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Flux-linkage equations for 7-winding representation (eq. 4.11 in VMAF) 
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The above terms are defined as follows: 
Stator-stator terms:   Stator-rotor terms:  Rotor-stator terms: 
Laa=Ls+Lmcos2    LaF=MFcos   LFa=MFcos 

Lab=-[Ms+Lmcos2(+30)]  LaD=MDcos   LFb=MFcos(-120) 

Lac=-[Ms+Lmcos2(+150)]  LaQ=MQsin   LFc=MFcos(-240) 

       LaG=MGsin 

Lba=-[Ms+Lmcos2(+30)]      LDa=MDcos 

Lbb=Ls+Lmcos2(-120)   LbF=MFcos(-120)  LDb=MDcos(-120) 

Lbc=-[Ms+Lmcos2(-90)]   LbD=MDcos(-120)  LDc=MDcos(-240) 

       LbQ=MQsin(-120) 

Lca=-[Ms+Lmcos2(+150)]  LbG=MGsin(-120)  LQa=MQsin 

Lcb=-[Ms+Lmcos2(-90)]       LQb=MQsin(-120) 

Lcc=Ls+Lmcos2(-240)   LcF=MFcos(-240)  LQc=MQsin(-240) 

       LcD=MDcos(-240)   

Rotor-rotor terms:   LcQ=MQsin(-240)  LGa=MGsin 

LFF=LF     LcG=MGsin(-240)  LGb=MGsin(-120) 

LFD=MR         LGc=MGsin(-240) 

LFQ= LFG =0 

 

LDF=MR  LQF=LQD=0 LGF=LGD=0 

LDD=LD  LQQ=LQ LGQ=MY 

LDQ=LDG=0 LQG=MY LGG=LG 
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So the compact form of the flux linkage equations are 
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          (eq. L) 

 

 

which, when expanded with the expressions for self and mutual 

inductances, become: 
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(eq. L-ex)
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Voltage equations 

The voltage equations developed here will characterize the 

electromagnetic dynamics of the synchronous machine.  

 

Consider the stator circuit as it appears as in Fig. 1 (Fig. 4.2 

in text): 

 
Fig. 1 

The defined positive voltage polarity across each phase 

winding (for phase a, fa is positive wrpst sa) is opposite to the 

polarity associated with that of Fig. 4.1a in the text) and 

therefore the induced voltage, when expressed within the 

phase’s voltage equation, will be negative.  

 

We assume that the neutral conductor is not magnetically 

coupled with any other circuit. 
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With this information, and following the polarities of the 

circuit diagram, we can write a voltage equation for each of 

the phase windings as follows: 

naaaa vriv +−−=   

nbbbb vriv +−−=   

ncccc vriv +−−=   

We may also write a voltage equation for the neutral circuit 

as follows: 

)()( cbanncbannnnn iiiLriiiiLriv  ++−++−=−−=  

Now let’s look at the rotor circuits. There are four of them. 

Fig. 2: D-Axis Field 

Fig. 3: D-Axis Damper 
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DDDir −−=0  
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Fig. 4: Q-Axis Damper 

 

Fig. 5: Q-Axis Field 

 

Putting all of these equations together in matrix form, we 

have that: 
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       (eq 4.23’) 

We can write this more compactly, similar to eq. 4.26 in 

text: 

0

0 0
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        

     (eq. 4.26’) 

 

QQQir −−=0  

GGGir −−=0  

The primed notation on equation numbers 

indicates the given equation corresponds to the 

equation identified in the A&F Second edition  

text by that number, with some modification. 

Generally, the modification is the addition of the 

voltage equation for the “G”-circuit. There should 

be no difference with equations here and those in 

the third edition (VMAF). 
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Motivation for Park’s Transformation 

We desire to get the above equation into state-space form 

( xAx = ) so that we can combine it with our inertial equations 

and then apply numerical integration and solve them together. 

Do not lose sight that this is our objective!!!!! 
 

We notice, however, that we have two types of related state 

variables in the above equations: flux linkages () and 

currents (i). We can eliminate one of them, and this is not 

hard since flux linkages can be expressed as functions of the 

currents that produce them. For example, for a single 

conductor, we write that =Li (see also eq. (L) at the 

beginning of this document). 
 

But eq. 4.26’ has derivatives on . Again, no problem, since 

d/dt=d(Li)/dt.  
 

It is here that we run into trouble, since the inductances that 

we are dealing with are, in general, functions of , which is 

itself a function of time. Therefore the inductances are 

functions of time, and differentiation of flux linkages (using 

the product rule of calculus) results in expressions like:  

L
dt

di
i

dt

dL

dt

d
+=


 

The differentiation with respect to L, dL/dt, will result in a time-

varying coefficient on the state variable. When we replace, in eq. 

4.26’, the derivatives on  with the derivatives on i, and then 

solve for the derivatives on i (in order to obtain xAx = ), we will 

obtain current variables on the right-hand-side that have time 
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varying coefficients, i.e., the coefficient matrix A will not be 

constant. This means that we will have to deal with differential 

equations with time varying coefficients, which are generally 

more difficult to solve than differential equations with constant 

coefficients. 
 

This presents some significant difficulties, in terms of solution, 

that we prefer to avoid. We look for a different approach. We 

will find the different approach not only solves this problem but 

offers a simpler view and understanding of synchronous 

machine electromagnetic dynamics. 
 

