Flux-linkage equations for 7-winding representation (eq. 4.11 in VMAF)
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The above terms are defined as follows:

Stator-stator terms:
Laa=Ls+Lmcos26
Lap=-[Ms+Lmc0os2(6+30°)]
Lac=-[Ms+Lmc0s2(6+150°)]

Lba:‘[Ms'l' LmC052(6+3OO)]
Lbb=Ls+Lmc0s2(6-120°)
Lbc:'[Ms+ LmC052(9-90°)]

Lca:'[Ms'l' LmC052(9+1500)]
ch:'[Ms+ LmC052(9-90°)]
Lcc: Ls+ LmC052(9'2400)

Rotor-rotor terms:

Lrr=Lr

Lro=Mr

Lro=Lrc =0

Lor=Mr Lor=Lqp=
Loo=Lp Loo=Lq
Lpo=Lpc=0 Loc=My

0

Stator-rotor terms:
Lar=MEgcos6
Lab=Mpcoso
Lag=Mgsind
Lac=Mgsind

Lbr=MErcos(6-120°)
Lop=Mpcos(6-120°)
Lbo=Mgsin(0-120°)
Loc=Mesin(0-120°)

Lcr=MFrcos(6-240°)
Lc.o=Mpcos(6-240°)
Lco=Mgsin(6-240°)
Lcc=Mgsin(6-240°)

Ler=Lep=0
Leo=Myvy
Lee=Lc

Rotor-stator terms:
Lra=MEgcos6
Lrp=MErcos(6-120°)
Lrc=Mrcos(6-240°)

Loa=Mpbcos6
Lob=Mpcos(6-120°)
Loc=Mpcos(0-240°)

Loa=Mgsin6
Lob=Mgsin(6-120°)
Loc=Mgsin(6-240°)

Lca=Mgsind
Leb=Mgsin(6-120°)
Lec=Mgsin(6-240°)



So the compact form of the flux linkage equations are

&abc _ [ L] | Labe — |:Laa l_—aR :l e (eq. L)

iFGDQ !FGDQ Lra  Lig leepo

which, when expanded with the expressions for self and mutual
inductances, become:
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Voltage equations
The voltage equations developed here will characterize the
electromagnetic dynamics of the synchronous machine.

Consider the stator circuit as it appears as in Fig. 1 (Fig. 4.2
In text):
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Figure 4.2 Schematic diagram of a synchronous machine.

Fig. 1
The defined positive voltage polarity across each phase
winding (for phase a, fa is positive wrpst sa) is opposite to the
polarity associated with that of Fig. 4.1a in the text) and
therefore the induced voltage, when expressed within the
phase’s voltage equation, will be negative.

We assume that the neutral conductor is not magnetically
coupled with any other circuit.



With this information, and following the polarities of the
circuit diagram, we can write a voltage equation for each of
the phase windings as follows:

Vv :—ir—/i +V,

a
—ir -4 +V
vC =—i.r, —A +V_
We may also write a voltage equation for the neutral circuit
as follows:

V., = _inrn — I-ni.n = _(ia + ib + ic)rn B Ln (ia + ib T ic)

n
Now let’s look at the rotor circuits. There are four of them.
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Fig. 5: O-Axis Field

Putting all of these equations together in matrix form, we
have that:

_ _ - —— ﬂ, _
V, L 00000 O0|i] %] [vw
Vv, 0r, 0000O0Oi]| [A] ]y
1 9
v, 0 0r 00O O0fi A A (eq4.23”)
Ve | =— 0 0O I 0O 0 O iF — ﬂ,: +1 0 | The primed notation on equation numbers
. . indicates the given equation corresponds to the
0 0O 00O I'G 0 0 ks ﬂG O || equation identified in the A&F Second edition
. text by that number, with some modification.
0 O 0 0 0 O r. Ol ] O || Generally, the modification is the addition of the
D D ﬂD voltage equation for the “G”-circuit. There should
0 I : O | be no difference with equations here and those in
L - _O 000000 g Ik ] ALl L ] the third edition (VMAF).

We can write this more compactly,_sirﬁilar to eq. 4.26 in
text:

|: \_/abc :|= _|:Babc Q :||:iabc :|_ z’abc +|:\_/n:| (eq 4 26,)
\_/FGDQ Q BFGDQ iFGDQ &.FGDQ Q



Motivation for Park’s Transformation
We desire to get the above equation into state-space form
(x = Ax) so that we can combine it with our inertial equations

and then apply numerical integration and solve them together.

We notice, however, that we have two types of related state
variables in the above equations: flux linkages (A) and
currents (1). We can eliminate one of them, and this is not
hard since flux linkages can be expressed as functions of the
currents that produce them. For example, for a single
conductor, we write that A=Li (see also eq. (L) at the
beginning of this document).

But eq. 4.26’ has derivatives on A. Again, no problem, since
da/dt=d(Li)/dt.

It is here that we run into trouble, since the inductances that
we are dealing with are, in general, functions of 6, which is
itself a function of time. Therefore the inductances are
functions of time, and differentiation of flux linkages (using
the product rule of calculus) results in expressions like:

di dL. dIL

=—1+—

dt dt dt
The differentiation with respect to L, dL/dt, will result in a time-
varying coefficient on the state variable. When we replace, in eq.
4.26’°, the derivatives on A with the derivatives on i, and then
solve for the derivatives on i (in order to obtain x = Ax), we will

obtain current variables on the right-hand-side that have time
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varying coefficients, i.e., the coefficient matrix A will not be
constant. This means that we will have to deal with differential
equations with time varying coefficients, which are generally
more difficult to solve than differential equations with constant
coefficients.

This presents some significant difficulties, in terms of solution,
that we prefer to avoid. We look for a different approach. We
will find the different approach not only solves this problem but
offers a simpler view and understanding of synchronous
machine electromagnetic dynamics.

The different approach is based on the observation that our
trouble comes from the inductances related to the stator (phase
windings):

e Stator self inductances

e Stator-stator mutual inductances

e Stator-rotor mutual inductances

I.e., all of these have time-varying inductances.

To alleviate the trouble, we project a-b-c currents onto a rotating
pair of axes which we call the d and g axes or the d-g axes which
comprise a rotating coordinate frame of reference. Although we
may specify the speed of these axes to be any speed convenient
to us, we choose it to be rotor speed! to remain consistent with
Park.

