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Per-unitization and Equivalent Circuits 
 

1.0 Normalization of voltage equations 

 

We desire to normalize the voltage equations, that is, we desire to express 

them in per-unit. The advantages of doing so are:  

• The per-unit system offers computational simplicity: 

o by eliminating units and expressing system quantities as 

dimensionless ratios; 

o by eliminating the need for using arbitrary constants and 

simplifying some of the mathematical expressions so that they 

may be expressed in terms of equivalent circuits. 

• The numerical values of currents and voltages are related to their rated 

values irrespective of machine size1. 

• Impedances, when given on the machine base, lie on a relatively 

narrow range so that errors can be easily detected. 

 

There are several different possible normalization schemes. What VMAF 

does (see Appendix C in VMAF) is to carefully compare the merits of all of 

these schemes. In doing so, they developed some criteria, guidelines, the 

most important of which is that the form of the voltage equations and the 

power expression must be independent of whether they are in pu or MKS.  

 

Note that machine manufacturers, when expressing their machine data in per 

unit, may use a different system that does not satisfy the power invariance 

property - they use Park’s original transformation (called “Q” in VMAF, eq. 

(4.22), instead of our “P”). Below is a typical machine data sheet2. 

 
1 K. Padiyar, “Power system dynamics: stability and control,” 2nd edition, BS Publications, 2008, p. 62. 
2 https://www.skm.com/Synchronous_Generator_Input_Data.html  

https://www.skm.com/Synchronous_Generator_Input_Data.html
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The choice made by VMAF satisfies the above criteria; in addition, the 

VMAF choice ensures that the numerical values of the per-unit impedances 

are the same as those provided by manufacturers using their system of 

normalization. 
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In most undergraduate power system analyses courses, we learn that per-

unitization requires selection of two base quantities out of the following four: 

V, I, Z, and S, and then the base quantities for the other two are computed. 

The situation is the same here, except that we also must deal with speed (or 

frequency). This necessitates that we must also select a base for either 

frequency ( or f) or time, t. 

  

In addition, we will also have need to compute base quantities associated 

with flux linkage () and inductance (L or M). 

 

Our approach will be to obtain the bases for the stator side and then the bases 

for the rotor side. 

 

One may note two excellent references on the subject of per-unitizing 

synchronous machine models: 

1. A. Rankin, “Per-unit impedance of synchronous machines,” AIEE 

Transactions, 64, Aug., 1945. 

2. M. Harris, P. Lawrenson, and J. Stephenson, “Per-unit systems with 

special reference to electrical machines,” Cambridge University press, 

Cambridge, England, 1970. 

 

Other references that address this subject, besides VMAF, include those by 

- Sauer and Pai 

- Concordia 

- Padiyar 

- Kundur 

and also course notes from de Mello. 

 

1.1 Stator side per-unitization:  

 

We select our stator-side bases as: 

• VB: the stator rated line-neutral voltage, rms. 

• SB: the stator rated per-phase power, volt-amps 

• B: the generator rated speed, in electrical rad/sec (=Re=377) 

We select per-phase power 

and line-neutral voltage 

bases for the voltage 

equations because it 

enables us develop the 

voltage equations in terms 

of per-phase circuits. 
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Then we may compute bases for the following 5 quantities: 

• current: 

B
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• impedance: 
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• time: 
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B

Bt
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=  but this would 

simply provide a different scaling and is therefore arbitrary. This choice 

of tB is the time required for the rotor to move one electrical radian.) 

• Flux linkage: 
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tV
tdt

d
v =




= 

 ) 

• Inductance: 
B B B B B

B

B B B B B

V t V X
L

I I I



 
= = = =

 

 

Question: How does our choice of stator base quantities affect the per-unit 

values of the d- and q-axis quantities? Note: although d- and q-axis quantities 

associate with fictitious rotor windings, we view them to be stator quantities.  

 

To answer this question, let V and I be the rms magnitudes of the a-phase 

line-neutral voltage V and a-phase line current I, respectively. Then 

the per-unit phasors are  

 == u

B

u V
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V
V    == u

B

u I
I

I
I  

Now let’s investigate the 0dq quantities.  

To begin, recall that Peak=sqrt(2)*RMS; then the expressions for 

instantaneous voltages and currents for each phase are: 
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Multiply the above by the Park’s transformation matrix P. Recalling P as: 



















+−

+−=

)120sin()120sin(sin

)120cos()120cos(cos
2

1

2

1

2

1

3

2



P
 

and performing the necessary trigonometry, we obtain: 
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(This confirms our conclusion at the end of the last set of notes, “macheqts,” that, 

for balanced conditions, the 0dq quantities are constants, i.e., DC.) 
 

Now, per-unitize by dividing by VB and IB: 
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Observe about the above that  

1. The per-unit d and q voltages are equal to the per-unit a-phase voltage 

scaled by sin3  and cos3 , respectively. 

2. The per-unit d and q currents are equal to the per-unit line current scaled 

by sin3  and cos3 , respectively. 
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1.2 Rotor-side per-unitization:  

 

Recall that in system per-unitization, we must select a single power base for 

the entire system, independent of the fact that some sections of the system 

are magnetically coupled through transformers, i.e., we do NOT choose 

different power bases for different sides of a transformer. 