The different approach is based on the observation that our 

trouble comes from the inductances related to the stator (phase 

windings): 

• Stator self inductances 

• Stator-stator mutual inductances 

• Stator-rotor mutual inductances 

i.e., all of these have time-varying inductances. 
 

To alleviate the trouble, we project a-b-c currents onto a rotating 

pair of axes which we call the d and q axes or the d-q axes which 

comprise a rotating coordinate frame of reference. Although we 

may specify the speed of these axes to be any speed convenient 

to us, we choose it to be rotor speed1 to remain consistent with 

Park. 

 
1 VMAF, at the top of p. 93, emphasize that the frame of reference “moves with the rotor.” This is in contrast to 

moving at “synchronous speed,” since moving “with the rotor” is not necessarily moving at synchronous speed during 

disturbance conditions. Indeed, this distinction is made in Krause’s book (p. 147) and in C. O'Rourke, J.Kirtley, et al. 

"A Geometric Interpretation of Reference Frames and Transformations: dq0, Clarke, and Park." IEEE Transactions on 

Energy Conversion 34, 4, (December 2019): 2070 - 2083 © 2019 IEEE, available at 
https://dspace.mit.edu/bitstream/handle/1721.1/123557/Final_Submission__Open_Access.pdf?sequence=1&isAllowed=y. It is further 
discussed in VMAF, p. 206, in applying Park’s transformation for an induction machine, which requires the angle θ be given relative 

to a synchronous rotating reference (and not the rotor).  

https://dspace.mit.edu/bitstream/handle/1721.1/123557/Final_Submission__Open_Access.pdf?sequence=1&isAllowed=y
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In making these projections, we want to obtain expressions 

for the components of the stator currents that are in phase 

with the d and q axes. 

 

One can visualize the projection by thinking of the a-b-c 

currents, each having direction the same as the flux it 

produces, as having sinusoidal variation IN TIME along their 

respective axes. The picture below illustrates for the a-phase. 

 

We observe from Fig. 6 that ia will have a component in the 

d-axis direction of iacosθ and a component in the q-axis 

direction of iasinθ.  

  

Decomposing the b-phase current ib and the c-phase current 

ic in the same way, and then adding them up, provides us 

with: 

ia 

a 
a' 

Fig. 6 (Fig. 4.1b in text). 

iq id 

q-axis 
d-axis 

θ 
It is important to understand that Fig. 6 

implies two kinds of time variation:  

(i) the time variation of the a-phase stator 

current ia. The mental image of this 

variation should have the ia vector in the 

form shown, then decreasing to zero, then 

increasing in the negative (downward) 

direction, and then back to zero, etc. 

(ii) the time variation of the d-q axis as it 

rotates CCW with the rotor. 

 

It is useful to conceptualize the impact on 

the “ia to d-q axis projection” of each of 

the above time variations (i) and (ii) by 

themselves. Park’s transformation is a 

result of both effects simultaneously.  
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( ))120cos()120cos(cos ++−+=  cbadd iiiki

( ))120sin()120sin(sin ++−+=  cbaqq iiiki  

Here, the constants kd and kq are chosen so as to simplify the 

numerical coefficients in the generalized KVL equations that we 

will get. 
 

We have transformed 3 variables ia, ib, and ic into two variables 

id and iq. This yields an under-determined system, meaning  

• We can uniquely transform ia, ib, and ic to id and iq (if we 

specify ia, ib, and ic, then we obtain unique values of id and iq). 

• We cannot uniquely transform id and iq to ia, ib, and ic (unless 

there is another constraint such as ia+ib+ic=0). 

 

So we need a third current. We take this current proportional to 

the zero-sequence current: 

( )cba iiiki ++= 00
    (i-zero) 

We note that, under balanced conditions, i0 is zero, and therefore 

produces no flux. [In fact, it is possible to show that i0 produces 

no flux linking the rotor windings at all (see Concordia’s book, 

p. 14; Kimbark V. III, p. 60; Bergan&Vittal, p. 468, pp. 597-599; 

Kothari&Nagrath, p. 384; Glover,Sarma,Overbye, p. 417), an 

idea that is apparent if we consider that zero sequence currents 

(which flow in all 3 stator windings) produce MMFs that are in 

time-phase but distributed in space by 120°.] The implication is 

that under all conditions, since id and iq are equivalent to ia, ib, 

and ic, and since flux from i0 does not link with other circuits, 

then, id and iq produce the exact same flux linkage as ia, ib, 

and ic. 
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We write our transformation more compactly as: 

 
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abcdq iPi =0     (eq. 4.3) 

We may also operate on voltages and fluxes in the same way: 

abcdq vPv =0 ,  abcdq P =0   (eq. 4.7) 

This transformation resulted from the work done by Blondel 

(1923), Doherty and Nickle (1926), and Park (1929, 1933), 

and as a result, is usually called “Park’s transformation,” and 

the transformation matrix P is usually called “Park’s 

transformation matrix” or just “Park’s matrix.” 

 

In 2000, Park’s 1929 paper was voted the 2nd most 

important paper of the last 100 years (behind 

Fortescue’s paper on symmetrical components).  
• R. Park, “Two reaction theory of synchronous machines,” 

Transactions of the AIEE, v. 48, p. 716-730, 1929. 

• G. Heydt, S. Venkata, and N. Balijepalli, “High impact papers in 

power engineering, 1900-1999, NAPS, 2000.  

See www.nap.edu/openbook.php?record_id=5427&page=175 for an 

interesting biography on Park, written by Charles Concordia 

(himself one of the most famous power system engineers ever!), 

replicated below, together with a statement that was posted to the 

PowerGlobe a few years ago. 

