

Repeating this procedure for the F, D, and g equations, and then
summarizing, we obtain:

D-axis relations:
Vg ==y =1yl —Lp[iy +ip +ip] -4,

—Ve =—Telp —lgi _LAD[i.d +i.|: +i‘D]

Vo =0=—rgi, =l i, —L[iy +ip +iy]
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O-axis relations:
Vo =T, =l i, =L (i, +ig +ig) + @4,

Vg =0=—rgig —l g — LAQ(i'q +i'Q +ig)
We desire to draw circuits that are characterized by these equations.

Note:

e The D-axis relations are coupled through the Lap terms.

e This term, for each equation, may be represented by a single
“center” branch.

e The other terms, for each equation, may be represented as single
branches which feed the center branch.

This results in the circuit of Fig 4.5 in your text.

Similar reasoning results in the circuit of Fig. 4.6 in your text.
We redraw these circuits below.

Vg =ty —ljiy —Lp[iy +ip +ip]-04,

—Vp =—roi. —Ii. —Lg[iy, +ip +ig] i
Vg =0=—rig —liy — Lug[iy +ic +io] R
I AN e
Ir Io

= l ir 'p l ip LAD% TiF+iD+id Vqg

oy

Direct-axis equivalent circuit:
The above is the same as Fig. 4.5 in your text

VF
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—ri

— Lo (iy +ig +ig) + @4,

g — Lg (iy +ig +ig)

Qe i
g r
FTE—N\ /\
I lo
re l ic ro l io LAQ% T iQtictiq Vq
oAd

Quadrature-axis equivalent circuit:
The above is the same as Fig. 4.6 in your text

The ability to draw these circuits is a direct result of the Lap and Lag
relations that occur only in per-unit. Therefore, it is important to be
in the per-unit system when utilizing these circuits. And the “equal
mutuals” effect came as a result of the fact that we chose our base
currents according to the following criteria (see p. 8 of these notes):
We select the base currents for the four rotor-side windings F,
D (Q, G) to produce the same mutual flux in the air gap as
produced by the stator-side base current Ig flowing in the
corresponding fictitious d-axis (g-axis) coil.
See Appendix C of your text, at the top of p. 689, for another way
to articulate this fact.

These equivalent circuits are useful for:
e Remembering the voltage relations.
e Gaining physical understanding of relations between d-q-F-D-
Q-G quantities.
e Reading the literature, where you will see them often.
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Last comments: There are two electrical parameter sets
(inductances and resistances, or inductances and time constants)
used to characterize synchronous machines.

e The one we are using up until this point is sometimes referred to as
the fundamental or basic parameter set; Kundur on p. 139 of his book
uses this terminology. This includes self inductances Lq, L, Lb, Lg,
Ls, and Lo, mutual inductances Mr, Mg, Mp, Mg, My, and Mg, and
resistances r, rr, rp, re and rq.

e Another parameter set is referred to as the standard parameter set;
both Kundur (p. 144) and VMAF (p. 156, top paragraph) use this
terminology for this parameter set. It includes self-inductances Lq, L'q,
L"q, Lg, L'q, L"q, Open circuit time constants T'do, T"do, T'q0, T"q0, and
short circuit time constants T'q, T"q, T'q, T"'q. We study this parameter
set next in notes called ““subtransient & Transient Inductances” and ““TimeConstants””.

The two parameter sets provide equivalent info; one set may be
derived from another. An important distinction between the
parameter sets is how testing may be used to obtain them; this is an
issue extending from Example 4.1 (see p. 14 of these notes) where
we see we cannot get g-axis quantities at all and need manufacturer’s
data to get d-axis quantities (see p. 19). There are 3 kinds of testing
that can be done to determine synchronous machine parameters.

e Short circuit test: As the name implies, the machine is exposed to a
sudden short-circuit across its terminals; parameters may be
computed based on recorded currents and voltages. This approach is
able to obtain d-axis parameters but not g-axis parameters;

e Decrementtest: This test is also called a step-response test and a stator
current interruption test. It is able to obtain both d-axis and g-axis
parameters.

e Standstill frequency response (SSFR) test: Here, one applies an
excitation to the stator terminals over a range of frequencies,
measuring the resulting currents, with the ratio providing what are
referred to as operational inductances.

Section 4.16 of VMAF summarizes these tests and provides

excellent references for further reading on parameter determination.