1 VMATF, at the top of p. 93, emphasize that the frame of reference “moves with the rotor.” This is in contrast to
moving at “synchronous speed,” since moving “with the rotor” is not necessarily moving at synchronous speed during
disturbance conditions. Indeed, this distinction is made in Krause’s book (p. 147) and in C. O'Rourke, J.Kirtley, et al.
"A Geometric Interpretation of Reference Frames and Transformations: dg0, Clarke, and Park." IEEE Transactions on
Energy Conversion 34, 4, (December 2019): 2070 - 2083 © 2019 IEEE, available at
https://dspace.mit.edu/bitstream/handle/1721.1/123557/Final_Submission__Open_Access.pdf?sequence=1&isAllowed=y. It is further
discussed in VMAF, p. 206, in applying Park’s transformation for an induction machine, which requires the angle 6 be given relative
to a synchronous rotating reference (and not the rotor).



https://dspace.mit.edu/bitstream/handle/1721.1/123557/Final_Submission__Open_Access.pdf?sequence=1&isAllowed=y

In making these projections, we want to obtain expressions
for the components of the stator currents that are in phase
with the d and q axes.

One can visualize the projection by thinking of the a-b-c
currents, each having direction the same as the flux it
produces, as having sinusoidal variation IN TIME along their
respective axes. The picture below illustrates for the a-phase.

It is important to understand that Fig. 6
implies two kinds of time variation:

(1) the time variation of the a-phase stator
current ia. The mental image of this
variation should have the i, vector in the
form shown, then decreasing to zero, then
increasing in the negative (downward)
direction, and then back to zero, etc.

(i1) the time variation of the d-q axis as it
rotates CCW with the rotor.

It is useful to conceptualize the impact on
the “ia to d-q axis projection” of each of

: N : the above time variations (i) and (ii) by
Flg' 6 (Flg 4 1b In teXt) * | themselves. Park’s transformation is a
result of both effects simultaneously.

We observe from Fig. 6 that i. will have a c
d-axis direction of lacos® and a component in the g-axis
direction of iasin®.

Decomposing the b-phase current i, and the c-phase current
Ic In the same way, and then adding them up, provides us
with:



s = Ky (i, COSO + i, COS(6 ~120°) +i, cos(6 +120°))
i, =k, (i, sin@+i, sin(@ —120°) + i sin(0 +120°))

Here, the constants kq and kg are chosen so as to simplify the
numerical coefficients in the generalized KVL equations that we
will get.

We have transformed 3 variables i, in, and ic into two variables

lg and Iq. This yields an under-determined system, meaning

e We can uniquely transform ia, i, and ic to iq and iq (if we
specify i, ib, and i¢, then we obtain unique values of iqg and ig).

e \We cannot uniquely transform ig and iq to Ia, Ip, and ic (unless
there is another constraint such as ia+ip+ic=0).

So we need a third current. We take this current proportional to
the zero-sequence current:

i, =k, (i, +i, +i,) (i-zero)
We note that, under balanced conditions, io is zero, and therefore
produces no flux. [In fact, it is possible to show that io produces
no flux linking the rotor windings at all (see Concordia’s book,
p. 14; Kimbark V. 111, p. 60; Bergan&Vittal, p. 468, pp. 597-599;
Kothari&Nagrath, p. 384; Glover,Sarma,Overbye, p. 417), an
Idea that is apparent if we consider that zero sequence currents
(which flow in all 3 stator windings) produce MMFs that are in
time-phase but distributed in space by 120°.] The implication is
that under all conditions, since iq and iq are equivalent to Ia, I,
and ic, and since flux from i does not link with other circuits,
then, i¢ and iq produce the exact same flux linkage as ia, b,
and .



We write our transformation more compactly as:
Iy K Ko K l,
I, |=|Kkycos@ k,cos(@—-120) k,cos(@+120) || 1,
i  k,sind Kk, sin(@-120) Kk, sin(@ +120) | I,

—— -~ T~
lodg P Labc
iOdq = Pl gy (eg. 4.3)
We may also operate on voltages and fluxes in the same way:
Vodg = E\_/abc’ i«Odq — E/_Iabc (eg. 4.7)

This transformation resulted from the work done by Blondel
(1923), Doherty and Nickle (1926), and Park (1929, 1933),
and as a result, 1s usually called “Park’s transformation,” and
the transformation matrix P is usually called “Park’s
transformation matrix” or just “Park’s matrix.”

In 2000, Park’s 1929 paper was voted the 2" most
Important paper of the last 100 years (behind —
Fortescue’s paper on symmetrical components).

e R. Park, “Two reaction theory of synchronous machines,”
Transactions of the AIEE, v. 48, p. 716-730, 1929.

e G. Heydt, S. Venkata, and N. Balijepalli, “High impact papersin = o rtHP itk
power engineering, 1900-1999, NAPS, 2000. 1902-1994

See www.nap.edu/openbook.php?record_id=5427&page=175 for an
interesting biography on Park, written by Charles Concordia
(himself one of the most famous power system engineers ever!), &
replicated below, together with a statement that was posted to the B
PowerGlobe a few years ago. '

Charlie Concordia
(1908-2003)
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ROBERT H. PARK

1902-1994

BY CHARLES CONCORDIA

Romr H. Park will long be remembered by electric power
system engineers and electrical machine designers as the
originator of what are universally known as “Park’s equations,”
These were given in an American Institute of Electrical Engineers
technical paper in 1929, Essentially, they provided a set of
relations that made practical and simple the calculation of the
dynamic performance of electric (ac) generators (and motors).
Such a 1ol was necessary, but not vet available, for the calculation
of the dynamic performance of electric power systems to ensure
5utlile and reliable operation in the face of possible disturbances.
This seminal paper has been the basis not only for an enormous
flood of useful work in the field but also for many careers in the
field. It was, and stll is, unmatched in that respect. By itself it
would have been enough to make Park famous among power
system engineers worldwide.

_Bn_-furc Park’s work, several papers had been written on elec-
tric generator equations. However, they were so complex as o
be of little practical use. David M. Jones, for whom Park then
worked at General Electric, recognized this and also recog-
nized that Park was the person who could bring order out of
chaos. S0 he assigned the job 1o Park, with worldshaking re-
sults. Incidentally, it is ironic that the resulting paper did not
elicit any discussion when it was presented.