Charlie Concordia 

(1908-2003) 

http://www.nap.edu/openbook.php?record_id=5427&page=175
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From a recent “PowerGlobe” discussion: 

“The real foundation of most of the synchronous machine theory talked today was 

laid in a paper by a French Engineer, Blondel, who was the first to propose "two 

reaction theory" in 1895. Then Doherty and Nickle published extensive analysis of 

synchronous machines using two reaction theory in a number of papers between 

1923 and 1928.  At the behest of Charlie Concordia (as told by Charlie himself), 

Park published three papers in 1928 to 1933 and organized the work of Doherty and 

Nickle in a matrix form and that is what is best known today in terms of Park's 

Transformation.  Concordia and Park were colleagues in GE at that time.” 

- OM Malik, Professor of Electrical and Computer Engineering, U. of Calgary 
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In Park’s original paper, he used k0=1/3, kd=2/3, and kq=-2/3 

(he assumed the q-axis as leading the d-axis; if he would have 

assumed the q-axis as lagging the d-axis, as we have done, 

then he would have had kq=2/3). However, there are two main 

disadvantages with this choice: 

1. The transformation is not orthogonal. This means that  

P-1PT. If the transformation were orthogonal (P-1=PT), 

then the power calculation, which is abc

T

abc ivp = , is also 

given by dq

T

dq ivp 00=  (and is therefore called “power 

invariant” by VMAF). This can be proven (see eq. 4.10 in 

VMAF) as follows. From above eqs. 4.3, 4.7, 

abcdq vvP =
−

0

1
 and abcdq iiP =

−

0

1
, we may write: 

( ) ( )dq

T

dqabc

T

abc iPvPivp 0

1

0

1 −−
==  

Recalling that (ab)T=bTaT, the above is: 

( ) ( ) ( )( )

dq

T

odq

dq

T

odqdq

TT

odqabc

T

abc

iv

iPPviPPvivp

0

0

1

0

11

=

===
−−−

 

2. The transformed mutual inductances, when per-unitized, 

do not provide that Mjk=Mkj, implying that the per-unit 

inductance matrix is not symmetric. This prevents us from 

finding a real physical circuit to use in modeling the 

transformed system. See text, pg. 97 for more on this. 

 

In order to overcome these problems, VMAF makes a 

different choice of constants, according to: 
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3

1
0 =k ,    

3

2
== qd kk  

The choice of k0, when applied to eq. (i-zero) above, results 

in: 
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
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++=++= cbacba iiiiiii
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So we see that the factor 
3

2
 is the multiplier on all three 

equations, resulting in a Park’s transformation (and the one 

that we will use) as: 



















+−

+−=

)120sin()120sin(sin

)120cos()120cos(cos
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1

2

1

2

1

3

2



P        (4.5) 

Another choice of coefficients is to choose them as 1/3, 2/3, 

and 2/3, respectively, which causes the magnitude of the d-q 

quantities to be equal to that of the three-phase quantities. 

This choice, used by Kimbark Vol III, eqs. (106) (with 

negation for iq coefficient due to use of leading q-axis), is 

referred to as “magnitude invariance,” which we prove below 

for the iq equation only (but this causes a 3/2 multiplier in 

front of the power expression and so is not power-invariant). 

( ))120cos()120cos(cos ++−+=  cbadq iiiki
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PROOF: Let ia=Acos(ωt); ib=Acos(ωt-120); ic=Acos(ωt-240) 

and substitute into iq equation (it is similar for id equation): 
( )

( ))120cos()120cos()120cos()120cos(coscos

)120cos()120cos()120cos()120cos(coscos

+++−−+=
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

tttAk
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d

dq

 
Now use trig identity: cos(u)cos(v)=(1/2)[ cos(u-v)+cos(u+v) ] 
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Now collect terms in ωt-θ and place brackets around what is 

left: 

  )240cos()240cos()cos()cos(3
2

+++−++++−=  tttt
Ak
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Observe that what is in the brackets is zero! Therefore: 

  )cos(3
2

3
)cos(3

2
 −=−= t

Ak
t

Ak
i dd
q

 
Now note that for 3kdA/2=A (thus achieving magnitude 

invariance for the q current), we must have kd=2/3. QED. 

 

We make 3 more comments about Park’s transformation.  

First, because it is orthogonal2, the inverse is easy to obtain – 

it is just PT, given explicitly as follows: 

𝑃−1 = √
2

3

[
 
 
 
 

1

√2
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃

1

√2
𝑐𝑜𝑠 (𝜃 −

2𝜋

3
) 𝑠𝑖𝑛 (𝜃 −

2𝜋

3
)

1

√2
𝑐𝑜𝑠 (𝜃 +

2𝜋

3
) 𝑠𝑖𝑛 (𝜃 +

2𝜋

3
)]
 
 
 
 

  (4.9) 

 
2 Sometimes people confuse unitary with orthogonal, and for good reason, as they are closely related. Unitary 

is the complex equivalent of orthogonal. A complex square matrix A is unitary if (AT*)A=I. A real square 

matrix A is orthogonal if ATA=I. 
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Second, the angle θ in P can be generalized by choosing any 

initial angle and any speed, resulting in 

)0()(
0

  +=
t

d
 

where ɣ is a dummy variable of integration. Although Park 

chose the speed to be the rotor speed (and so will we), it can 

be any constant or varying angular velocity or it may remain 

stationary. You will often hear of the “arbitrary reference 

frame.” The phrase “arbitrary” stems from the fact that the 

angular velocity of the generalized transformation is 

unspecified and can be selected arbitrarily to expedite the 

solution of the equations or to satisfy the system constraints 

[see Krause’s book, Chapt 3, “Reference Frame Theory” for 

excellent treatment on generalized reference frame theory.]. 