In reading the VMAF Section 4.16 (appended below), you will also

see that it describes “operational inductances” that are directly
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related to results of the SSFR test. Kundur, on pp. 139-143, develops
this approach nicely in a section he titles “Operational parameters,”
which is obtained directly from Park’s original 1929 paper. Kundur
describes operational parameters this way (p. 139-140):
“A convenient method of identifying the machine electrical
characteristics is in terms of operational parameters relating the
armature and field terminal quantities... where
e G(9s) is the stator to field transfer function
e Lg4(s) is the d-axis operational inductance
e Lq(S) is the g-axis operational inductance.”
The above expressions, which are functions of the Laplace variable

(13 29

s,” can be expressed in terms of various time constants and take on
various forms depending on the time frame of interest.
Krause, in his book (p. 283), has a chapter titled “Operational
impedances and time constants of synchronous machines,” which
contains in its introduction a useful discussion of this issue, as

follows: i

R. H. Park [1] in his original paper did not specify the number of rotor circuits.
Instead, he expressed the stator flux linkages in terms of operational impedances and
a transfer function relating stator flux linkages to field voltage. In other words, Park
recognized that, in general, the rotor of a synchronous machine appears as a
distributed parameter system when viewed from the stator. The fact that an accurate,
equivalent lumped parameter circuit representation of the rotor of a synchronous
machine might require two, three, or four damper windings was more or less of
academic interest until large digital computers became available. Prior to the
1970s the damper windings were seldom considered in stability studies; however,
as the size of computers increased, it became desirable to represent the machine
in more detail.

The standard short-circuit test, which involves monitoring the stator short-circuit
currents, provides information from which the parameters of the field winding and
one damper winding in the d axis can be determined. The parameters for the g-axis
damper winding are calculated from design data. Due to the need for more accurate
parameters, frequency-response data are now being used as means of measuring the

operational impedances from which the parameters can be obtained for any number
of rotor windings in both axes.

Another good reference on testing is Padiyar. | have cut our his
descriptions of short circuit tests, decrement tests, and SSFR tests
and appended them at the end of these notes.
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4.16 PARAMETER DETERMINATION FOR GENERATOR
DYNAMIC MODELS

The synchronous machine models used in this chapter, which are in common use by power system
engineers, are based on a standard machine with discrete physical windings on the stator and rotor. As
mentioned in Section 4.14, the solid iron rotor used in large steam turbine generators provides
multiple paths for circulating eddy currents that act as equivalent damper windings under dynamic
conditions. The representation of these paths by one discrete circuit on each axis in Model 2.1, and
even when the G-circuit is added in Model 2.2, has been questioned for some time. Another source of
concern to the power engineer is that the values of the machine constants (i.e., inductances
La, L LY, Ly LY, and L;’ and time constants 7, i, r:p, and r:;u), sometimes called standard para-
meters, used in dynamic studies are derived from data intended to define fault current magnitudes
and decrements. In some stability studies, discrepancies between computer simulation and field data
have been observed. One reason for these discrepancies is the inadequate definition of machine induc-
tances in the frequency ranges encountered in stability studies. It is of interest that the standard para-
meters, as used in Sections 4.14 and 4.15, differ from the so-called Park’s variables used in the earlier
sections, e.g., equations (4.74), (4.103), (4.154), and (4.163). As indicated in [27], the preference for
standard parameters is largely driven by the ability to directly determine them via machine tests,
something that cannot be done in Park’s variables.’

There have been three main approaches used to obtain machine parameters via testing. The first
and earliest approach is the short circuit test, described in [28]; although effective for obtaining d axis
parameters, other procedures must be used to obtain g axis parameters. A second approach, initially
suggested in [29] and identified in its discussion as a step response test, was further investigated in
[30, 31]. Itis referred to as a decrement test in [32]. Itis advantageous in that it obtains both d and ¢
axis parameters and, unlike short circuit tests, it may be conducted under low loading conditions; in
[33], it is identified as a stator current interruption test. A third approach, frequency response testing,
is most often performed offline as in [22, 23, 34-36] where it is referred to as a standstill frequency
response (SSFR) test, but it may also be conducted online [37, 38].