175

11

176 MEMORIAL TRIBUTES

Although he fully recognized the significance of his contri-
bution, Park was equally interested in many other things.
About the same time, he had made contributions to the deter-
mination of switching transient voltages and was a major
influence in promoting the importance of, and showing how
to produce switch gear with, very much smaller interrupting
times than were then thought possible.

During World War I1, he served in the Naval Ordnance Lab-
oratory in charge of mine development, resulting in seventeen
patents (assigned to the U.S. government).

In the 1950s and 1960s he manufaciured plastic bottles,
inventing the machinery to automate the process.

Later, his interest remmned to electric power. He formed a
company, Fast Load Control, Inc., to promote the idea of fast
control of trbine valves as a means for improving power system
stability, and developed several means for accomplishing this.

Rather late in his life, he was recognized by the Institute of
Electrical and Electronics Engineers as a fellow in 1965 and
was awarded the Lamme Medal in 1972 “for outstanding con-
tributions to the analysis of a-< machines and systems.” He
had received (in 1945) the Navy's highest civilian award “for
distinguished service to the U.S. Navy in time of war in the
designing of magnetic mines.” In 1986 he was elected to the

Perhaps the lateness in recogmition by i EADLISTUTIETIL Was
Hue to the nature of his contribution. It was not a new machine,
or vet a new method of analysis. It was a new structure particu-

Iy well suited to facilitate analysis and application to new
sroblems. [t has been said that it was a ladder that others could
limb and that it was the opening of a gate so that others could
nter and cultivate the garden. Thus, it was appreciated immedi-
Jately by the young engineers at the bottom of the ladder long
hefore those at the top realized what was going on. “Park” was a
household word among the young engineers and students long
before any awards came. Even at the Lamme Medal award cere-
mony in 1972, his contribution was compared with that of o
other engineers as being similar, apparently withour realization
of the difference papers remained on the shelf, Park's

ok




ROBERT H. PARE

Robert Park was an original thinker, a prolific innovator,
and a forceful advocate of his ideas. This was his forte. He did
not spend time thinking about his past accomplishments but
was more interested in his new projects. He was an inventor
and proud that he did not require an anorney to help him
prepare his later patents. (He had 64.)

Robert Park was a clear thinker, sure in his -:hpir:inu- {which
stood well the test of time) and was neither very diplomatic or
sentimental. And he was a valued friend, whose counsel was
always sound as well as illuminating.

Park was born in Strassburg, Germany, while his father, the
sociologist Robert Erza Park, was studving and teaching at
“t'id('”]t'rg University. He grew up in Wollaston, Massachu-
setts, and graduated from the Massachusens Institute of
Technology in 1923 in electrical engineering. He did posi-
graduate work at the Roval Technical Institute in Stockholm,
Sweden. He worked on a wide variety of subjects in a wide
variety of companies and organizations, among which are Gen-
eral Electric, American Cyanamid, the Naval Ordnance
Laboratory, the Bureau of Ordnance, Emhart Manufacturing
Company, R. H. Park Company, and Fast Load Control, Ine
He was a privaie consultant 1o the end of his life. He is sur-
vived by a daughter, three sons, and a nephew.

From a recent “PowerGlobe” discussion:

“The real foundation of most of the synchronous machine theory talked today was
laid in a paper by a French Engineer, Blondel, who was the first to propose "two
reaction theory" in 1895. Then Doherty and Nickle published extensive analysis of
synchronous machines using two reaction theory in a number of papers between
1923 and 1928. At the behest of Charlie Concordia (as told by Charlie himself),
Park published three papers in 1928 to 1933 and organized the work of Doherty and
Nickle in a matrix form and that is what is best known today in terms of Park's
Transformation. Concordia and Park were colleagues in GE at that time.”

- OM Malik, Professor of Electrical and Computer Engineering, U. of Calgary
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In Park’s original paper, he used ko=1/3, kq=2/3, and kq=-2/3

(he assumed the g-axis as leading the d-axis; if he would have

assumed the g-axis as lagging the d-axis, as we have done,

then he would have had kq=2/3). However, there are two main

disadvantages with this choice:

1. The transformation is not orthogonal. This means that
P1£PT. If the transformation were orthogonal (P*=P7),

. . . T - .
then the power calculation, which is P = Vpclapc, IS also

. T - .
given by P =Vygqlodaq (and is therefore called “power

invariant” by VMAF). This can be proven (see eg. 4.10 in
VMAF) as follows. From above egs. 4.3, 4.7,

-1 1. . :
P "Vogg = Vapc and P “lggq = lape, We may write:

T( 4.
P= Vabc abc — (P VOdq) (E !Odq)
Recalling that (ab)'=b'a’, the above is:

p= \_/;bciabc — \_/-tl)-dq (E_l )T (E_liOdq ) odq (P)(E_liOdq )

T -
= Vodqlodg
2. The transformed mutual inductances, when per-unitized,
do not provide that Mj=My;, implying that the per-unit
Inductance matrix is not symmetric. This prevents us from
finding a real physical circuit to use in modeling the
transformed system. See text, pg. 97 for more on this.

In order to overcome these problems, VMAF makes a
different choice of constants, according to:

13



1 2
Ky = =, Ky =Ky =,/2
V3 3
The choice of ko, when applied to eq. (i-zero) above, results
in:

. 1. . . 2( 1 1 .
|0:£(|a+|b+|c):\[(fl +f N j

2 .
So we see that the factor \[3 Is the multiplier on all three

equations, resulting in a Park’s transformation (and the one
that we will use) as:

1 1 1
5 /2 V2 V2
P=_./=|cos@ cos(@-120) cos(f+120) (4.5)

sin@d sin(@—-120) sin(@+120)

Another choice of coefficients is to choose them as 1/3, 2/3,
and 2/3, respectively, which causes the magnitude of the d-q
quantities to be equal to that of the three-phase quantities.
This choice, used by Kimbark Vol Ill, egs. (106) (with
negation for iy coefficient due to use of leading g-axis), is
referred to as “magnitude invariance,” which we prove below
for the iy equation only (but this causes a 3/2 multiplier in
front of the power expression and so is not power-invariant).
i, =Kj (i, cos@+i, cos(@—120°) +i, cos(6 +120°))

14



PROOF: Let i.=Acos(wt); ir=Acos(wt-120); ic=Acos(wt-240)
and substitute into iq equation (it is similar for iq equation):
i, =K, (Acos wt cosd + Acos(awt —120) cos(@ —120°) + Acos(wt +120) cos(d +120°))

