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Linearization of Generator Current-State Space Model 

 

These notes parallel sections 8.3-8.4 of VMAF.  

 

We developed a state-space current model for the synchronous 

machine with the G-circuit represented (see notes on per-

unitization), and it was found to be: 
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    (L-1) 

This was equation 4.74 in VMAF (in case the “dots” don’t show up, 

note the right-hand-side vector of (L-1) is a vector of derivatives). 

 

The torque equation was also (see notes “TorqueEquation”): 
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   (L-2) 

This is equation (4.101) in VMAF. 

 

And finally, we had (equation (4.102) in VMAF): 
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1      (L-3) 

Note that the state variables are id, iF, iD, iq, iG, iQ, , and , i.e.,  
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So we have 8 state variables and 8 equations.  

 

We want to develop a model that will allow us to investigate the 

stability properties of the system represented by these equations 

using linear system theory, because the theory of linear systems is 

so powerfully well-developed, as we have seen in our previous work 

on eigenvalues, eigenvectors, mode shape, and participation factors.  

 

However, to employ linear system theory, the state variables must 

only appear in our equations in the form of linear terms; that is, state 

variables may only appear as a term like aixi where ai is a constant. 

 

Our equations have some state variables appearing as product terms 

of the form xixj. For example, note in eq. 4.74 (L-1) the appearance 

of  in the first matrix, which means that it will get multiplied by a 

current state variable to result in a term like Lqiq. Also, note that 

almost every term in the torque equation is the product of two 

current state variables.  

 

So our current-state-space model is non-linear. The process of 

linearization is where we convert the equations so that they contain 

only linear terms. To do this, we will focus on each equation and 

convert each nonlinear term to a linear term.  
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Nothing is free. In order to linearize, we will need to select a “point” 

in the state-space. Then the price we will pay for the simplification 

is that the resulting model will only be valid for a region “close to” 

that selected point. 

 

Our general strategy is based on the recognition that each of our 

equations in 4.74 look like  

)x,x(fv      (L-5) 

We will select our point of linearization as x0 and then we will 

develop a model based on the idea that  

 Only changes in the state variables may occur (e.g., no changes 

in parameters); 

 The changes in the state variables must be small. 

We will denote the changes as: 

xxx  0     (L-6) 

Differentiating, we also have that: 

xxx   0     (L-7a) 

The term 0x  in eq. (L-7a) should not be understood as an attempt to 

take a set of derivatives on a set of constants (which would be zero), 

but rather a set of derivatives on x that are subsequently evaluated 

at x0. This understanding is emphasized by rewriting (L-7a) as: 

0x x
x x x


       (L-7b) 

The effect of changes in the state variables given by eqs. (L-6) and 

(L-7a) on eq. (L-5) can be expressed by substituting eqs. (L-6) and 

(L-7a) into eq. (L-5) and adjusting the right-hand-side of eq. (L-5) 

accordingly. That is: 

)xx,xx(fvv   000
    (L-8) 

Therefore, every time we see a state variable, we will replace it with 

xx 0 , and every time we see a state-variable derivative, we will 

replace it with xx  0 .  

Once this is done, however, the terms corresponding to products of 

state variables, i.e., x1x2, will appear like 
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)xx)(xx( 220110      (L-9) 

(Fortunately, we have no products of terms containing derivatives 

of state variables). 

Eq. (L-9) is evaluated as: 

212202102010220110 xxxxxxxx)xx)(xx(  (L-10) 

Here, for small deviations, 21 xx  is negligible and therefore 

10 1 20 2 10 20 10 2 20 2( )( )x x x x x x x x x x        (L-11) 

Noting that  

 the left-hand-side of eq. (L-11) gives the product term under the 

changed condition and  

 the first term on the right-hand side gives the product term for the 

unchanged condition,  

we see that the change in the product term is given by: 

1202102010220110 ))(( xxxxxxxxxx   (L-12) 

We will repeatedly employ this strategy of substituting and then 

recognizing on the right-hand-side the “unchanged” expression. 

Before we go through this procedure, it is worthwhile to note that 

the process of linearization comes about more formally through the 

Taylor series expansion (TSE) about a selected point. 