The studies made in [22, 23, 34-36] ascertained the accuracy of available dynamic models and
data for turbine generators. These studies showed that a detailed representation of the rotor circuits
can be more accurately simulated by up to three discrete rotor circuits on the d axis and three on the g
axis. Data for these circuits can be obtained from SSFR tests. To fit the “conventional” view of rotor
circuits that influence the so-called subtransient and transient dynamic behavior of the machine, it is
found that two rotor circuits (on each axis) are sometimes adequate but the inductances and time con-
stants are not exactly the same as those obtained via short circuit tests, as recommended in early stan-
dards [18]. Reference [39] described general SSFR testing while [40] focused on application to salient
pole machines. References [28, 33, 41] provide recent descriptions of both short circuit and SSFR
tests to determine machine parameters for dynamic analysis.

As described in [28], SSFR testing measures electrical responses of synchronous machines to
small perturbations of stator and rotor quantities about an operating point characterized by the fol-
lowing s-domain relations:

2a(8)=G(s)Avp(s)—La(s)Aig(s)  A4(s)= =Ly (s)Aiy(s) (4.302a)

where G(s) is the armature flux to field voltage transfer function; L,(s), called the direct axis oper-
ational inductance, is the Laplace transform of the ratio of the direct axis armature flux linkages to the
direct axis current, with the field winding short-circuited; and Lq(.s'), called the quadrature axis oper-
ational inductance, is the Laplace transform of the ratio of the quadrature axis armature flux linkages
to the direct axis current. Consistent with the approach described in [1], these functions are developed
according to the following procedure: (1) Substitute the flux linkage equations of (4.104) into the
voltage equations of (4.36). (2) Transform the equations into the Laplace domain and then solve
for the rotor currents in terms of the field voltage vz(s) and the armature currents ifs) and i(s).
(3) Substitute the relations resulting from step (2) into the armature flux linkage relations for 4 ,(s) and
Ag(s) from (4.104).

The procedure for determining the machine constants is to assume equivalent circuits on each
axis made up of a number of circuits in parallel. The transfer function for L,(s) and L(s) is called an
operational inductance of the form

L(s)=[N(s)/D(s)|L (4.302b)

where L is the synchronous reactance and N(s) and D(s) are polynomials in s. Thus, for the d axis, we
express a third-order operational inductance as

., (L+ars)(1+bis)(L+cas)
T (1 +azs)(1+ bas) (1 +c25)

Ly(s) (4.303)
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and the constants Ly, @y, a2, by, by, ¢y, and ¢, are determined from the frequency domain response.

If the operational inductance is to be approximated by quadratic polynomials, i.e., as second
order, the constants can be identified approximately with the transient and subtransient parameters.
Thus, for the d axis, La(s) becomes

1 (/) ] 1+ (24 12) ]
La(s)=Lq4 ‘ (1+ rzz.q](l+ ‘rg;.i‘) —

The time constants in (4.304) are different from those associated with the exponential decay of d or g
axis open circuit voltages, hence the discrepancy with those obtained via short circuit tests.

An example of the data obtained by SSFR tests is given in [35] and is reproduced in Figure 4.21.
Both third-order and second-order polynomial representations are given. Machine data thus obtained
differ from standard data previously obtained by the manufacturer from short circuit tests. Reference

(4.304)

Speed, pu
0.00001 0.0001 0.001 0.01 0.10 1.0
30 T T TTM T TTTTm] T T T T T 7T
2.0+ 1 76(1 4+ 0.60s) (1 + 0.072s) (1 + 0.004s) —
" (T+1.23s) (1 +0.162s) (1 + 0.007s)
1.5+ —
=
=0+ —
¥ 0.8 —l 81(1 + 1.28s) (1 + 0.016s) 1.76 (1+0.31s) (1 +0.031s) |
E 0.6 | (1 +7.75s) (1 +0.022s) (1 +0.90s) (1 +0.074s) |
JF 05
8
g 041 N
£ (1 +1.69s) (1 +0.18s) (1 + 0.038s)
'§ 031" (1+857s) (1+0.24s) (1 + 0.0475)
0.2+ Frequency response plots 555.5 -MVA unit ]
Test results
— — Adjusted results for simulation of —
two rotor windings in each axis
oal o nml v rvnd cronl el e
0.0006 0.006 0.06 0.6 6 60

Frequency, Hz
Figure 4.21 Frequency response plot for a 555-MVA turboalternator. (Source: © IEEE. Reprinted from [35].)