=k, A(cos t cos 6 + cos(wt —120) cos(€ —120°) + cos(awt +120) cos(8 +120°))
Now use trig identity: cos(u)cos(v)=(1/2)[ cos(u-v)+cos(u+v) ]
i, = k“—ZA {cos(at - 0) + cos(wt + 6) i, = deA {cos(wt — ) + cos(wt + )

+cos(amt —120— 6 +120) + cos(wt —120+ 6 —120) + cos(wt — ) + cos(at + 0 — 240)
+C0s(at +120— 0 —120) + cos(wt +120+ 6 +120) } Y +cOS(wt — ) + cOS(at + 6 + 240)]

Now collect terms in ot-0 and place brackets around what is
left:

i = k"7A {3cos(awt — ) + [cos(wt + 0) + cos(wt + O — 240) + cos(wt + 6 + 240) |}

q

Observe that what is in the brackets is zero! Therefore:;
i, = kd—ZA{Bcos(a)t ~0)}= 3K A3COS(a)t ~0)

Now note that for 3kgA/2=A (thus achieving magnitude
Invariance for the g current), we must have kq=2/3. QED.

We make 3 more comments about Park’s transformation.

First, because it is orthogonal?, the inverse is easy to obtain —

it is just PT, given explicitly as follows:
-1

5 cos6 sinf |
p1= % \/—15 cos (9 — Z?n) sin (9 — 2?”) (4.9)
\/—15 cos (9 + Z?n) sin (9 + 2?”)

2 Sometimes people confuse unitary with orthogonal, and for good reason, as they are closely related. Unitary
is the complex equivalent of orthogonal. A complex square matrix A is unitary if (AT")A=I. A real square
matrix A is orthogonal if ATA=I.

15



Second, the angle 6 in P can be generalized by choosing any
initial angle and any speed, resulting in

0 = j; o(y)dy +0(0)

where y is a dummy variable of integration. Although Park
chose the speed to be the rotor speed (and so will we), it can
be any constant or varying angular velocity or it may remain
stationary. You will often hear of the “arbitrary reference
frame.” The phrase “arbitrary” stems from the fact that the
angular velocity of the generalized transformation Is
unspecified and can be selected arbitrarily to expedite the
solution of the equations or to satisfy the system constraints
[see Krause’s book, Chapt 3, “Reference Frame Theory” for
excellent treatment on generalized reference frame theory.].

Third (and we will repeat these at the end of these notes):

1.14 and iq are currents in a fictitious pair of windings
fixed on the rotor.

2. These currents produce the same flux as do the a,b,c
currents.

3. For balanced steady-state operating conditions, we can
use iodq = Pianc to show that the currents in the d and g
windings are dc! The implication of this is that:

e The a,b,c currents fixed in space, varying in time,
produce the same synchronously rotating
magnetic field as

e The d,q currents, varying in space, fixed in time!

16



Park’s Transformation Applied toVoltage equations for

7-winding representation
Now perform the Park’s transformation on both sides of the
voltage equation (eq. 4.23° or 4.26’°). Note that we apply P to
only the a-b-c quantities, 1.e., we leave the F-G-D-Q
guantities alone since these quantities are already on the rotor
(and the rotor-rotor inductances are already constants). This
means we need to multiply eq. (4.23” or 4.26°) through by a
matrix

P 0
| where Us is a 4x4 identity matrix.
0 U,
Recall (4.26°) 1s:

I \_/abc _ Babc Q iabc . Z‘abc +|:\_/n:| (eq 426’)
_\_/FGDQ Q BFGDQ iFGDQ EFGDQ Q

Multiplying through by our matrix, we obtain:

|:E Q :||: \_/abc :| _ |:E Q :|{Babc Q j|{iabc |:E Q } Z‘abc n |:E Q :| |:\_/n }
Q L_J4 \_/FGDQ Q L_J4 Q BFGDQ iFGDQ Q L_J4 /_iFGDQ Q L_J4 Y
%/—/

term 1 term 2 term 3 term 4

o

(eq. tvel)
We need to express eq. (tvel) in terms of 0-d-g quantities. In
what follows, we do this one term at a time. Our general
procedure will be to replace the a-b-c quantities with 0-d-q
quantities and then simplify.

The easiest one is term 1, so we begin with it.

17



Term 1:;

_E Q 1 \_/abc . &/abc . \—IOdq
0 U, | Vrebo Vrebo Vrebo

Term 2:

_E Q __Babc Q :| iabc
_(_) L_J4__Q BFGDQ iFGDQ

I_\Iote that

iOdq B |:P 0 i||:iabc :|:> |:iabc :| _ |:|:)l 0 :| iOdq
_iFGDQ g L_]_4 iFGDQ iFGDQ _Q L—T“ iFGDQ

Substitution (corresponding to above arrow) yields:

_E Q :| |:Babc Q :| |: P_l O :| !Odq
_Q Q4 (_) BFGDQ _Q g4 _iFGDQ
_ |:EBabc Q :| I: P_l 0 :| |:i0dq . 1@ Q :| |:i0dq :|

0 BFGDQ 0 L_J_4 J BFGDQ

= Irepq | =
Note that the upper left-hand element (circled) has a
diagonal matrix in the middle of two orthogonal matrices.

leepo

Fact: If P is orthogonal, then EBabCE_l = R if Rape is
diagonal having equal elements on the diagonal.

You can test this as follows. Let

18



0 1 0
0 01
1 0 0

It is easy to show this is ort_hogonal using

A=

A'=U.

Then try multiplying AR AT where R = , and

0
2
0

OOI\JI>
N O O

you should obtain R.
It is easy to prove as follows. If R is a diagonal matrix with
all of its diagonal elements the same, call them r, then
R=rU. Then

ARA'= ArUAT= rAUAT=rAA"=rU=R.
Here, we will assume ra=r,=rc which is standard for
synchronous machines and simply implies that all phase
windings are equal length with the same type of conductor,
which is always the case.