 

The same restriction applies here, where the rotor circuit is magnetically 

coupled to the stator circuit, i.e., the power base selected for the stator side 

must also be the power base used on the rotor side. This is SB. 

 

In addition, we are required to select the same time (or frequency) base for 

both the stator side and the rotor side. This is tB (or B). 

 

On the rotor side, we have one base left to choose (or compute). For 

transformers, we typically choose the one remaining base as the voltage base 

(or current base) according to the turns ratio. Here, however, we do not know 

a “turns ratio,” and therefore we are left with problem of what, and how, to 

choose. (One text treats the problem under the assumption that a “turns ratio” 

is known between stator and rotor circuits - see the text by Padiyar, “Power 

System Dynamics,” pp. 73-77.) 

 

In making this choice, a problem results from the fact that stator power levels 

are typically several times the rotor power levels. VMAF give an interesting 

comparison (see pg 103) of a typical stator-side per-phase power rating of 

100 MVA and field winding ratings of 250v, 1000A (250kw), a power ratio 

of 400:1. What are our choices of the one remaining rotor-side base quantity 

in this case? 

• Choose voltage base=rated voltage=250v, but then the current base is 

IB=100E6/250=400000 amps, and per-unit values of field currents will be 

very small. 

• Choose current base=rated current=1000A, but then voltage base is 

VB=100E6/1000=100000 volts, and per-unit values of field voltages will 

be very small. 
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Analogy to transformers: 

Consider an illustration adapted from Krause, pp. 4-5. Fig. 1 shows 

magnetizing and leakage flux for a transformer configuration.  

 

1 

Leakage flux, L1 

Magnetizing flux, md1 
I1 I2 

Leakage flux, L2 

Magnetizing flux, md2 

2 

 
Fig. 1: Magnetizing and Leakage flux 

Here we can write that 

1 2

2 2
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where the first two terms represent flux linkage with coil 1 from I1 and the 

third term flux linkage with coil 2 from I2. We observe that of the flux linkage 

from I1 (first two terms), the first term represents leakage flux and the second 

represents magnetizing flux. The first two terms comprise the flux linkage 

attributable to the self-inductance and the third term the flux linkage 

attributable to the mutual inductance. The first two terms attributable to self-

inductance may be further expressed as 
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  
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     

 

   (2) 

where l1 is the leakage inductance, Lmd1 is the magnetizing inductance, and 

M is the mutual inductance. Observe that the magnetizing inductance is not 

the same as the mutual inductance, i.e., Lmd1 ≠ M, if N1≠N2. However, the 

magnetizing flux λmd1=Lmd1I1 is the same as the mutual flux MI2 since 

N1I1=N2I2 which we know to be true for transformers. We want to impose 

a similar relationship on the synchronous machine mutual fluxes. 
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Representing the self inductance as L1, we have 

L1=l1+Lmd1 

which indicates that the self inductance is comprised of the leakage 

inductance plus the magnetizing inductance. 

 

Similar analysis results in L2=l2+Lmd2. 

 

Back to synchronous machines: 

 

Here, we will select the base quantities according to the following criteria:  

 

We select the base currents for the four rotor-side windings F, D (G, Q) to 

produce the same mutual flux in the air gap as produced by the stator-side 

base current IB flowing in the corresponding fictitious d-axis (q-axis) coil. 

 

We will begin by applying this idea to obtain the base current for the main 

field winding. 

 

Base-current for main field winding, approach 1: 

One can visualize the above concept for the case of the relationship between 

the F-winding and the d-winding, in Fig. 2. 

 

IFB 

md 

d-winding 

F-winding 

IB 

 
Fig. 2: Base currents in d and F windings 

 

The reason this is 

beneficial is that it 

will enable us to 

develop a relatively 

simple circuit to 

represent direct-

axis pu quantities 

and another one to 

represent 

quadrature axis pu 

quantities. The 

form of this cct will 

be “tee”. (see App 

C, top of p. 689) 

and pg. 34 of these 

notes. 
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We see from Fig. 2 that we select IFB, the field winding base current, as  

that current when flowing in the F-winding will produce a 

mutual flux md equal to the same mutual flux that is produced 

by a current IB flowing in the d-winding. 

 

But how do we express (compute) IFB? 

 

From our previous set of notes (p. 29, “macheqts”), and also eq. 4.20 in 

VMAF, we derived  
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0 0 0 0
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    
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eq. (4.20) 

From the second equation in (4.20), we can see that  

DDFFddd ikMikMiL ++=     (eq. 3) 

where k=(3/2). 

 

Ldid is all of the flux produced by the d-winding, but only a part of this flux 

links with the F-winding. Call this flux from the d-winding that links with 

the F-winding md, given by md=Lmdid, where Lmd is the magnetizing 

inductance associated with this flux. 

The difference between the total flux from the d-winding and the mutual flux 

is attributed to the leakage flux L, so that, 

 ldid=Ldid- Lmdid     (eq. 4) 

Canceling the current id, we see that  

ld=Ld-Lmd➔ Ld=ld+Lmd    (eq. 5) 

When IB flows in the d-winding, so that id=IB, the mutual flux is given by  

md=LmdIB     (eq. 6) 
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Looking back at eq (3), we see that the flux from the F-winding that links the d-

axis winding is just kMFiF.  