 

Third (and we will repeat these at the end of these notes): 

1. id and iq are currents in a fictitious pair of windings 

fixed on the rotor. 

2. These currents produce the same flux as do the a,b,c 

currents. 

3. For balanced steady-state operating conditions, we can 

use i0dq = Piabc to show that the currents in the d and q 

windings are dc! The implication of this is that: 

• The a,b,c currents fixed in space, varying in time, 

produce the same synchronously rotating 

magnetic field as 

• The d,q currents, varying in space, fixed in time! 
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Park’s Transformation Applied toVoltage equations for 

7-winding representation  

Now perform the Park’s transformation on both sides of the 

voltage equation (eq. 4.23’ or 4.26’). Note that we apply P to 

only the a-b-c quantities, i.e., we leave the F-G-D-Q 

quantities alone since these quantities are already on the rotor 

(and the rotor-rotor inductances are already constants). This 

means we need to multiply eq. (4.23’ or 4.26’) through by a 

matrix 










40

0

U

P
 where U4 is a 4x4 identity matrix. 

Recall (4.26’) is: 

0

0 0

abc abc abc abc n

FGDQFGDQ FGDQ FGDQ

v iR v

v R i





       
= − − +       

        

    (eq. 4.26’) 

Multiplying through by our matrix, we obtain: 

4 4 4 4

00 0 0 0

00 0 0 0 0

term 4term 1 term 2 term 3

abc abc abc abc n

FGDQFGDQ FGDQ FGDQ

v iR vP P P P

v R iU U U U





              
= − − +              

                

 

  

 (eq. tve1) 

We need to express eq. (tve1) in terms of 0-d-q quantities. In 

what follows, we do this one term at a time. Our general 

procedure will be to replace the a-b-c quantities with 0-d-q 

quantities and then simplify.  

 

The easiest one is term 1, so we begin with it. 
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Term 1: 

0

4

0

0

dqabc abc

FGDQ FGDQ FGDQ

vv PvP

v vU v

     
= =      

       

 

Term 2:  

4

00

00

abc abc

FGDQ FGDQ

iRP

R iU

   
   

     
 

Note that  

10 0

4 4

0 0
0 0

−         =  =                  

dq dqabc abc

FGDQ FGDQFGDQ FGDQ

i ii iP P
U Ui ii i

Substitution (corresponding to above arrow) yields:  

1 0

44

00 0
000

−      
           

dqabc

FGDQ FGDQ

iRP P
URU i

 

11 0 0

4

0 00
000

dq dqabc
abc

FGDQFGDQ FGDQ FGDQ

i iPR PR PP
RUR i i

−−        = =               

Note that the upper left-hand element (circled) has a 

diagonal matrix in the middle of two orthogonal matrices.  
 

Fact: If P is orthogonal, then abcabc RPRP =
−1

 if abcR  is 

diagonal having equal elements on the diagonal.  

 

You can test this as follows. Let  
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















=

001

100

010

A   

It is easy to show this is orthogonal using A AT=U. 

Then try multiplying A R AT where 

















=

200

020

002

R , and 

you should obtain R. 

It is easy to prove as follows. If R is a diagonal matrix with 

all of its diagonal elements the same, call them r, then 

R=rU. Then  

ARAT= ArUAT= rAUAT=rAAT=rU=R. 

Here, we will assume ra=rb=rc which is standard for 

synchronous machines and simply implies that all phase 

windings are equal length with the same type of conductor, 

which is always the case. 

 

Therefore term 2 is just: 

4

1
0 0

00

00

00
0 0

abc abc

FGDQ FGDQ

dq dqabc
abc

FGDQ FGDQFGDQ FGDQ

iRP

R iU

i iRPR P
R Ri i

−

   
   

     

     
= =           

 

Repeating our equation (tve1) here for convenience….  
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4 4 4 4

00 0 0 0

00 0 0 0 0

term 4term 1 term 2 term 3

abc abc abc abc n

FGDQFGDQ FGDQ FGDQ

v iR vP P P P

v R iU U U U





              
= − − +              

                

 

and recalling what we have done so far: 

TERM 1: 
0

4

0

0

dqabc abc

FGDQ FGDQ FGDQ

vv PvP

v vU v

     
= =      

       

 

TERM 2:  

4

1
0 0

00

00

00
0 0

abc abc

FGDQ FGDQ

dq dqabc
abc

FGDQ FGDQFDQG FGDQ

iRP

R iU

i iRPR P
R Ri i

−

   
   

     

     
= =           

 

 

Substituting, we obtain: 

term 4term 1 term 2 term 3

0 0

4 4

0 0 0

0 0 0 0

dq dqabc abc n

FGDQFGDQ FGDQ FGDQ

v iR vP P

R U Uv i





          
= − − +          

            

 

eq. (tve2) 

Now we observe that terms 3 and 4 have variables not in 

terms of 0-d-q quantities. We work on term 4 next (before 

term 3) because it is easier. 