Therefore term 2 is just:

P 0 [[Riuc O ||l
{Q U }{Q Reang H lranQ }
p 0 loag Rie O | log
B {__ 6 - BF;DQ :||:iFGDQ } {Q RFGDQ }{ l-epo }

Repeating our equation (tvel) here for convenience....
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Egol PSR ol byl b R S R
0 u FGDQ Q Q4 0 RFGDQ FGDQ 0 U ﬂFGDQ Q L_J4 Q

term 1 term 2 term 3 term 4
and recalling what we have done so far:

|: P 0 :| |: —abc :| &/abc VOdq
TERM 1: =

0 U, || Vrepo Veepo Veepo
TERM 2:

P O ||Ryp U Labc

E J e
PR... lodg Rae 0 iOdq
{ FGDQ }{ lrooc } {_ BFGDQ :||:iFGDQ }

Substituting, we obtain:

\_/Odq . |:Babc Q :| iOdq _ |:E Q i| i.abc n |:P 0 :||:\_/n j|
\_/FGDQ Q RFGDQ FGDQ Q Q4 iFGDQ Q L14 0
— N ] -

term 1 term 2 term 3 term 4

eg. (tve2)
Now we observe that terms 3 and 4 have variables not in
terms of 0-d-g quantities. We work on term 4 next (before
term 3) because it Is easier.
Term 4:
Observe that va=[Va Vn Vn]'. Therefore, when we multiply
Pvn, we get elements in the second and third rows of P being
scaled by the same constant (vn) and then summed. Consider
these elements in the second and third rows of P, below.
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1 1 1

Pv = 2 CEQH COS 9@120 COS 9/2120 3”
" \3|sing sinf@-lzo; sin§¢9+120§ v
So the product of the second row and vy, or of the third row
and vy, will include a summation of symmetrical components,
which will be zero! So the only non-zero element in Pv, will
be the product of the first row of P and vy, i.e., the first

element of the term 4 vector, w_hicr_l IS

V
{1 1 1}\/” 3y, "
V3 V3 43 N 3

But recall from our circuit the voltage equation indicates that:
v.o=—ir —Li ==(_+i +i)r —L (@, +i +i)¢*
Also, recall that from the Park’s transformation lodq=Planc that
the io current is (pg. 14 of these notes):

I0:ﬁ(a-l_lb-I_Ic:):>|a+|b+|c::\/glo (***)
Substitution of (***) into (**) yields:

V, = _(\/gio)rn - Ln (\/gio)

and replacing vn in (*) with this, we have:
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[ 3r.i, — 3L, |
0

(#)
_ DOdq
0

o O O O O

where nodq is the first 3 elements and 0 is the last 4 elements.

Now recall eqt. (tve2) p. 20, repeated here for convenience:

\_/Odq _ |:Babc Q i| iOdq _ |:E Q :| iabc n |:E Q :||:\_/n
Veebo 0 BFGDQ iFGDQ 0 U, Z’FGDQ I 0 U,|0 |

y}
~~ \ ~~ 4 v

term 1 term 2 term 3 term4

and substitute in eqt. (*#) to obtain

Vouq _ _|:Babc 0 } logg _ {E 0 } Aane + [Dodq }
Veepo 0 BFGDQ iFGDQ 0 U, iFGDQ :
—— — \ g

J N _J

~~ term 4
term 1 term 2 term 3

eg. (tve3d)
And so now the only a-b-c variables remaining are in term 3.
So let’s work on term 3.

Term 3:
Term 3 is;
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P O ﬁ’ abc P_ﬂ“abc
(4.30°)
O U ﬂ“FGDQ i’FGDQ
So we need to do two things:

1. Obtain P_/iabc In terms of the 0-d-qg quantities.

2. Express all of term 3 in terms of currents instead of flux
linkages.

To begin this task, recall thatAdgg, = PA, and take

derivatives of both sides. Note in differentiating the right-
hand-side, we need to account for the fact that P 1s time-
dependent. Thus:

ZvOdq — Eiabc + Eiabc
Solving forP A ., we obtain:
Eiabc — iOdq — Eiabc (#)
But the right-hand side still hasA .. We can eliminate this
using
-1
/Iabc =P iodq
Substitution into eq. (#) yields:
-1
PAae = /IOdq PP Aodq (4.31)

Now we have expressed P A . in terms of the 0-d-q

quantities. Substitution of eq. (4.31) into eq. (4.30’) above
yields:
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|:P 0 :| Zvabc Eiabc /_iOdq EE_liOdq
4 i FDQG i FDQG i FDQG 0
term 3a term 3b

So we have accomplished our objective 1, which was to
obtain PA.. in terms of the 0-d-q quantities. Let’s
substitute the above equation into eq. (tve3)

\_/Odq _ _|:Babc Q j| iOdq _ |:E Q j| iabc n |:D0dq :|
Vebos 0 R FDQG i FDQG 0 U, /_1 FDQG 0
%/_/ %r_/

- _/ L )

term1 term 2 term 3 term 4

eg. (tve3d)

to obtain

Vodq :_|:Babc 0 }EOdq B Aodq N EE_liOdq +|:n0dq:|
Vepoc 0 Reooe || Irpos EFDQG 0 0

%/_/ . ~
term1 term 2 term 3a term 3b term 4

eg. (tved)
Now we need to accomplish our objective 2, which is to
express all of term 3 as currents instead of flux linkages. To
do this, let’s investigate terms 3a and 3b one at a time. Let’s
start with term 3a....
Term 3a:
So term 3a is:

&Odq

_&FGDQ .
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Our goal is to see if we can express this in terms of currents,
which means we will need to use inductances. Let’s start by
looking at the same expression but without the derivatives,
since we know how to write this using Park’s transformation
and a-b-c flux linkages. This is:

&odq _ [P 0 }[ A }
_&FGDQ ) 0 Q4 &FGDQ (eg. 3a-1)

Now to write eg. (3a-1) in terms of the 0dg/FGDQ currents
(instead of 0dg/FGDQ flux linkages), recall from eq. (L), pg.
2, repeated here for convenience

|: iabc :| |:|—aa |_—aR :||: iabc :|
= . (eq. 3a-2)
Arpoc Lra Lrr || Irooc

that the vector of abc/FGDQ flux linkages on the right of (eq.
3a-1) is related through the iInductance matrix to the
abc/FGDQ currents.