Our criteria for selecting IFB says that when IFB flows in the F-winding, the mutual 

flux linking the d-winding should equal the mutual flux from the d-winding 

linking the F-winding when it carries IB. Thus, we write that 

md=LmdIB=kMFIFB     (eq. 7) 
And we see that 

B

F

md
FB I

kM

L
I =      (eq. 8) 

MF and Lmd are generally provided in (or can be obtained from) manufacturer’s 

data for a given machine3. 

▪ MF can be computed as illustrated in Example 4.1 (which we review 

below), using the magnetization curve, 

▪ Lmd=Ld-ld, where manufacturer’s data sheets contain Ld and ld. 

Therefore, once IB is selected, IFB may be computed.  
 

Base current for main field winding, approach 2: 

One may also develop a relation for IFB from the perspective of the flux linking 

the field winding, i.e., instead of using eq. (3) from (4.20’), use: 

DRFFdFF iMiLikM ++=    (eq. 9) 

Similar to eq. (5), the self inductance LF is comprised of the leakage and the 

magnetizing, i.e.,  

LF=lf+LmF     (eq. 10) 
Inspecting eq. (9), we see that the flux from the d-winding linking with the F-

winding is kMFid, so that when id=IB and iF=IFB, we have that 

LmFIFB=kMFIB     (eq. 11) 
and we see that 

B

mF

F
FB I

L

kM
I =     (eq. 12) 

where, as before, MF is obtained per Example 4.1 below, LmF=LF-lF, and LF, 

lF are obtained from manufacturer’s data sheet. 

 

 

 
3 Note: in MKS units (i.e., henries), Lmd is not the same as kMF , i.e., the reciprocal mutuals are not equal.  
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Base current for D-winding: 

We select the D-winding base current, IDB according to the following criteria: 

We select IDB, the D-winding base current, as that current when 

flowing in the D-winding will produce a mutual flux md equal to the 

same mutual flux that is produced by a current IB flowing in the d-

winding. 

Similar analysis as for the F-winding results in  

B

D

md
DB I

kM

L
I = ,  B

mF

D
DB I

L

kM
I =   (eq. 13) 

 

We may also utilize a similar procedure between D and F windings to obtain 

FB

R

mF
DB I

M

L
I =    (eq. 14) 

 

Base current for Q-winding: 

We select Q-winding base current, IQB according to the following criteria: 

We select IQB, the Q-winding base current, as that current when 

flowing in the Q-winding will produce a mutual flux mq equal to the 

same mutual flux that is produced by a current IB flowing in the q-

winding. 

Similar analysis as for the F-winding results in  

B

Q

mq

QB I
kM

L
I = ,  B

mQ

Q

QB I
L

kM
I =   (eq. 15) 

Base current for G-winding: 

We select the G-winding base current, IGB according to the following criteria: 

We select IGB, G-winding base current, as that current when flowing 

in the G-winding will produce a mutual flux mq equal to the same 

mutual flux that is produced by a current IB flowing in the q-winding. 

Similar analysis as for the F-winding results in  
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B

G

mq

GB I
kM

L
I = ,  B

mG

G
GB I

L

kM
I =   (eq. 16) 

We may also utilize a similar procedure between Q and G windings to obtain 

QB

Y

mQ

GB I
M

L
I =    (eq. 17) 

Summary:  

Eqt. (8) together with eqts. (12-17) provide the ability to develop any of the 

equations given as (4.54) in VMAF. These equations are referred to as the 

“fundamental constraints among base currents” and are given by: 

DBFBRDBBDFBBFDBmDFBmFBmd IIMIIkMIIkMILILIL ===== 222
 

GBQBYQBmQQBBQBmq IIMILIIkMIL === 22
 

For example, recalling (8) is 
B

F

md
FB I

kM

L
I =  and (12) is 

B

mF

F
FB I

L

kM
I = , we 

can multiply the left-hand-sides together and the right-hand-sides together to 

obtain: 
2222

BmdFBmFB

mFF

Fmd
FB ILILI

LkM

kML
I == . 

 

Now define the following k-factors: 

FB

B
F

I

I
k = ,  

DB

B
D

I

I
k = , 

QB

B
Q

I

I
k = , 

GB

B
G

I

I
k =  

Because we have the same power base on all stator and rotor circuits, we 

obtain: 

GBGBQBQBDBDBFBFBBBB IVIVIVIVIVS =====  

Then the above k-factors may be expressed. For example,  

FB B

B B FB FB F

B FB

V I
V I V I k

V I
=  = =  
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In summary, 

B

FB
F

V

V
k = ,  

B

DB
D

V

V
k = , 

B

QB

Q
V

V
k = , 

B

GB
G

V

V
k =  

Note that these k-factors may be considered to be effective turns ratios. 

 

We may also derive expressions for the resistance and inductance bases. Our 

desire is to be able to compute rotor-side bases as a function of stator-side 

bases. The k-factors given above will be very handy here. 