158 CHAPTER4 THE SYNCHRONOUS MACHINE

TABLE 4.7 Comparison of Standard Data with Data Obtained from
Frequency Tests for a 555-MVA Turboalternator

Constants Standard Data Adjusted Data
Lypu 197 1.81
Ljpu 027 0.30
Ljpu 0.175 0217
Lypu 1.867 1.76
L; pu 0473 061
Lf;pu 0213 0254
Le pu 0.16 0.16
T S 43 7.8
T 8 0.031 0.022
T’w ] 056 090
1’;‘, ] 0.061 0.074

Source: © [EEE. Reprinted from [35].
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[35] gives a comparison between the two sets of data for a 555-MV A turbogenerator. This compar-
ison is given in Table 4.7.

The inductance versus frequency plot given in Figure 4.21 is nothing more than the amplitude
portion of the familiar Bode plot with the amplitude given in pu rather than in decibels. The transfer
functions plotted in Figure 4.21 can be approximated by the superposition of multiple first-order
asymptotic approximations. If this is done, the break frequencies should give the constants of
(4.304). The machine constants thus obtained are given in the third column of Table 4.6. If, however,
the machine constants obtained from the standard data are used to obtain the breakpoints for the
straight-line approximation of the amplitude-frequency plots, the approximated curve does not pro-
vide a good fit to the experimental data. For example, the d axis time constant 7/, of the machine, as
obtained by standard methods, is 4.3s. If this is used to obtain the first break frequency for
log[1/(1 +17s)], the computed break frequency is

1/ly=1/4.3=02326rad/s=0.00062pu (4.305)

The breakpoint that gives a better fit of the experimental data corresponds to a frequency of
0.1282 rad/s or 0.00034 pu. Since the amplitude at this frequency is the reciprocal of the d axis tran-
sient time constant, this corresponds to an adjusted value, denoted by 7'}, given by

50 =1/0.1282=78s (4.306)

Reference [35] notes that the proper adjustment of 7y, 'r;u,and L; are all particularly important
in stability studies.

A study conducted by the Northeast Power Coordinating Council (NPCC) [42] concludes that,
in general, it is more important in stability studies to use accurate machine data than to use more
elaborate machine models. Also, the accuracy of any dynamic machine model is greatly improved
when the so-called standard machine data are modified to match the results of a frequency analysis
of the solid iron rotor equivalent circuit. Indeed, as indicated in [33], frequency response tests is capa-
ble of verifying the model over the entire frequency range of interest, and it can be used to identify
characteristics of individual subsystems of the excitation system, stabilizer, and govemor. However,
reference [28] indicates that SSFR must be conducted with the machine operating at nonstandard
(overly low) magnetizing currents, and as a result, adjustment of SSFR-based parameters using short
circuit data could be beneficial. It appears the most accurate characterization of machine parameters
results from integrating data from both types of tests as done in, for example [43].

Finally, a comparison of these results and the machine models presented in this chapter is in
order. Model 2.1 is one of the models investigated in the NPCC study [42] for solid-rotor machines. It
was found to be inferior to the more elaborate model based on two windings in each axis, Model 2.2.
This is not surprising since the added detail due to the extra g axis amortisseur should result in an
improved simulation. Perhaps more surprising is the fact that the model developed with F-, D-,
and Q-windings, Model 2.1, provided practically no improvement over a simpler model with only
F- and O-windings, Model 1.1. Furthermore, with the F~Q Model 1.1 based on time constants
740 and 74, larger digital integration time steps are possible than with models that use the much
shorter time constants 7}, and t:,:ﬂ‘ as is the case for Models 2.1 and 2.2.

There has been a great deal of work overthe past several decades to identify the best machine mod-
els and data for steady-state and dynamic stability studies and the proper means for testing or estimating
these data. This work has culminated in three standards published by the North American Electric Reli-
ability Corporation (NERC) focused on testing and model verification for power plants [44-47]; these
standards are applicable for power plants composed of synchronous machines or inverter-based technol-
ogies (e.g., wind and solar PV plants). In particular, [45] addresses model verification, required every
10 years for each power plant exceeding the interconnection’s capacity threshold (50 or 7SMVA in
ERCOT, 75 MVA in the Western Interconnection, and 100 MV A in the Eastem Interconnection) to con-
firm that the dy namic performance of the generator, excitation system, power system stabilizer, and volt-
age compensator models accurately reflect response of the actual equipment installed in the field.
Reference [46] does likewise for turbine governor models. Reference [33] provides insightful guidelines
for use of these standards in relation to power plants composed of synchronous machines; reference [47]
does the same in relation to power plants composed of inverter-based resources.
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From Padivyar, pp. 85-87:

Short Circuit Tests [26]

IEEE Standard No.115 [26] describes in detail the short circuit tests which were
first proposed in 1948. The latest revision of the test code was done in 1983.