Term 4: 

Observe that vn=[vn  vn  vn]
T. Therefore, when we multiply 

Pvn, we get elements in the second and third rows of P being 

scaled by the same constant (vn) and then summed. Consider 

these elements in the second and third rows of P, below. 
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1 1 1

2 2 22
cos cos( 120) cos( 120)

3 sin sin( 120) sin( 120)

n

n n

n

v
Pv v

v
  
  

 
   
 = − +  
 − +    
 

 

So the product of the second row and vn, or of the third row 

and vn, will include a summation of symmetrical components, 

which will be zero! So the only non-zero element in Pvn will 

be the product of the first row of P and vn, i.e., the first 

element of the term 4 vector, which is 

3

3

3

1

3

1

3

1 n

n

n

n
v

v

v

v

=























    (*) 

But recall from our circuit the voltage equation indicates that: 

)()( cbanncbannnnn iiiLriiiiLriv  ++−++−=−−=  (**) 

Also, recall that from the Park’s transformation iodq=Piabc that 

the i0 current is (pg. 14 of these notes): 

( ) 00 3
3

1
iiiiiiii cbacba =++++=   (***) 

Substitution of (***) into (**) yields: 

)3()3( 00 iLriv nnn
−−=  

and replacing vn in (*) with this, we have: 
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







=



























 −

=







=

















0

0

0

0

0

0

0

33

000

0 0

00

4

dq

nn

nn
n

iLir

Pvv

U

P



  (*#) 

 

where n0dq is the first 3 elements and 0 is the last 4 elements.  

 

Now recall eqt. (tve2) p. 20, repeated here for convenience: 

term 4term 1 term 2 term 3

0 0

4 4

0 0 0

0 0 0 0

dq dqabc abc n

FGDQFGDQ FGDQ FGDQ

v iR vP P

R U Uv i





          
= − − +          

            

 

and substitute in eqt. (*#) to obtain  

term 4
term 1 term 2 term 3

0 0
0

4

0 0

00 0

dq dqabc abc
dq

FGDQFGDQ FGDQ FGDQ

v iR P n

R Uv i





         = − − +                   

 

eq. (tve3) 

And so now the only a-b-c variables remaining are in term 3. 

So let’s work on term 3. 

 

Term 3: 

Term 3 is: 
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4

0

0

abc abc

FGDQ FGDQ

PP

U

 

 

    
=    

        

   (4.30’) 

So we need to do two things: 

1. Obtain abcP  in terms of the 0-d-q quantities.  

2. Express all of term 3 in terms of currents instead of flux 

linkages. 

 

To begin this task, recall that abcdq P =0 , and take 

derivatives of both sides. Note in differentiating the right-

hand-side, we need to account for the fact that P is time-

dependent. Thus: 

abcabcdq PP   +=0  

Solving for abcP , we obtain: 

abcdqabc PP   −= 0    (#) 

But the right-hand side still has abc . We can eliminate this 

using  

odqabc P 
1−

=  

Substitution into eq. (#) yields: 

odqdqabc PPP 
1

0

−
−=      (4.31) 

Now we have expressed abcP  in terms of the 0-d-q 

quantities. Substitution of eq. (4.31) into eq. (4.30’) above 

yields: 
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







−








=








=
















−

00

0 0

1
0

4

dq

FDQG

dq

FDQG

abc

FDQG

abc PPP

U

P 











 













                    term 3a  term 3b 

So we have accomplished our objective 1, which was to 

obtain abcP  in terms of the 0-d-q quantities.  Let’s 

substitute the above equation into eq. (tve3)  

  




  
4 term3 term2 term1 term

00

0

0

0
0

4

00









+























−




















−=












dq

FDQG

abc

FDQG

dq

FDQG

abc

FDQG

dq n

U

P

i

i

R

R

v

v





 

eq. (tve3) 

to obtain 










  
4 term3b term3a term2 term1 term

000

0
00

1
000









+












+














−




















−=











 −

dqdq

FDQG

dq

FDQG

dq

FDQG

abc

FDQG

dq nPP

i

i

R

R

v

v 





 

eq. (tve4) 

Now we need to accomplish our objective 2, which is to 

express all of term 3 as currents instead of flux linkages. To 

do this, let’s investigate terms 3a and 3b one at a time. Let’s 

start with term 3a…. 

Term 3a: 

So term 3a is: 

0dq

FGDQ





 
 
    
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Our goal is to see if we can express this in terms of currents, 

which means we will need to use inductances. Let’s start by 

looking at the same expression but without the derivatives, 

since we know how to write this using Park’s transformation 

and a-b-c flux linkages. This is: 

0

4

0
0

dq
abc

FGDQ
FGDQ

P
U

 


    =              (eq. 3a-1) 

Now to write eq. (3a-1) in terms of the 0dq/FGDQ currents 

(instead of 0dq/FGDQ flux linkages), recall from eq. (L), pg. 

2, repeated here for convenience 

















=









FDQG

abc

RRRa

aRaa

FDQG

abc

i

i

LL

LL




   (eq. 3a-2) 

that the vector of abc/FGDQ flux linkages on the right of (eq. 

3a-1) is related through the inductance matrix to the 

abc/FGDQ currents.  

Now recall that the abc/FGDQ currents may be related to the 

0dq/FGDQ currents using the inverse Park Transformation 

according to: 
1

0

4

0
0

dqabc

FGDQ FGDQ

ii P
i iU

−     =
            (eq. 3a-3) 

Substitution of (3a-3) into (3a-2) and then what results into 

(3a-1), we have 

10
0

4 4

0 0
0 0

dq
dqaa aR

Ra RR FGDQ
FGDQ

iL LP P
U L L iU





−      =                
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Performing the above matrix multiplication, we obtain…. 

