 

Performing a TSE about the point x0, we have: 

...x)x(''f
!
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2

0000
2

1
(L-13) 

Neglecting the higher-order terms with more than one derivative 

(justified by the idea that the higher order powers of x are very 

small), we have that 

.x)x('f)x(f)xx(f  000    (L-14) 

For example, consider f(x1,x2)=x1x2, which is just a function with a 

single product term (which was what (L-12) was derived to address).  

The TSE of f(x1,x2)=x1x2 about the point x0=[x10, x20]T is: 
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 which is in agreement with (L-12). 

 

The eight state equations must be linearized one at a time. We 

linearize one of them, for purposes of illustration. We take the first 

voltage equation, the one for vd, lifted out of eq. 4.74 (or L-1 above), 

repeated below for convenience (done in 3 lines via 8.26 of VMAF): 
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Substituting (note VMAF nomenclature is dv  ; we use  dv  here). 

ddd vvv  0  

ddd iii  0 , 
ddd iii   0
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  (L-16) 

Eq. (8.26) of 

VMAF has 

error on 2nd line 

in that the “=” 

sign should not 

be there. 



 6 

where the “product terms” are indicated by the arrow “←”. 

 

Recall eq. (L-11) which is the linearized expression for products, 

repeated below for convenience: 

2202102010220110 xxxxxx)xx)(xx(   

We apply this equation to each of the product terms in eq. (L-16).  
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(L-17) 

Now separate, on the right-hand-side, initial condition terms (with 

zero subscript) from “deviation” terms (with  in front): 
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Recognizing that the term in square brackets is just vd0, we subtract 

vd0 from both sides, leaving only what is inside the curly brackets: 
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Now combining terms in , we obtain: 

  













000

0

00

    

GGQQqq

DDFFddGG

QQqqd

d

ikMikMiL

ikMikMiLikM

ikMiLir

v

   (L-20) 

The last term in (L-20) is interesting. Let me show you why. 
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We have previously derived that 
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This is eq. 4.20 in VMAF. (We developed this equation in the notes 

on “mach_eqts.” It was also used in the notes on per-unitization and 

elsewhere.) 

 

From the above, we see that 
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Noting the equation for q, we see that the coefficient on   in eq. 

(L-20) is q0. Therefore, eq. (L-20) becomes: 
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And this is our linearized equation for the vd voltage equation.  

 

Similar analysis applies for the other 7 state equations. Once this is 

done, we may form a matrix relation like that of eq. 8.36, pg. 286 in 

the text, and the matrices will be 88, as shown in (L-22). 
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 (L-22) 

The resulting matrix relation (which includes the 6 voltage 

equations and the 2 inertial equations) can be written more 

compactly as: 

  v Kx Mx    (eq. 8.37) 

where the “∆” on the variables v, x, and xdot is implied, and 

nomenclature v, K, M, x, and xdot are defined in (L-22). 

Then we may solve for x  according to: 
1 1 pu   x M Kx M v    (eq. 8.38) 

which is in the form of  

 x Ax Bu     (eq. 8.39) 

where 
1 A M K  

1 B M  
The VMAF text, p. 287, also shows that the matrix M is related to 

the matrix we called L in chapter 4, according to  
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On p. 4 of our notes called “LoadEquations,” and in VMAF, Section 

4.13 (p. 124), we developed the matrix L as 
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We easily see in (L-22) that L is the upper left 6×6 submatrix of M. 

 

=============================================== 

Final Exam Question #4: Derive the 7th equation in (L-22), i.e., 

linearize equation (L-2) (equation (4.101) in VMAF). Although this 

is done in a very cursory way at the top of p. 286 of VMAF, I expect 

you to show work which follows a procedure similar to what is done 

above for the vd equation.  

 

Note: Final Exam questions #1-#3 are found on p. 23 of the notes 

called “pssdamp.” Again, all final exam questions posed are to be 

worked untimed, with open book/notes, but without interaction with 

anyone else including classmates.  