Rotor-side resistance bases: 

 

BF

B

B

FB

B

B

FB

FB

FB
FB Rk

I

V

I

I

V

V

I

V
R 2==  

Likewise,  

BGGBBQQBBDDB RkRRkRRkR 222        ,       , ===  

Rotor-side inductance bases:  

 

BF

B

BB

FB

B

B

FB

FB

BFB
FB Lk

I

tV

I

I

V

V

I

tV
L 2==  

Likewise,  

BGGBBQQBBDDB LkLLkLLkL 222        ,       , ===  

 

Rotor-stator mutuals:  

 

Your text, pg. 103 refers to HW problem 4.18 which states that base mutuals 

must be the geometric mean of the base self-inductances, i.e., 

12B 1B 2BM = L L  

Thus, we have that the base for the field winding to stator winding mutual 

terms is given by (see eq. 4.57 in VMAF): 
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BFBFBFBBFB LkLkLLLM === 2
 

Note that MFB is not the same as the base self inductance LFB given above. 

Likewise, we get (see eq. 4.57 in VMAF): 

BGGBBQQBBDDB LkMLkMLkM ===        ,       ,  

Rotor-rotor mutuals:  

There are just 2 of them (see eq. 4.57 in VMAF): 

BDFBDBFDBFBRB LkkLkLkLLM === 22
 

Likewise,  

BQGYB LkkM =  

 

2.3 Example 4.1, pg 105 of text 

This is a good example that you should review carefully. Here is the first part 

of it (p. 106-107 continues with it).  

 

Why are some values “estimated for 

academic study”? (See pg. 20 below) 

Note this statement; What is “air gap line”? 

See Fig. 3 and Fig. 4 below and related 

comments. 
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The only thing that is perhaps not too clear is the computation of MF. I will 

just review that part of it here. 

 

Computation of MF: VMAF make the statement (see above): 

“From the no-load magnetization curve, the value of field current 

corresponding to the rated voltage on the air-gap line is 365 A.” 

 

Note “peak phase voltage”. 

4.11 relates abcFGDQ flux 

linkages to abcFGDQ currents, 

e.g., 

λa=Laaia+Labib+Lacic+LafiF+LaGiG

LaDiD+LaQiQ. At open cct, this is 

λa=LafiF which is, by 4.16, 

λa=(MFcosθ)iF. 
 [Also, see detail in these notes below.] 

4.23 gives va=-raia-dλa/dt; for 

open cct, ia=0 and so va is 

negative of the derivative of λa. 

Vpeak= Vrms*√2 

From (4.55) in VMAF, and bottom p. 12, IFB=IB/kF 

From (4.57) in VMAF, and top of p. 14, MFB=kFLB 

From (4.55) in VMAF, and bottom of p. 12, VFB=VBIB/IFB=SB/IFB 

From (4.??) in VMAF, and bottom of p. , RFB=VFB/IFB 
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The “open-circuit characteristic” or “magnetization curve” plots 

• Something proportional to exciting (field) current on horizontal axis  

• Something proportional to the flux on the vertical axis. 

under open-circuit conditions (phase windings are open). Figure 3 below 

illustrates. 

 
Fig. 3 

The air-gap line is the Va vs. iF relation that results if the iron has constant 

permeability. The solid line that bends to the right is the actual characteristic 

that occurs, which shows that terminal voltage falls away from the air-gap 

line as the field current is raised beyond a certain point. This falling away is 

caused by saturation of the ferromagnetic material, resulting from the 

decrease in permeability under high flux conditions. Figure 4 illustrates a 

magnetization curve for a real 13.8 kV synchronous machine. The vertical 

axis is line-to-line voltage.  

Va 

φ 

λ 

B 

iF 

F=NiF 

H=F/l 

Due to saturation of 

the iron (a decrease in 

permeability or 

increase in reluctance) 

for high MMF 

Air-gap line 
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Fig. 4 

 

What is done in Ex. 4.1 (and what can be done in industry to obtain MF), is 

that the field current is determined corresponding to steady-state rated open 

circuit terminal voltage. This voltage is VB=VLL-rated/sqrt(3). For Ex. 4.1, this 

is VB=15kV/sqrt(3)=8660 volts. This is the rms voltage, but VMAF indicate 

that we need the corresponding peak voltage: Vpeak=√2(8660)=12,247.1 

volts. But why do we need the peak voltage? 

 

Let’s consider this question. 

 

This synch gen is separately excited, and so 
its field current If (here designated as “rotor 

amps”) is supplied from the armature of a 

separate DC gen. The separate DC gen has 
field current IDCgen (on DC gen stator) 

which creates field flux ϕ. The current If, 

which is the armature current of the DC gen 
and the field current of the synch gen, 

increases with DC gen armature voltage Ea, 
and Ea=kωϕ, where ϕ increases with IDCgen. 
And so If and IDCgen are both indicators of 

synch gen field strength. 

 
The two magnetization curves to the left 

plot line-to-line open cct voltage of the 
synch gen against (a) IDCgen and (b) If.  

Field

winding

+

-

Ea

If

IDCgen
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From first page of previous notes titled “Machine Equations,” or from eq. 

(4.11) in VMAF, we have  

GaQQaQDaDFaFcacbabaaaa iLiLiLiLiLiLiL ++++++=  

But ia=ib=ic=0 under open circuit conditions. 

And damper currents iD=iQ=0 under steady-state conditions. Therefore 

GaQFaFa iLiL +=      

Recall that the G-winding models the Q-axis flux produced by the eddy-

current effects in the rotor during the transient period. But we are now 

considering only the steady-state condition, iG=0. Therefore 

FaFa iL=      (*) 

Now recall from first page of previous notes titled “macheqts,” or from eq. 