Now recall that the abc/FGDQ currents may be related to the
0dg/FGDQ currents using the inverse Park Transformation
according to:

e || P i
LFGZQ } - [7_) L_(T)4 } Lpid;Q } (eg. 3a-3)

Substitution of (3a-3) into (3a-2) and then what results into
(3a-1), we have

Zogq :[P O}F__aa I__aR}{P‘l O}[_iwq}
iFGDQ 0 Q4 I_—Ra I_—RR _Q g4 lrepg
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Performing the above matrix multiplication, we obtain....

|: iOdq :|_ ELaaE_l ELaR |: iOdq :|
/iFDQG LRaE_l Lrr iFDQG

Now we need to go through each of these four matrix
multiplications. | will here omit the details and just give the
results (note also in what follows the definition of additional
nomenclature for each of the four submatrices). But before
doing that, let’s remind ourselves of what the above
Inductance terms look like.
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&abc — [L] Jae || Laa Lar || . anc

A I I (eq. L)
Z“FGDQ -FGDQ —Ra =RR -FGDQ

A L, cos26 —Mg + L, cos2(6 +30°)] —[M, +L, cos2(6 +150°) Mg cos@ M, siné M, cosé M_siné ;
A E + Lm COS 2(60+30° )}] IR/I-F L,l:OS 2(6 —120°) —[[l\/fS + L, cos2(6 —90° )]] M COSE@ 120° g M, Sln(9 1200 M COS(Q 120 M st(g 120°) t
//112 M + meos 2(0+150°)] - cosc%s Zgo 90° )] L |\+/I meggs 5(924840 )" Mg cos(@— 240° M Sm(g 240°) M COSIS/? 240°) M sm(9 240°) ilu
M 5|n9 M sin(@ —120° My sin(@ — 240° R i+
ﬁ‘; M cos6 Mg cos§¢9 120 } Mg cosge— 240? M, % 0 MOY o
.D
7N M sin@ Mo o Sin(0 —120° M, sin(6 —240° 0 M, 'bn L b

(eq. L-ex)

Back to our matrix multiplications,

Aodg | |PLaaP™ PLlag | foa

iFDQG L—RaE_l Lrr iFDQG
where we refer to the four submatrices on the right as submatrix (1,1),
submatrix(1,2), submatrix(2,1), and submatrix(2,2).
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Submatrix (_1,1):

where

L, 0 O

0O L, O
0 0 L,
Lo=Ls-2Ms,

Lodq

Lo=Ls+Ms+(3/2)Lm,

and Lq:LS+MS'(3/2) Lm.
Submatrix (1,2):

ELaR

Submatrix (2,1): _

Submatrix (2,2) (note that this submatrix is unchanged from

L. P'=

=Ra —

0

the original inductance matrix):

Lre

k:
L OR

0

MR

-
0 M,
CAC

Ler

Using the defined nomenclature above for the 4
submatrices, we finally have:
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Expanding...
A ] L 0 0 0 0 0 0 ]|k
A 0 L, 0 kM, 0 kM, 0 |
A4 0 0 L, 0 kMg 0 kMg ||
A l=| 0 kM 0 L 0 M 0 |li
F F F R -F (420)
Ao 0 0 kMg 0 L, 0 M, ||ig
Ay 0 kM, 0 M, 0 L, 0 i,
4 0 0 kM, O M, 0 Lo ||,

where k:\E . Compare this to eq. (L-ex) on page 27 (and pg.
2) to see a very large improvement in simplicity.

Aside: It is convenient here to note from the above matrix relation
that A4 and A are given by:

) ) ) 3. . 3. .
iOdq :LOdq!Odq +Lm!FGDQ jﬂd - Ldld +\/;MFIF +\/;MDID

= 4 =L, +\/§MeiG +\/§MQiQ

We will use this in developina term 3b below, see p. 33.

One nice surprise from the above is that THE MATRIX IS
CONSTANT!!

As a result of this “nice surprise,” we may differentiate both
sides to get:
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L’LO dq I_—O dq I_—m !Odq

: T .
iFGDQ L m I_—RR !FGDQ ($)

or, when expanded, is:
4] L 0 0 0 0 0 0
Ay 0 L, 0 kM, 0 kM, 0 |
A4 0 0 L, 0 kMg 0 kMg ||
il=| 0 kMg 0 L, 0 M, 0 |li.
A 0 0 kM, O L 0 M, |y
A 0 kM, O M, 0 Ly 0 ||i
Jq 0 0 kM, 0 M, 0 L i,

Substitution of ($) for term 3a into eqg. (tved), repeat_eci here
for convenience,

Vouq :_{Babc 0 }' | Aoca || PP Aoy, {QMQ}
\_/FGDQ Q BFG‘DQ iFGDQ EFGDQ Q Q
—_— ~ ~

\ J/

term 1 term 2 term 3a term 3b term 4
eq. (tved)
results in
Voag | _|:Babc 0 } odq B Losg Lo || loaq N PP Aodq n |:D0dq ]
Veapo O Reeoo || lrong | |L'm  Lgg || Ireno 0 0
—— h N 7N - - ° M “ term 4
term 1 term 2 term 3a term 3b
eg. (tveb)

We are almost done! The only remaining term which contains
flux linkages is term 3b.
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Term 3b;

Recalling term 3b is: {

PP%M}

0

we see that we need to expand the product PP . First, recall

that;

1
5 ~2
3

sin@

Also, recall tha_t

1

2

cos@ cos(@—120) cos(6@+120)
sin(@ —120) sin(@ +120)

0= a(y)dy +0(0)

> 0=w(
And note carefully that P is a function of time because the
angle @is a function of t. Therefore we need to differentiate
P; we do so using chain rule. This is not hard and results in:

0

0

—w| —sin@ —sin(d—-120)

| cosd  cos(6—120)

Now taking the productpp ™, we obtain:
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1

2

0
—sin(@ +120)
cos(6 +120)




cosd sin@d
0 0 0

PP_l:\E\Ea) —sing@ —sin(@-120) -sin(6+120)
cosd cos(@—-120) cos(€+120)

cos(#—120) sin(@-120)

SIS N

cos(@+120) sin(@+120)

0 0 0 ][00 0 '
=2w0 0 -3/2|=|0 0 -w
3 032 0 | |0 w O

Note in the above that row 1 is all zeros because row 1 in P
Is all zeros. On the other hand, column 1 is all zeros because

the multiplication of rows 2 and 3 in P by column 1 of P~
yield a sum of symmetrical terms.

