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Subtransient & Transient Inductances 

(First part of Section 4.14 in text, i.e., excluding Section 4.14.1) 

 

We initially consider the round-rotor machine and at the end address the 

salient pole machine. 

 

Direct-axis transient inductance: 

Here is the scenario to consider (a sort of “thought experiment”): 

1. Remove the damper windings (D and Q) 

2. Short the field windings (vF=0) 

3. Rotate the rotor at synchronous speed. 

4. Suddenly apply a set of balanced voltages to the stator terminals such that 

the phase a voltage is in phase with the direct axis rotation. 
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where V is the rms phase voltage and u(t) is the unit step function, as shown 

in Fig. 1 below. 

 
Fig. 1 

Assumption:  The stator winding dynamics are very fast relative to the  

dynamics of the field winding (T=L/R, field wdg L>>stator 

wdg L; field wdg R<<stator wdg R). 

Implication: We know that the currents ia, ib, ic appear instantaneously 

with application of the voltages. Because of above 

assumption, we can ignore the constant flux linkage 

theorem, CFLT (flux linkages cannot change 

instantaneously), and assume the stator flux linkages appear 

instantaneously on application of the voltages. 
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Then Park’s transformation on vabc yields 
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Now the field winding dynamics are not fast (inductance is much larger), the 

CFLT applies. Thus, λF cannot change instantaneously. 

 

But before application of the stator voltages, all windings were de-energized, 

and in particular, λF(0)=0. By CFLT, then, λF(0+)=0. 

 

Now recall  
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eq. (4.20) 

from which we extract the expression for λF, which is  

DRFFdFF iMiLikM ++=  

But recall we have removed the damper windings, so that iD=0, then 

FFdFF iLikM +=  

Then at t=0+, we have that 

   FFdFF iLikM +==+ 0)0(  

and so we see that 
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Again, from eq. (4.20) above, we have that 

DDFFddd ikMikMiL ++=  

But iD=0,  

FFddd ikMiL +=  

and substitution of (4.172) yields 
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The term in brackets in the last equation is defined as the d-axis transient 

inductance according to 
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And with LAD=kMF (from 4.108), we obtain 
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L’d gives the initial d-winding flux linkage per unit of d-winding current with 

no damper winding, and with the field winding shorted. 

 

In per-unit, since ω=1, dd LX = . 

 

Direct-axis subtransient inductance: 

 

The dynamics of the damper windings are faster than those of the field circuit 

but not as fast as the stator circuits. It increases model accuracy to account 

for the effect of the damper windings. 
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To do so, we repeat the above procedure but 

• We cannot let iD=0 

• We must also use the λD equation from eq. (4.20) 

• We use λD(0+)=0 and λF(0+)=0, by CFLT 

See equations (4.166)-(4.171), resulting in 
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With LAD=kMF=kMD=MR (eq. 4.108), we get 
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Again, in pu, dd XL = . 

 

Quadrature-axis transient and subtransient inductances: 

 

Similar analysis as before can be done to obtain L’q and L’’q. 

However, for the q-axis inductance, we must impress voltages on the stator 

terminals such that vq becomes non-zero and vd becomes zero. This is done 

by impressing voltages on the stator terminals such that the phase a voltage 

is 90° behind the voltages impressed for the d-axis inductances. In other 

words, instead of using (4.164),  
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we will use 
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Then Park’s transformation on vabc yields 
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I derive the transient inductance, as follows.  

GGQYqGG iLiMikM ++=  

Let’s assume there is no q-axis damper winding, so iQ=0. Then, at t=0+, 
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Again, from 4.20, we have that 

GGQQqqq ikMikMiL ++=  

and with no damper, iQ=0, and 

GGqqq ikMiL +=  

Substitution for iG from above expression yields:  
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From this last expression we observe that 
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Recalling that LAQ=kMG, we have that  
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Repeating the above procedure but 

• We cannot let iQ=0 

• We must also use the λQ equation from eq. (4.20) 

• We use λQ(0+)=0 and λG(0+)=0, by CFLT 

See equations (4.175)-(4.179a), resulting in 
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With LAQ=kMG=kMQ=MY (eq. 4.109), we get 
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SUMMARY: 

F

AD
dd

L

L
LL

2

−
          (4.174) 

1
)(

2

2
−

−+
−=

AD

DF

ADFD
dd

L

LL

LLL
LL

            (4.171) 

G

AQ

qq
L

L
LL

2

−=     (4.180)   

1

2

2
−

−+
−=

AQ

QG

AQGQ

qq

L

LL

LLL
LL     (4.179b)   

Final comments:  

1. Remember that in these notes we developed the inductances used 

within the so-called “standard” parameter set from inductances used 

within the so-called “fundamental” (sometimes also called “basic”) 

parameter set. A good way to remember the difference between these 

two sets of parameters is that the fundamental parameters are 

represented by the equivalent circuits of Figures 4.5 and 4.6 in VMAF 

(and also shown on pp. 33-34 of the “perunitization” notes). The 

standard parameter set, which can be expressed as a function of the 

fundamental set (as we have done in these notes), can be obtained via 

short-circuit, decrement, and standstill frequency response tests. In 

contrast, as Kundur writes on p. 139 of his text, “While the fundamental 
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parameters completely specify the machine electrical characteristics, 

they cannot be directly determined from measured responses of the 

machine.” You should review the “Last comments” on p. 35 of the 

“perunitization” notes and the attached section 4.16 (from VMAF) in 

those notes. 

2. In the above, we obtained the transient quantities by ignoring the 

damper windings. Because the damper windings have “fast” dynamics, 

we may say that transient quantities characterize the machine following 

decay of those “fast” dynamics, i.e., it characterizes the machine a few 

cycles after the initialization of the disturbance.  

3. On the other hand, in the above, we obtained the subtransient quantities 

by including the damper windings. These quantities therefore 

characterize the machine during the first 2-3 cycles following the 

disturbance. 

 

The figure below illustrates the difference between the subtransient and 

transient time frames. 

 