(4.16’) in VMAF, that LaF=MFcosθ, and substitution into (*) yields 

 cosFFa iM=      (**) 

Differentiating (**) results in 







sinsin Re FFFF
a iM

dt

d
iM

dt

d
−=−=

  (***) 

Now recall the voltage equation for the a-phase: 

naaaa vriv +−−=      (#) 

Substituting (***) into (#), we obtain 

nFFaaa viMriv ++−=  sinRe      

But under open circuit conditions, ia=0, in=0 (implying vn=0) and we have 

 sinRe FFa iMv =    (#*) 

From (#*), we see that, under these conditions 

Re

Re



F

peak

FFFpeak
i

V
MiMV ==

 

So we choose a point from the magnetization curve, for example, VMAF 

chose iF=365A, Vpeak=12,247.1volts (365A is the value of field current 
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corresponding to the rated voltage on the air-gap line, and 

12,247.1/sqrt(2)=8660volts is the rated RMS line-to-neutral voltage 

(corresponding to 8660sqrt(3)=15kV). Then 

henries  10006.89
)377)(365(

1.247,12 3

Re

−===
F

peak

F
i

V
M

 

And from this we can compute 

dd

F

md

F
F

lL

kM

L

kM
k

−
==

 

where the denominator is comprised of data provided by the manufacturer 

(see “Last comment” at the end of these notes). 

The rest of Ex. 4.1 is just an application of our per-unitization formula. 

 

There is an interesting paragraph in Appendix C, pg. 693 of your text, to 

which I want to draw your attention. It says, 

“Note that a key element in determining the factor kF, and hence all the 

rotor base quantities, is the value of MF (in H). This is obtained from the 

air gap line of the magnetization curve provided by the manufacturer. 

Unfortunately, no such data is given for any of the amortisseur circuits. 

Thus, while the pu values of the various amortisseur elements can be 

determined, their corresponding MKS data are not known. 

I provide some comments on certain sentences in this paragraph: 

▪ “Note that a key element in determining the factor kF, and hence all the 

rotor base quantities,” refers to the fact that we use kF to obtain LFB, RFB 

and MFB from: 

BFFB LkL 2=    FB F BM = k L  

BFFB RkR 2=  

▪ “This is obtained from the air gap line of the magnetization curve 

provided by the manufacturer,” as we have seen above by using 

ReF

peak

F
i

V
M =
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We are able to get MF in this way because we can directly control the 

current iF, with no other circuits energized (as a result of the open-circuit, 

steady-state conditions), and directly measure the induced voltage at the 

a-phase terminals. 

▪ “Unfortunately, no such data is given for any of the amortisseur 

circuits.” It is not possible to directly control the currents iD, iQ, and iG, 

since their corresponding circuits do not have sources. The only way to 

energize these circuits is via a transient condition, but there is no way to 

provide a transient condition that will also not energize other circuits, 

which would result in the measured terminal voltage being induced from 

the mutual inductance between itself and the other circuits as well.  

▪ “Thus, while the pu values of the various amortisseur elements can be 

determined, their corresponding MKS data are not known.” In example 

4.1, the text puts an asterisk by some of the parameters (LD, LQ, kMD, 

kMQ, rD, and rQ), indicating they were “estimated for academic study”). 

This is because manufacturer’s datasheets do not usually include the 

parameters for the amortisseur (and G-winding) circuits, simply because 

they are hard to measure (based on the comments of the previous bullet). 

However, if one can obtain any q-axis mutual inductance, then others are 

also identified because, as we shall see in Section 3.0 below, in per-unit, 

all direct-axis mutuals are equal and all quadrature-axis mutuals are 

equal! In other words: 

▪ D-axis mutuals:  

F-d winding mutual, kMF 

D-d winding mutual, kMD 

F-D winding mutual, MR (is called MX in some texts) 

That is, we will show that in per-unit, RuDuFu MkMkM ==  

▪ Q-axis mutuals:  

G-q winding mutual, kMG 

Q-q winding mutual, kMQ 

G-Q winding mutual, MY 

That is, we will show that in per-unit, YuGuQu MkMkM ==     

(See “Last Comment” at end of these notes.) 
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2.4 Applying the bases to voltage equations (section 4.8 in VMAF): 

Recall our voltage equation as written in MKS units: 

0 0
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2 2
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  
  
  

 
 
 

 

Let’s normalize them using our chosen bases to obtain the equations in per-

unit. The per-unit equations should appear as above when done, except that 

everything must be in per-unit. 

Step 1: Replace all MKS voltages on the left with 

• the product of their per-unit value and their base value (use VB 

for the first 3 equations and VFB, VDB, VQB, VGB for the last four 

equations), 

and replace all currents on the right with  

• the product of their per-unit value and their base value (use IB 

for the first 3 equations and IFB, IDB, IQB, IGB for the last four 

equations). 

This results in eq. 4.60 in the text, as follows….  
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    (eq. 

4.60) 

Step2: For each of the equations in the above, we need to divide through by 

the voltage base. For those equations containing , we replace it with 

=uB (B=Re). Then we do some algebra on each equation to express 

the coefficients of each current and current derivative as per-unitized self or 

mutual inductances. As an example, the 2nd equation is done for you in 

VMAF (p.109); here, I do the 5th equation, corresponding to the G-winding. 