=============================================== 
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Eigenanalysis of linearized one-machine to infinite bus system:  

Section 8.4 provides a linearization for a one-machine infinite bus 

problem, similar to what we did in the notes called “LoadEquations” 

corresponding to Section 4.13 of VMAF. Here, the generator is 

connected to an infinite bus having voltage of V∞ through an 

impedance of Re+jLe (ω=1). The changes to (4.103) of VMAF 

necessary to model the load are again what are necessary to (L-22): 

 Where you see r, replace it with eRr  and denote it with R̂  

 Where you see Ld, replace it with ed LL  and denote it with ˆ
dL  

 Where you see Lq, replace it with eq LL  and denote it with ˆ
qL  

 Where you see 0d , replace it with 0 0 0
ˆ
d d e dL i    

 Where you see q , replace it with 0 0 0
ˆ
q q e qL i    

 Insert –Kcos(δ0-α) as element (1,8) (the vd equation) of matrix K 

 Insert –Ksin(δ0-α) as element (3,8) (the vq equation) of matrix K 

 

Note that: 

o speed deviation equation contains un-hatted values for Ld, Lq,   

0d , and 0q ; 

o the last two bullets represent the Park’s transformation of a set of 

balanced voltages at the infinite bus, where K=√3 V∞ (and is not 

the same K as used in the saturation notes). 

o α is the angle of the infinite bus phasor voltage V∞.. 

 

These changes to (L-22) result in  
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k 0 0 0 0 0

k 0 0 0 0 0

ˆ0 0 0 k k 0 0

0 0 0 k 0 0

0 0 0 k 0 0

0 0 0 0 0 0

d

F

D

q

G

Q

d F D

F F X

D X D

q G Q

G G Y

Q Y Q

j

i

i

i

i

i

i

L M M

M L M

M M L

L M M

M L M

M M L







 
  
  
  
  
  
  
  
  
  
  
  
    

 





K

0

0 0 0 0 0 0 0 1

d

d

d

d

d

d

i

i

i

i

i

i





   
   
   
   
   
   
   
   
   
   
   
     

M

 

 

Observe that in the above per-unit formulation, we have replaced the 

respective mutual inductances in the torque equation with LAD and 

LAQ. 

 

Example 8.2 then computes the M and K matrices using the loading 

conditions of Example 5.3, with D=0. The M matrix (which is 

independent of loading) is shown to be 
2.100 1.550 1.550

1.550 1.651 1.550

1.550 1.550 1.605

2.040 1.490 1.490

1.490 1.76 1.490

1.490 1.490 1.526

1786.9 0

0 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 0

M 0 0

0 0
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Necessary computations to obtain the K matrix are shown on p. 291 

of VMAF, from which the K matrix is expressed as 
0.0211 0 0 2.040 1.490 1.490 1.4304 1.025

0 0.0007 0 0 0 0 0 0

0 0 0.0131 0 0 0 0 0

2.100 1.550 1.550 0.0211 0 0 1.0396 1.397

0 0 0 0 0.00584 0 0 0

0 0 0 0 0 0.0540 0 0

0.014 0.362 0.362 1.428 0.790 0.790 0

0 0 0 0 0 0 1 0

D

 
 
 
 
 
     
 
 
 
      


 

K





 

The A matrix, given by 
1 A M K , is then expressed as  

36.080 0.412 14.177 3488.32 2547.84 2547.84 2445.93 1752.71

12.435 4.684 77.202 1202.24 878.103 878.103 842.98 604.06

22.835 4.125 96.410 2207.74 1612.517 1612.517 1548.02 1109.28

3613.82 2667.34 2667.34 36.310 1.158

    

 

 


A

80.282 1789.02 2404.05

416.28 307.26 307.26 4.183 19.27 163.54 206.08 276.93

3122.11 2304.41 2304.41 31.369 17.68 273.46 1545.59 2076.95

0.0078 0.2026 0.2026 0.7991 0.4421 0.4421 0.0 0.0

0.0 0.0 0.0 0.0 0 0.0 1000 0.