=








−

−

FDQG

dq

RRRa

aRaa

FDQG

dq

i

i

LPL

LPPLP 0

1

1
0




 

Now we need to go through each of these four matrix 

multiplications. I will here omit the details and just give the 

results (note also in what follows the definition of additional 

nomenclature for each of the four submatrices). But before 

doing that, let’s remind ourselves of what the above 

inductance terms look like. 
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 abc abc abcaa aR

FGDQ FGDQ FGDQRa RR

i iL LL i iL L


      = =
            

          (eq. L) 

 

 

 

cos 2 [ cos 2( 30 )] [ cos 2( 150 )] cos
[ cos 2( 30 )] cos 2( 120 ) [ cos 2( 90 )] cos( 120 )
[ cos 2( 150 )] [ cos 2( 90 )] co

a S m S m S m F

b S m S m S m F

c S m S m S m

F

G

D

Q

L L M L M L M
M L L L M L M
M L M L L L

    
    
  





+ − + +  − + +  
− + +  + −  − + −  −  
− + +  − + −  + 

= 
 
 
  

s 2( 240 ) cos( 240 )
cos cos( 120 ) cos( 240 )
sin sin( 120 ) sin( 240 ) 0
cos cos( 120 ) cos( 240 )
sin sin( 120 ) sin( 240 ) 0

F

F F F F

G G G

D D D R

Q Q Q

M
M M M L
M M M
M M M M
M M M

 
  
  
  
  




−  − 
−  − 
−  − 
−  − 
−  − 

   

sin cos sin
sin( 120 ) cos( 120 ) sin( 120 )
sin( 240 ) cos( 240 ) sin( 240 )

0 0
0

0 0
0

G D Q a

G D Q b

G D Q b

FR

GG Y

DD

QY Q

M M M i
M M M i
M M M i

iM
iL M
iL
iM L

  
  
  

  
−  −  −   
−  −  −   
  
  
  
   

 

 

 (eq. L-ex) 

 

Back to  our matrix multiplications,  

















=








−

−

FDQG

dq

RRRa

aRaa

FDQG

dq

i

i

LPL

LPPLP 0

1

1
0




 

where we refer to the four submatrices on the right as submatrix (1,1), 

submatrix(1,2), submatrix(2,1), and submatrix(2,2).
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Submatrix (1,1): 

dq

q

daa L

L

L

L

PLP 0

0

1

00

00

00



















=
−  

where         L0=LS-2MS,         Ld=LS+MS+(3/2)Lm,  

and    Lq=LS+MS-(3/2)Lm. 

Submatrix (1,2): 

0 0 0 0
3 3

0 0
2 2

3 3
0 0

2 2

aR mF D

G Q

PL M M L

M M

 
 
 
 = 
 
 
  

 

Submatrix (2,1): 

1

3
0 0

2
3

0 0
2

3
0 0

2
3

0 0
2

F

G
T

Ra m

D

Q

M

M
L P L

M

M

−

 
 
 
 
 = 
 
 
 
 
  

 

Submatrix (2,2) (note that this submatrix is unchanged from 

the original inductance matrix): 

0 0
0 0

0 0
0 0

F R

G Y
RR RR

R D

Y Q

L M
L M

L LM L
M L

 
 = 
 
  

 

Using the defined nomenclature above for the 4 

submatrices, we finally have: 
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00 0dq mdq dq

T
FGDQ FGDQm RR

L L i

iL L





    
=     

        
 

Expanding… 

00 0 0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

dd d F D

qq q G Q

F F F R F

G G G Y G

D D R D D

Q Q Y Q Q

iL

iL kM kM

iL kM kM

kM L M i

kM L M i

kM M L i

kM M L i















    
    
    
    
    

=     
    
    
    
    
      

 (4.20) 

where 3
k

2
= . Compare this to eq. (L-ex) on page 27 (and pg. 

2) to see a very large improvement in simplicity.  

                

ASIDEAside: It is convenient here to note from the above matrix relation     

            that d and q are given by: 

00 0

3 3

2 2

3 3
                                          

2 2

dq mdq dq FGDQ d d d F F D D

q q q G G Q Q

L i L i L i M i M i

L i M i M i

 



= +  = + +

 = + +
 

We will use this in developing term 3b below, see p. 33.  
 

One nice surprise from the above is that THE MATRIX IS 

CONSTANT!!! 

 

As a result of this “nice surprise,” we may differentiate both 

sides to get: 
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00 0dq mdq dq

T

FGDQFGDQ m RR

L L i

iL L





    
=    

         
   ($) 

or, when expanded, is: 

0
00

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

d
d F Dd

qq G Qq

F F R FF

G G YG G

D R DD D

Q Y QQ
Q

iL

iL kM kM

iL kM kM

kM L M i

kM L M i

kM M L i

kM M L i















    
    
    
    
    
 =   
    
    
    
    
     

 

Substitution of ($) for term 3a into eq. (tve4), repeated here 

for convenience, 
1

0 0 0 0 0

term 4
term 1 term 2 term 3bterm 3a

0

00 0

dq dq dqabc dq dq

FGDQFGDQ FGDQ FGDQ

v iR PP n

Rv i

 



−         = − − + +                          

eq. (tve4) 

results in 
1

00 0 0 0 0

term 4
term 1 term 2 term 3bterm 3a

0

00 0

dq mdq dq dqabc dq dq
T

FGDQFGDQ FGDQ FGDQm RR

L Lv i iR PP n

Rv i iL L


−          = − − + +                              

eq. (tve5) 