GBGuGQBQuYBquGGBGuGGB IiLIiMIiMIirV  −−−−=
2

3
)(0

 

 

Step 2a: Divide through by VGB to obtain: 
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G
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Y
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The first term has a denominator of RGB. The last 3 terms are not so obvious.  

We desire them to have denominators of MGB, MYB, and LGB, respectively, 

where, from above (p. 14), we recall BGGB LkM = , BQGYB LkkM = , BGGB LkL 2= , where 

GB

B

B

GB
G

I

I

V

V
k == , and 

QB

B
Q

I

I
k = . 
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Step 2b: Let’s multiply the denominator of the last three terms by VB/VB. 

This results in:  
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Step 2c: Let’s multiply the denominator of the last two terms by IB/IB. This 

results in: 
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Step 2d: Recall     k-factors (pg 104 of text): 
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B

B
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G

I

I

V

V
k == , and 
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B
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I
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Substitution yields: 
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Step 2e: We are close now, as we need MGB=kGLB, MYB=kGkQLB, and     

LGB=(kG)2LB, respectively, on the denominator of the last three terms. Recall 

that LB=VB/(BIB), so we need to divide top and bottom on the denominators 

of the last three terms by B. Doing so yields: 
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Step 2f: And substituting in LB results in: 
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Step 2g: Recalling that MGB=kGLB, MYB=kGkQLB, and LGB=(kG)2LB , we may 

write: 
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which results in  
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Step 2h: However, we still have one problem. Recall that we want the 

equations to be identical in pu to their form in MKS units. But in the last 

equation, we still have B, which does not appear in our MKS equation. We 

can take care of it, however, by recalling that B=1/tB, so that:  
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where =t/tB is the normalized time.  
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With this last change, we can write, finally, that  

GuGuQuYuquGuGuG iLiMiMir  −−−−=
2

3
0

 

which is the per-unitized form of the last equation in eq. (4.60).  

 

Note that it is exactly the same form as the original equation in MKS units! 

 

Similar work can be done for the other equations (and you should try to do 

one of the others yourself), resulting in equation 4.74 in your text: 
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  (eq. 4.74) 

 

 

Note that in the above equation,  

• The “u” subscript is dropped; however, all parameters are in pu. 

• We have dropped the zero-sequence voltage equation since we 

will be interested in balanced conditions for stability studies. (A 

system having a three-phase fault, considered to be, usually, the 

most severe, is still a balanced system. This does not mean that 

we cannot analyze unbalanced faults using stability programs. It 

is possible to analyze the effects of unbalanced faults on the 

positive sequence network represented in stability programs – see 
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Kimbark Vol I, pp. 220-221). Otherwise, eq. (4.74) is precisely 

the same as eqt. 4.39 in VMAF (see the same equation as 4.39, in 

the notes called “macheqts”). 

• The equations are rearranged from stator then rotor equations to 

d-axis then q-axis equations to better display coupling and 

decoupling between various circuits. This coupling is well 

illustrated by Fig. 4.3 in VMAF, given below. Note that coupling 

between F and D windings is captured by MR. Some works call 

this mutual inductance MX. We use MR to remain consistent with 

VMAF. These are physically-realizable circuits for which KVL 

in each of the 6 circuits results in the 6 equations of 4.74 above.  

 
Fig 4.3 

Now let’s make some definitions: 

“Dot” convention:  

a. If the reference current direction enters the dotted terminal of a coil, the reference polarity 
of the voltage that it induces in the other coil is positive at its dotted terminal. 

b. If the reference current direction leaves the dotted terminal of a coil, the reference polarity 

of the voltage that it induces in the other coil is negative at its dotted terminal. 
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With these definitions, we rewrite eqt. (4.74) in compact notation: 
 

iLiNRv −+−= )(    (eq. 4.75) 

 

We may solve eq. (4.75) for di/dt so that it is in state-space form: 
 

vLiNRLi 11
)( −−
−+−= 

  (eq. 4.76) 

It is useful, once again, to recall the power of Park: the above 

(although just for 1 machine and no network) is a set of ODEs with 

constant coefficients!!! 

 

3.0 Per-unit mutuals (See Section 4.11) 
 

A useful observation regarding per-unit values of MF, MD, and MR: 

 

Recall our definitions of the D-axis k-factors: 
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and the fundamental constraints among base currents that we 

developed (see eqs. 4.54, pg 12 of these notes): 
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From the first and fourth expression in eq (18), we have: 
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Likewise, from the first and fifth, and from the fourth and sixth 

expressions in eq (18), we have: 
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From the definitions of the k-factors (top of this page), and eqs (19) 

and (20), we have: 
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And from eq. 4.57 in text (also see p. 14 of these notes), we find 

BFFB LkM = ,  
BDDB LkM = ,  

BDFRB LkkM =    (22) 

which we obtained by using the fact that base mutuals must be the 

geometric mean of the base self-inductances (see prob 4.18). 

1. 

2. 
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Now, recall the elements in the per-unitized voltage equations as 

given by eq. 4.74 (see page 25 of these notes). 
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 4.74 

In particular, consider the mutual terms in the last matrix for the 

direct axis. These are in the upper left-hand 3x3 block, in the blue 

box. These terms, in pu, are by definition the ratio of the term in 

MKS to the appropriate base. Therefore: 

• Stator-field mutual: 

FB

F
Fu

M

kM
kM = .  