     

     

     

310

0



 
 
 
 
 
 
 
 
 
 
 
  

 

Example 8.3 then computes the eigenvalues from the A matrix (this 

can easily be done using Matlab) to obtain 

1 5

2 6

3 7

4 8

0.03594 j0.9986 0.00132 j0.03135

0.03594 j0.9986 0.00132 j0.03135

0.09928 0.000643

0.28464 0.007113

 

 

 

 

     

     

   

   

 

A look at the imaginary parts indicates that corresponding modes 

have very low frequencies, e.g., eigenvalues 1 and 2 correspond to 

a 0.16Hz mode, and eigenvalues 5 and 6 correspond to a 0.005Hz 

mode. However, we are forgetting that time has been normalized, 

and so these eigenvalues are expressed in 

rad/(sec/tbase)=(rad/sec)*tbase. To express the eigenvalues in units of 

rad/sec, we need to divide by tbase, which is equivalent to multiplying 

by 377.  
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Multiplying these frequencies by 377, we obtain 60 Hz and 1.88Hz. 

Some comments: 

o VMAF on p. 292 explain the 60Hz mode as being “the 60-Hz 

component injected into the rotor circuits to balance the MMF 

caused by the stator DC currents.” I add that we observe this 

mode as a result of the fact that we used the full IEEE 2.2 model 

where we still represent stator transients, i.e., we have NOT made 

the assumption in this model that stator transients are negligible.  

o The 1.88 Hz mode is a little higher than the modes we were 

studying in the eigenanalysis of our project system, which were 

0.28-0.30 Hz and 0.41-0.42 Hz. However, we looked only at 

these modes because they were the ones giving us trouble (they 

are interarea modes). If we would have inspected the entire list 

of modes that SSAT computed for us, we would have found many 

modes in the 1-2.5Hz range. For example, here are a few I picked 

out: 

 
The vertical box identifies the frequency, in Hz, of four modes, 

were we observe frequencies at 1.2 Hz (dominated by Navajo 

angle state), 2.1 Hz (dominated by an exciter state), 1.65 Hz 

(dominated by Owens speed state). The 2.1 and 1.65 Hz modes 

are referred to as “local modes.” If we looked at their 

participation factors, we would find significant participation 

from states associated with only those units. 

Point: Interarea modes typically have frequencies 0.1-1.0Hz. 

Local modes typically have frequencies above 1.0Hz. 

 

Last comments on linearized analysis:  

o Section 8.5 of VMAF shows how to linearize the flux-linkage 

state-space model; it is satisfying that on p. 298 it indicates that 

eigenanalysis of the resulting A-matrix provides the same 

eigenvalues as we obtained using the current state-space model. 

Not sure that 

“balance” is the 

right word here. 

Perhaps it 

should be 

“represent.” 
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o Section 8.6, called “State Matrix for Multimachine System,” 

provides a very good articulation of how to build the A-matrix 

for a multimachine system. This section is analogous to the 

treatment for time-domain simulation given in Chapter 7 where 

we saw we must express all dynamic models on a common 

reference frame. Section 8.6 also shows how to account for 

nonlinear loads such as a ZIP or exponential models (again, 

analogous to Chapter 7), an issue of particular interest since the 

nonlinear equations must be linearized. It is interesting to note at 

the beginning of this section that it says,  

“The basis for this procedure is the work done in reference [4] 

in the development of small-signal stability analysis software, 

which is now available as part of Powertech Labs’ DSATools 

package.” 

 Reference [4] is  
[4] Kundur, P., Rogers G.J., Wong D.Y., Arabi, S., and Wang, L. Small Signal 

Stability Analysis Program: Version 3.1, Vol. 1 Final Report, EPRI TR-101850-

V1R1, May 1994. 

which is an EPRI report that came out a few years after the 1990 

paper on the website. 
Kundur, Rogers, Wong, Wang, and Lauby, “A comprehensive computer program 

package for small signal stability analysis of power systems,” IEEE Transactions 

on Power Systems, Vol. 5, No. 4, Nov., 1990. 

Although there are several major commercial-grade time-domain 

simulation packages used in the industry (PSLF, PSS\E, DSAtools, 

and PowerWorld), there is only one commercial-grade eigenanalysis 

package, which is SSAT. 