A typical test is a three phase short circuit applied to the terminals of a
synchronous machine which is running at rated speed on open circuit. The open
circuit voltage can be chosen at any value within soecifications. For determina-
tion of the reactances, the tests are performed for several voltage levels in a range
typically up to about 0.5 to 0.6 p.u. of rated terminal voltage. The oscillograms
of the armature currents are obtained and the variations in the peak to peak
current magnitudes with time are plotted on semi-logarithmic paper. Generally,
two slopes in the current variation are identified. The projection of each slope
to zero time (when the fault is applied) will determine the initial magnitude of
the current, which, when divided into the voltage magnitude before the fault,
gives a reactance. The initial, smaller value is the subtransient reactance {:1::;}
and the second larger value is the transient resistance (z};). The slopes are also
used to derive the time constants T and T%. There is no procedure in IEEE
Standard No.115 for a similar test to obtain quantities in the g-axis.

Decrement Tests: [23, 24, 27|

These tests involve sudden changes imposed on either stator or field windings.
In the method described in [24], the machine armature currents are interrupted
under two initial operating conditions (i) ¢4 = 0 and (ii)3g = (. The conditions
can be achieved by under-exciting or over exciting the machine at some percent-
age of the full load. Achieving an exact loading condition for either iy = 0 or
ty = 0 is unnecessary provided an accurate measurement of the rotor angle is
available.

Decrement tests proposed by Shackshaft [23, 27] have been used at Cen-
tral Electricity Generating Board in U.K. There are two types of tests
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a) Stator decrement tests

b) Rotor decrement tests

In a stator decrement test, the machine under test is operated at zero
load and is excited totally from the power system, i.e. its field current is zero.
The generator is then suddenly disconnected from the system and the subsequent
variation of stator voltage and the current in the field winding (if closed) can be
used to determine the machine parameters.

In a rotor decrement test with the stator on open circuit, the machine is
excited via its field winding and the excitation supply is then suddenly shorted
out. From the decay of the field current and stator voltage, some of the param-
eters can be obtained.

Frequency Response Tests [25, 29-32]

An alternative approach to the determination of machine parameters is through
frequency response testing. Both (a) standstill and (b) on-line frequency re-
sponse tests are used.

Conceptually, this approach involves viewing the machine model as a
two port network in the d-axis and one port network in the g-axis. (See Fig.
3.14.) This representation enables even the most detailed model (3.3} to be
considered. Also, these networks can be viewed as linear R-C networks whose
immittance functions have certain properties. For example the function X 4(s)
can be expressed as

Xa(s) = zg(l + s )(1 + sTo)(1 + sT3)
BT U ) (1 + oT5)(1 + o15)

with 3 rotor windings in d-axis. From the properties of the immittance function,
we have

(3.115)

T3 <Tg<Tp<Ts<T) < Ty

Iy Iy Iy
T e oy T
4 network | 7 o | network
(a) d-axis (b) g-axis

Figure 3.14: Representation of d-axis and g-axis models
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For model (2.2), the above inequality can be expressed as
Ty < Ty < Ty < Tl
Similarly for the g-axis, we have

U i
T, < Ty, <Ty<T},

q

The standstill frequency response (SSFR) test is convenient to use and
the details are given in [29]. In addition to the determination of the transfer

functions %[3}, El:.ﬁ!}, with field winding shorted, Coultes and Watson [29] also

V I
recommend the measurement of two more transfer function f {3} and f {s} the

former with the field winding open and the latter with the ﬁeld shurted The
measurements also enable the computation of z,. in the d-axis equivalent circuit
of Fig. 3.7.

V,
The direct axis operational impedance, -Ii‘{s] is measured using any one

of the two possible connections shown in Fig. 3.15. In the first connection
(a), the magnetic axes of phase a and field are aligned (@ = 0). In the second
connection (b), the magnetic axis of field winding is at 90° to that of phase a
(f = 90°).

It can be shown for connection (a) that,

Va(s) _ 2V

Xa(s) = =7 [Za(s) - Rl (3.117)

i

{a) 3]

Figure 3.15: Two connections for measuring direct axis impedances
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