Substituting for MFB from eq. (22) and then kF from eq. (21) 

results in: 

mdu

B

md

BF

mdF

BF

F

FB

F
Fu L

L

L

LkM

LkM

Lk

kM

M

kM
kM ====  

• Stator-D-winding damper mutual: 

DB

D
Du

M

kM
kM = .  

Substituting for MDB from eq. (22) and then kD from eq. (21) 

results in: 

3. 

3. 

2. 1. 

3. 

2. 1. 

So this comes 

from (i) kF 

definition; 

(ii)fundamental 

constraints among 

base currents (eq. 

4.54), & 

(iii)definition of 

pu mutual kMFu 
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mdu

B

md

BD

mdD

BD

D

DB

D
Du L

L

L

LkM

LkM

Lk

kM

M

kM
kM ====  

• Field-D-winding damper mutual: 

RB

R
Ru

M

M
M =  

Substituting for MRB from eq. (22) and then kF and kD from eq. 

(21) (using the 2nd expression for kD in eq. (4)) results in: 

mdu

B

md

BRF

FmdR

BDF

R

RB

R
Ru L

L

L

LMkM

kMLM

Lkk

M

M

M
M ====  

Important fact: In per-unit, all d-axis mutuals are numerically equal to 

Lmdu (per p. 9, Lmd is the magnetizing inductance, i.e., Ld=Lmd+ld). We 

will define a new term for them, LAD, as the per-unit value of any d-

axis mutual inductance, so that: 

RuDuFumduAD MkMkMLL ===  

Also note that the mutual is the difference between the self and the 

leakage, so that  

Ldu-ldu=LDu-lDu=LFu-lFu=LAD 

The above relations are given in eqs. 4.107 and 4.108 in VMAF. 

 

We can go through a similar process for the q-axis mutuals (from 

4.74, we see that these are the terms in the lower right-hand block 

of the matrix, kMQ, kMG, and MY). I will leave this for you to do. The 

result is: 

YuGuQumquAQ MkMkMLL ===  

Lqu-lqu=LQu-lQu=LGu-lGu=LAQ 

The above relations are given by eq. 4.109 in your text. 

 

LAD and LAQ are very important for drawing the equivalent circuits. 

 

3. 

2. 

1. 

So this comes 

from (i) kD 

definition; 

(ii)fundamental 

constraints among 

base currents (eq. 

4.54), & 

(iii)definition of 

pu mutual kMDu 

So this comes 

from (i) kF, kD 

definitions; 

(ii)fundamental 

constraints among 

base currents (eq. 

4.54), & 

(iii)definition of 

pu mutual kMRu 
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They are also important in dealing with saturation because they 

provide for the definition of the per-unit mutual flux (we will see 

this in our development of the flux-linkage state-space model). 

 

4.0 Equivalent Circuits (See Section 4.11) 

Let’s return to the voltage equations that we had before we folded 

in the speed voltage terms. They were: 
 

0
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2 2
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−   
   

+ +   
   
   
   

 
 

 

 

Assume all of the above is in per-unit (but we have dropped the u-

subscript). 

 

There is some advantage to re-writing these equations in terms of 

LAD and LAQ. For example, consider the d-axis equation. It is: 
 

qDDFFdddd ikMikMiLriv −−−−−= 
 

 

Recall that Ld=Lmd+ld➔ Lmd=Ld-ld 
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Let’s modify the d-axis voltage equation by adding and subtracting 

ld (did/dt): 

qDDFFdddddddd ikMikMililiLriv −−−−+−−= 
,  

which can be written as: 

qDDFFddddddd ikMikMilLilriv −++−−−−= ])[( 
 

The advantage to this is that, in per-unit, we recall that                         

Ld-ld=kMF=kMDLAD. Therefore, 

qDFdADdddd iiiLilriv −++−−−= ][ 
 

 

Let’s repeat this for the G-axis equation, which is, from the matrix 

equation at the beginning of this section: 

GGQYqGGGG iLiMikMirv  −−−−== 0  

 

Let’s modify the G-winding voltage equation by adding and 

subtracting lG (diG/dt): 
 

GGGGGGQYqGGGG ililiLiMikMirv  −+−−−−== 0   

which can be written as: 

GGGGGQYqGGGG ililLiMikMirv  −−−−−−== )(0  

The advantage to this is that, in pu, we have LG-lG=kMG=MYLAQ. 
 

Therefore 

)(0 GQqAQGGGGG iiiLilirv  ++−−−==  

Repeating this procedure for the F, D, and q equations, and then 

summarizing, we obtain: 
 

D-axis relations: 

qDFdADdddd iiiLilriv −++−−−= ][ 
 

][ DFdADFFFFF iiiLilirv  ++−−−=−  

][0 DFdADDDDDD iiiLilirv  ++−−−==  
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Q-axis relations: 

dGQqAQqqqq iiiLilriv +++−−−= )( 
 

)(0 GQqAQQQQQ iiiLilriv  ++−−−==  

)(0 GQqAQGGGGG iiiLilirv  ++−−−==  

 

We desire to draw circuits that are characterized by these equations. 

 

Note: 

• The D-axis relations are coupled through the LAD terms.  