 

We are almost done! The only remaining term which contains 

flux linkages is term 3b.  
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Term 3b: 

Recalling term 3b is: 






 −

0

0

1

dqPP 
 

we see that we need to expand the product 1−
PP . First, recall 

that: 



















+−

+−=

)120sin()120sin(sin

)120cos()120cos(cos
2

1

2

1

2

1

3

2



P  

Also, recall that 

)0()(
0

  +=
t

d
  

➔  𝜃̇ = 𝜔(𝑡) 

And note carefully that P is a function of time because the 

angle  is a function of t. Therefore we need to differentiate 

P; we do so using chain rule. This is not hard and results in: 

















+−

+−−−−==

)120cos()120cos(cos

)120sin()120sin(sin

000

3

2




dt

Pd
P

Now taking the product 1−
PP , we obtain: 
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





















++

−−

















+−

+−−−−=
−

)120sin()120cos(
2

1

)120sin()120cos(
2

1

sincos
2

1

)120cos()120cos(cos

)120sin()120sin(sin

000

3

2

3

21









PP

 

















−=

















−=

00

00

000

02/30

2/300

000

3

2



  

Note in the above that row 1 is all zeros because row 1 in P  
is all zeros. On the other hand, column 1 is all zeros because 

the multiplication of rows 2 and 3 in P  by column 1 of 
1−

P  

yield a sum of symmetrical terms. 

 

This provides that: 

















−=

































−=
−

d

q

q

ddqPP















0

00

00

000 0

0

1   ($&) 

The terms -ωλq and ωλd are called speed voltages; comments: 

• These speed voltage s together account for the voltages 

induced in the (fixed) phase windings as a result of the 

spatially-moving constant magnetic field from the rotor 

DC current.  

• They represent the fact that a constant (in time) flux 

wave rotating in synchronism with the rotor will create 

voltages in the stationary armature coils.  
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• Speed voltages (flux change in space), are so named to 

contrast them from what may be called transformer 

voltages (flux change in time) which are induced as a 

result of a time varying magnetic field. 

• You may have run across the concept of “speed 

voltages” in Physics, where you computed a voltage 

induced in a coil of wire as it moved through a static 

magnetic field, in which case, you may have used the 

equation Blv where B is flux density, l is conductor 

length, and v is the component of the velocity of the 

moving conductor (or moving field) that is normal 

with respect to the field flux direction (or conductor). 

• The first speed voltage term, -ωλq, appears in the vd 

equation. The second speed voltage term, ωλd, appears in 

the vq equation. Thus, we see that the q-axis flux causes 

a speed voltage in the d-axis winding, and the d-axis flux 

causes a speed voltage in the q-axis winding. 

• Fitzgerald and Kingsley in their book “Electric 

Machinery” provide a good discussion of speed voltages 

in Chapter 2; Bergan & Vittal discuss it on pg. 216; 

Kundur on pg. 71). 

Now we are in a position to obtain term 3b. Recall the 

expressions for d and q obtained in the “Aside” box, p. 29: 
3 3

2 2

3 3

2 2

d d d F F D D

q q q G G Q Q

L i M i M i

L i M i M i





= + +

= + +
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Using these in ($&) above, we obtain: 

1

0

0
3 30

2 2
3 3

0 02 20 0
00
00
0
0

q q G G Q Q
q

ddq

d d F F D D

L i M i M i

PP speed
L i M i M i

  



  
−

 
   − − − − 
       + += = =            
  
  
 
 

(&) 

where  

0
3 3

2 2
3 3

2 2

q q G G Q Q

d d F F D D

speed L i M i M i

L i M i M i

  

  

 
 
 
 = − − −
 
 

+ +
  

;    


















=

0

0

0

0

0
 

Now recalling eq. (tve5),  





  




  
4 term3b term3a term2 term1 term

000

0
00

1
0000









+












+


























−




















−=











 −

dqdq

FDQG

dq

RRm
T

mdq

FDQG

dq

FDQG

abc

FDQG

dq nPP

i

i

LL

LL

i

i

R

R

v

v 

 

eq. (tve5) 

we substitute (&) to obtain: 

  




  
4 term3b term3a term2 term1 term

000

0
00000









+








+
























−




















−=












dq

FDQG

dq

RRm
T

mdq

FDQG

dq

FDQG

abc

FDQG

dq nspeed

i

i

LL

LL

i

i

R

R

v

v

 

eq. (tve6) 
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Putting it all together:  

Let’s re-write the voltage equation eq. (tve6) by substituting 

in complete expressions for all vectors and submatrices in 

terms 1, 2, 3a, 3b, and 4, as obtained above: 

Term 1  Term 2      Term 3a 

0 0

0

0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 0
0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 00 0 0 0 0 0
0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

a

d db

d F D
q qc

q G Q

F F RF F F

G G

D D

Q Q

v ir

Lv ir
L kM kM

v ir L kM kM
kM L Mv r i

r i

r i

r i

    
    
    
    
    
− = − −    
    
    
    
    
       

0

0 0

0 0
0 0 0 0
0 0 0 0

3 30
3 3 0

2 2 0
3 3

0
2 2

0 0
0

00
0 0

d

q

F

G G Y
G

D R D

Q Y Q D

Q

n n

q q G G Q Q

d d F F D D

i

i

i

i
kM L M

ikM M L
kM M L i

i

r i L i

L i M i M i

L i M i M i

  

  

 
 

   
   
   
   
   
   
   
   

 
 