This provides that:

0 0 0 74 0
PP Ao =0 0 -o| 4 |=|-wA (3&)
0 o 0 |4 WA

The terms -wAq and wAq are called speed voltages; comments:
e These speed voltage s together account for the voltages
Induced in the (fixed) phase windings as a result of the
spatially-moving constant magnetic field from the rotor
DC current.
e They represent the fact that a constant (in time) flux
wave rotating in synchronism with the rotor will create
voltages in the stationary armature coils.
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e Speed voltages (flux change in space), are so named to
contrast them from what may be called transformer
voltages (flux change in time) which are induced as a
result of a time varying magnetic field.

e You may have run across the concept of “speed remesmom
voltages” in Physics, where you computed a voltage = . ..
Induced in a coil of wire as it moved through a static 4
magnetic field, in which case, you may have used the Ii-., fo,
equation Blv where B is flux density, | is conductor |
length, and v is the component of the velocity of the ../_ .5 sne
moving conductor (or moving field) that is normal ©em=ve-re==
with respect to the field flux direction (or conductor).

e The first speed voltage term, -wAq, appears in the vq
equation. The second speed voltage term, w4, appears in
the vq equation. Thus, we see that the g-axis flux causes
a speed voltage in the d-axis winding, and the d-axis flux
causes a speed voltage in the g-axis winding.

e Fitzgerald and Kingsley in their book “Electric
Machinery” provide a good discussion of speed voltages
in Chapter 2; Bergan & Vittal discuss it on pg. 216;

Kundur on pg. 71).
Now we are in a position to obtain term 3b. Recall the
expressions for Aq¢ and Aq obtained in the “Aside” box, p. 29:

: /3 : /3 :
Ay = Lyly + EMF|F+ EMDID
: /3 : /3 :
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Using these in ($&) above, we obtain:

0 _
—cgﬂ, ~ol i, —o EMGiG—a) §MQi
PP'A
ot | _ CM" | oL, + o 2M, i + o oM. i, {Speed}
0 0 2 2 (&)
0 0
. 0] 0
- 0 —
where
0
: 0
speed = —oLi, —o 0=
» |0
ol + o M I +o 0

Now recalllng eq. (tve5)

\_/0dq _ |:Babc v :| IOdq Odq Lm iOdq n EE_liOdq n |:n0dq
Ve 0 Repgs lrogs | Ler || Lrooe 0 0
NS ] < > —

term1 term 2 term 3a term 3b term 4

eg. (tveb)

||

we substitute (&) to obtain:

\_/0dq _ |:Babc Q :| I 20dq LOdq I—_m iOdq n |:Speedj| n |:D0dq :|
Vebos 0 Repoe FDQG L' Les i FDQG 0 0
— - o ——

term 2 term 3a term3b  term4

eg. (tveb)

term1
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Putting it all together:

Let’s re-write the voltage equation eq. (tve6) by substituting
In complete expressions for all vectors and submatrices in
terms 1, 2, 3a, 3b, and 4, as obtained above:

Term 1 Term 2 Term 3a
%] [r,b, 00000 0] b
V, 10 0 0 0 0}i , 0 0 0 0 0 01
" : L0 L 0 kM, 0 kM, O |l
001 0000 L)1 0 0 L 0 kMg 0 kM| ?"
000T©L 0O0O|i|l-|]0 kM, 0 L 0 M, 0 |i
. 0 0 kM, O 0 M, ||
000O0T 0 O0i 0 KM, OGMRL8LD o |
00000T 0li 0 0 kMg 0O M, 0 Ly |
(0 || {00000 0 1] i
- 0 1 [3ri, -3L0, |
i Yo E|\/|GiG—w §|v|QiQ 8
. 3. 3.
+| oLl + @ EMF|F+a) EMDID + 0
0 0
5 0
0 ] 0
Term 3b Term 4

Now, observe that each of the non-zero elements of term 3b
and term 4 is multiplied by a current or current derivative,
and that terms 2 and 3a both get multiplied by vectors of
currents or current derivatives, respectively. Therefore, we
may “fold-in” Term 3b and Term 4 into the Terms 2 and 3a
by combining parts of the non-zero term 3b and 4 elements
with the appropriate matrix element in terms 2 and 3a.
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For example, we may fold in the -wLq4lq term in row 2 of term
3b by including wlLq in row 2 (since we are dealing with the
second equation), column 3 (since we need the term that
multiplies 1) of term 2. Note that since term 2 has a “minus”
sign out front, we do not include the “minus” sign of -wlLqlq
when we fold it in. The circle and arrow above illustrate this
folding-in operation.

The complete results of all fold-in operations are provided in
what follows:

Vo r+3r 0 0 0 0 0 0o b
Yo 0 Lol 0 ® gMG 0 ® gMQ l
Vv l
q q
3 3 .
v, |=—| O -ol, T, —a)\/;l\/l,: 0 —a)\/;l\/lD 0 i
0 0 0O 0 r 0 0 0 i
0 0 0 6 r 0 0 _
0 0 0 0 0 6 . 0 I
0 0 0 0 0 0 oo,
L,+3L O 0 0 0 0 0
0 L, 0 SMF 0 gMD 0 'o
3 3 by
0 0 0 M 0 M, ||+
Lq 2 G 2 Q Iq
- 0 SMF 0 L 0 M, 0 i
i.
0 0 gMG 0 L 0 M, i.G
3 D
0 Mo 0 M, 0 L, 0 ||k
3
0 0 Mo 0 M, 0 L,

It is of interest to rearrange the ordering of the variables so
that the voltage equations for all d-axis windings are together
and the voltage equations for all g-axis windings are together
because this will emphasize the presence or absence of the
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various couplings that we have. The result of this re-ordering
of the variables is as follows:

v, (r+3r, @ 0 0 o 0 0 0 i, |
v, o T r 0 T el okMg wkMg |,
v, 0 0 r. 0 0 0 0 |i.
Vo=0l=- 0 + 0 0 R 20 0 0 |k
v, 0 —ol, -okM_. —wkM, r 0 0 i
Vg =0 0 0 0 0 {0 I o i
Vo =0] 0 0 0 0 0 0 rh |l ]
(L, +3L, 0 0 0 0 0 o
oL KM Tk, 0T o 0|
0 kM . L. M, 0 0 o |i
|0 kM, M, L, 0 0 o i
T B Y PO VP S 1
0 0 0 0 kM, M, L |,
0 0 0 0 KM, L, M,
(eq. 4.39%)

Some observations about the transformed voltage
equations:

1. The first matrix gives

a. Resistive voltage drops

b. Speed voltage drops, svd (terms with @). These svd’s

e Occur in the d- and g- circuits, to represent the fact that a
flux wave rotating in synchronism with the rotor will
create voltages in the stationary armature coils

e Do not occur in circuits physically located on the rotor,
since there is no motion between the rotating flux wave
and the rotor windings.

e Are caused by currents in the field windings of the “other”
axis:
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- the d-circuit svd is caused by igq, ig, and i

- the g-circuit svd is caused by iq, Ip, and ir

2. The matrices are almost constant, except for the svd terms
In the first matrix, but even these terms are practically
constant since we only see small changes in . The
constancy of the matrices is the main motivation behind
the Park’s transformation.