• This term, for each equation, may be represented by a single 

“center” branch.  

• The other terms, for each equation, may be represented as single 

branches which feed the center branch. 

This results in the circuit of Fig 4.5 in your text. 

 

Similar reasoning results in the circuit of Fig. 4.6 in your text.  

We redraw these circuits below. 
 

 

 

 

vF 

iF+iD+id 

r ld 

LAD 

lD 

rF 

lF 

- 

+ 

 

--  + 

rD 

id 

vd iD iF 

q 
 

Direct-axis equivalent circuit: 

The above is the same as Fig. 4.5 in your text 

qDFdADdddd iiiLilriv −++−−−= ][   

][ DFdADFFFFF iiiLilirv  ++−−−=−  

][0 DFdADDDDDD iiiLilirv  ++−−−==  
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iQ+iG+iq 

r lq 

LAQ 

lQ 

rG 

lG 

 

+ -- 

rQ 

iq 

vq iQ iG 

d 
 

Quadrature-axis equivalent circuit: 

The above is the same as Fig. 4.6 in your text 

 

The ability to draw these circuits is a direct result of the LAD and LAQ 

relations that occur only in per-unit. Therefore, it is important to be 

in the per-unit system when utilizing these circuits. And the “equal 

mutuals” effect came as a result of the fact that we chose our base 

currents according to the following criteria (see p. 8 of these notes): 

We select the base currents for the four rotor-side windings F, 

D (Q, G) to produce the same mutual flux in the air gap as 

produced by the stator-side base current IB flowing in the 

corresponding fictitious d-axis (q-axis) coil. 

See Appendix C of your text, at the top of p. 689, for another way 

to articulate this fact. 

 

These equivalent circuits are useful for: 

• Remembering the voltage relations. 

• Gaining physical understanding of relations between d-q-F-D-

Q-G quantities. 

• Reading the literature, where you will see them often. 

dGQqAQqqqq iiiLilriv +++−−−= )(   

)(0 GQqAQQQQQ iiiLilriv  ++−−−==  

)(0 GQqAQGGGGG iiiLilirv  ++−−−==  
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Last comments: There are two electrical parameter sets 

(inductances and resistances, or inductances and time constants) 

used to characterize synchronous machines.  

• The one we are using up until this point is sometimes referred to as 

the fundamental or basic parameter set; Kundur on p. 139 of his book 

uses this terminology. This includes self inductances Lq, LF, LD, Lq, 

LG, and LQ, mutual inductances MF, MR, MD, MG, MY, and MQ, and 

resistances r, rF, rD, rG and rQ.  

• Another parameter set is referred to as the standard parameter set; 

both Kundur (p. 144) and VMAF (p. 156, top paragraph) use this 

terminology for this parameter set. It includes self-inductances Ld, L'd, 

L''d, Lq, L'q, L''q, open circuit time constants T'd0, T''d0, T'q0, T''q0, and 

short circuit time constants T'd, T''d, T'q, T''q. We study this parameter 

set next in notes called “Subtransient & Transient Inductances” and “TimeConstants”. 

The two parameter sets provide equivalent info; one set may be 

derived from another. An important distinction between the 

parameter sets is how testing may be used to obtain them; this is an 

issue extending from Example 4.1 (see p. 14 of these notes) where 

we see we cannot get q-axis quantities at all and need manufacturer’s 

data to get d-axis quantities (see p. 19). There are 3 kinds of testing 

that can be done to determine synchronous machine parameters.  

• Short circuit test: As the name implies, the machine is exposed to a 

sudden short-circuit across its terminals; parameters may be 

computed based on recorded currents and voltages. This approach is 

able to obtain d-axis parameters but not q-axis parameters; 

• Decrement test: This test is also called a step-response test and a stator 

current interruption test. It is able to obtain both d-axis and q-axis 

parameters. 

• Standstill frequency response (SSFR) test: Here, one applies an 

excitation to the stator terminals over a range of frequencies, 

measuring the resulting currents, with the ratio providing what are 

referred to as operational inductances.  

Section 4.16 of VMAF summarizes these tests and provides 

excellent references for further reading on parameter determination. 

In reading the VMAF Section 4.16 (appended below), you will also 

see that it describes “operational inductances” that are directly 
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related to results of the SSFR test. Kundur, on pp. 139-143, develops 

this approach nicely in a section he titles “Operational parameters,” 

which is obtained directly from Park’s original 1929 paper. Kundur 

describes operational parameters this way (p. 139-140):  

“A convenient method of identifying the machine electrical 

characteristics is in terms of operational parameters relating the 

armature and field terminal quantities… where  

• G(s) is the stator to field transfer function 

• Ld(s) is the d-axis operational inductance 

• Lq(s) is the q-axis operational inductance.” 

The above expressions, which are functions of the Laplace variable 

“s,” can be expressed in terms of various time constants and take on 

various forms depending on the time frame of interest. 

Krause, in his book (p. 283), has a chapter titled “Operational 

impedances and time constants of synchronous machines,” which 

contains in its introduction a useful discussion of this issue, as 

follows: 

 
Another good reference on testing is Padiyar. I have cut our his 

descriptions of short circuit tests, decrement tests, and SSFR tests 

and appended them at the end of these notes.  
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From Padiyar, pp. 85-87: 
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