 −  
  
 − − − 
  
  + ++ +   
  
  
 
   


  

       Term 3b      Term 4 

 

Now, observe that each of the non-zero elements of term 3b 

and term 4 is multiplied by a current or current derivative, 

and that terms 2 and 3a both get multiplied by vectors of 

currents or current derivatives, respectively. Therefore, we 

may “fold-in” Term 3b and Term 4 into the Terms 2 and 3a 

by combining parts of the non-zero term 3b and 4 elements 

with the appropriate matrix element in terms 2 and 3a. 
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For example, we may fold in the -Lqiq term in row 2 of term 

3b by including Lq in row 2 (since we are dealing with the 

second equation), column 3 (since we need the term that 

multiplies iq) of term 2. Note that since term 2 has a “minus” 

sign out front, we do not include the “minus” sign of -Lqiq 

when we fold it in. The circle and arrow above illustrate this 

folding-in operation. 

The complete results of all fold-in operations are provided in 

what follows: 
0 0

0

3 0 0 0 0 0 0

3 3
0 0 0

2 2
3 3

0 0 0
2 2

0 0 0 0 0 00
0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 00

               

a n

d d

b q G Q

q q

D c F DF F

F G

G

DD

Q
Q

v ir r
v i

r L M M
v i

L r M Mv i

r i
r

ir
r i

L

  

  

   + 
    
    
    
    − − −− = −    
    
    
    
           

+

−

0

3 0 0 0 0 0 0

3 3
0 0 0 0

2 2
3 3

0 0 0 0
2 2
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 

 

It is of interest to rearrange the ordering of the variables so 

that the voltage equations for all d-axis windings are together 

and the voltage equations for all q-axis windings are together 

because this will emphasize the presence or absence of the 



 37 

various couplings that we have. The result of this re-ordering 

of the variables is as follows: 
0 0

0

3 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

3
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0 0 0 0
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(eq. 4.39’) 

 

Some observations about the transformed voltage 

equations: 

1. The first matrix gives 

a. Resistive voltage drops 

b. Speed voltage drops, svd (terms with ). These svd’s  

• Occur in the d- and q- circuits, to represent the fact that a 

flux wave rotating in synchronism with the rotor will 

create voltages in the stationary armature coils 

• Do not occur in circuits physically located on the rotor, 

since there is no motion between the rotating flux wave 

and the rotor windings. 

• Are caused by currents in the field windings of the “other” 

axis: 
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→ the d-circuit svd is caused by iq, iQ, and iG 

→ the q-circuit svd is caused by id, iD, and iF 

2. The matrices are almost constant, except for the svd terms 

in the first matrix, but even these terms are practically 

constant since we only see small changes in . The 

constancy of the matrices is the main motivation behind 

the Park’s transformation. 

3. The variables have been reorganized so that all d-axis 

circuits are together and all q-axis circuits are together. 

This makes it easy to observe any coupling/decoupling 

between different sets of circuits. 

4. The second matrix gives voltage induced by current (or 

flux) variation. Note that there is no coupling between the 

d-axis circuits (d, F, D) and the q-axis circuits (q, G, Q). 

This is because these two sets of circuits are orthogonal. 

Finally, some comments about Park’s transformation 

(already made on p. 16): 

1. id and iq are currents in a fictitious pair of windings fixed 

on the rotor. 

2. These currents produce the same flux as do the a,b,c 

currents. 

3. For balanced steady-state operating conditions, we can use 

i0dq = Piabc to show that the currents in the d and q windings 

are dc! The implication of this is that: 
• The a,b,c currents fixed in space, varying in time, 

produce the same synchronously rotating magnetic 

field as 

• The d,q currents, varying in space, fixed in time! 
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The below offers a visual comparison of abc quantities 

vs d-q (fixed on rotor) quantities vs. α-β (fixed on 

stator) quantities. These illustrations are not animated 

on the pdf, and so I have also provided a PPT on the 

website for you to view. These animations were 

obtained from the excellent youtube video at 

https://www.youtube.com/watch?v=vdeVVTltr1M.  

   

https://www.youtube.com/watch?v=vdeVVTltr1M
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 From Kimbark, Vol. III: 

 
 

 

Kimbark, like Park, chose 

2/3 as his coefficient in 

front of the Park matrix, 

see eq. (4.5), pg. 14 of 

these notes. 

id is combined a,b,c 

MMFs (or currents) 

projected onto direct 

axis. iq is combined a, b, 

c MMFs (or currents) 

projected onto 

quadrature axis. 

See Fig.6, p.8 of these 

notes for illustration of ia 

projection onto direct & 

quadrature axes.  

For ss operating conditions,  

• The a,b,c currents, fixed in 

space, varying in time, produce 
the same synchronously 

rotating magnetic field as 

•The d,q currents, varying in 
space, fixed in time (DC). 

 

For all operating conditions, id 
and iq produce the same MMF 

on their respective axes as ia, ib, 

and ic.  

io produces no air-

gap flux. 

We used this same argument in 
the notes “WindingsAxes” (pp. 

10-11) to establish that the self 

and mutual inductances of rotor-
rotor terms in L are constant. 

Here, Kimbark uses this 

argument to provide intuition 
that self and mutual inductances 

of (fictitious) d- & q- windings 

are constant. 

Kimbark’s choice of 

coefficients has the 

advantage of magnitude-

invariance but the 

disadvantage of unequal 

mutual (see p. 13 of these 

notes). 
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Another interesting paragraph from Kimbark Vol. III 

 
 