3.The variables have been reorganized so that all d-axis
circuits are together and all g-axis circuits are together.
This makes it easy to observe any coupling/decoupling
between different sets of circuits.

4. The second matrix gives voltage induced by current (or
flux) variation. Note that there is no coupling between the
d-axis circuits (d, F, D) and the g-axis circuits (g, G, Q).
This is because these two sets of circuits are orthogonal.

Finally, some comments about Park’s transformation
(already made on p. 16):

1.14 and Iq are currents in a fictitious pair of windings fixed
on the rotor.

2.These currents produce the same flux as do the a,b,c
currents.

3. For balanced steady-state operating conditions, we can use
iodq = Pianc to show that the currents in the d and g windings
are dc! The implication of this is that:

e The ab,c currents fixed in space, varying in time,

produce the same synchronously rotating magnetic
field as

e The d,q currents, varying in space, fixed in time!
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The below offers a visual comparison of abc quantities
vs d-q (fixed on rotor) quantities vs. a-f (fixed on
stator) quantities. These illustrations are not animated
on the pdf, and so | have also provided a PPT on the
website for you to view. These animations were
obtained from the excellent youtube video at
https://www.youtube.com/watch?v=vdeVVTItriM.

(TE R

abc-frame

b

& a0 180 270 360

K< <BI>5 [=[ow]+

dqg-frame

90 150 270 360

(K< [[>[] [=[e]+]
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https://www.youtube.com/watch?v=vdeVVTltr1M

From Kimbark, VVol. Ill:

ig is combined a,b,c
MMFs (or currents)
projected onto direct
axis. iq is combined a, b,
¢ MMFs (or currents)
projected onto
quadrature axis.

See Fig.6, p.8 of these
notes for illustration of i,
projection onto direct &
quadrature axes.

For ss operating conditions,

« The a,b,c currents, fixed in
space, varying in time, produce
the same synchronously
rotating magnetic field as

*The d,q currents, varying in
space, fixed in time (DC).

For all operating conditions, iq
and iq produce the same MMF
on their respective axes as i, i,
and .

Physical interpretation of Park’s variables. A physical interpreta.
tion of the new variables is now in order. The m.m.f. of each arma
ture phase, being sinusoidally distributed in space, may be representec
by a vector the direction of which is that of the phase axis and the
magnitude of which is proportional to the instantaneous phase cur
rent. The combined m.m.f. of the three phases may likewise be rep
resented by a vector which is the vector sum of the phase-m.m.f
vectors. The projections of the combined-m.m.f. vector on the direct
and quadrature axes of the field are equal to the sums of the projec
tions of the phase-m.m.f. vectors on the respective axes as given by

the expressions for 7; and 4, eqs. 106. |The constant § is arbitrary

Thus iy may be interpreted as the instantaneous current in a fictitious
armature winding which rotates at the same speed as the field winding
and remains in such position that its axis always coincides with the
direct axis of the field, the value of the current in this winding being
such that it gives the same m.m.f. on this axis as do the actual three
instantaneous armature phase currents flowing in the actual armature

TJwindings. The interpretation of 4, is similar to that of 74 except thai

it acts in the quadrature axis instead of in the direct axis. The 7, of
the new variables is identical with the usual zero-sequence current

except that it is an instantaneous value and is defined in terms of the

Kimbark, like Park, chose
2/3 as his coefficient in
front of the Park matrix,
see eq. (4.5), pg. 14 of
these notes.

instantanecus phase currents. |This current gives no space-funda-

We used this same argument in
the notes “WindingsAxes” (pp.
10-11) to establish that the self
and mutual inductances of rotor-
rotor terms in L are constant.
Here, Kimbark uses this
argument to provide intuition
that self and mutual inductances
of (fictitious) d- & g- windings
are constant.

mental air-gap flux.
The flux linkages of the fictitious armature windings in which 14

and 1, flow are ¥4 and ¥, respectively.

[ In view of the foregoing interpretation of iz and 1, it is apparent

that their m.m.f.’s are stationary with respect to the rotor and there-

fore act on paths of constant permeance. Hence the corresponding

inductances L, and L, are independent of rotor position.

— The fictitious direct-axis stator winding and the field winding are

inductively coupled. Each has a self-inductance (L; and L,/), and

Io produces no air-
gap flux.

there is a mutual inductance between them. [ It should be noted that

the mutual inductance has different values in eqs. 116a and d, being
M; in one and §M; in the other. The difference could have been
avoided by a different choice of the constant coefficients in eqgs. 105
fand 106; however, we will retain the form of the variables given by
Park.
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Kimbark’s choice of
coefficients has the
advantage of magnitude-
invariance but the
disadvantage of unequal
mutual (see p. 13 of these
notes).




Another interesting paragraph from Kimbark Vol. 11l

In the interpretation of eqs. 116, it was suggested that iz and 7,
were the currents in fictitious rolating stator windings — if that para-
doxical expression may be used — which gave the same m.m.f.'s as
did the actual armature currents in the actual armature windings.
But it is not necessary to have the fictitious windings rotate. The
same effect can be achieved by conceiving the armature winding to
be stationary (as it actually is) and to be a closed-circuit winding
with a commutator on which rest brushes which rotate with the field.
The magnetic axis of the stator will always coincide with the brush
axis, Thus 7z may be interpreted as the current entering and leaving
the armature through a pair of brushes which are aligned with the
direct axis of the field. Similarly, ¢, may be regarded as the current
entering and leaving the armature through a second pair of brushes,
aligned with the quadrature axis of the field. In other words, the
armature may be thought of as like that of a synchronous converter,
having both commutator and slip rings, but having brushes in both
axes instead of in the quadrature axis only. The actual phase cur-
rents, entering the slip rings, give the same m.m.f.'s as do the substi-
tute currents iy and 1, entering the commutator brushes.

This physical picture is also correct with respect to the voltages.
The terms —wy, and w occurring in egs. 121 and 122 may be regarded
as components of applied voltage required to balance the speed voltages.
The speed voltage across each pair of brushes is proportional to the
flux on the axis 90° ahead of the brush axis.
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