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State-Space Model for a Multi-Machine System 

These notes parallel section 3.4 in the text. We are dealing with 

classically modeled machines (IEEE Type 0.0), constant impedance 

loads, and a network reduced to its internal machine terminals. 

 

We have found that the linearized swing equation is given by: 
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and it is important to observe that we have assumed no damping. 

Let’s consider writing the linearized swing equations for a test 

system (see example 3.1 in text), as shown below. 
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The three swing equations are: 
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One important fact: The stability of a power system depends on 

relative rotor angles ij NOT absolute rotor angles i. This is 

because synchronism is a relative phenomenon. That is, it makes no 

sense to say “generator 1 is in synchronism.” Rather, we must say 

with what it is in synchronism, i.e., “Generator 1 is in synchronism 

with generators 2 and 3,” or “Generator 1 is in synchronism with the 

rest of the system.” 

 

So we need to define our states in terms of relative rotor angles. In 

the above equations, the states (derivatives) are in terms of absolute 

rotor angle. We can deal with this in the following way. 

 

First, multiply through each equation by Re/2Hi, resulting in: 
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Now subtract the last equation from each of the other two. When we 

do this, the derivative terms on the left will be affected as follows 

(and this is the main motivation for making this subtraction): 
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which is d13/dt. However, this very convenient substitution of 

variable will not help if damping is modeled (Dii) in the swing 

equation AND the damping is nonuniform (we will see below what 

this means) because then it is not possible to combine the 

corresponding speed variables. Let’s look at this issue by re-writing 

the above equations with damping. 
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Subtracting the last equation from the other two (in the case of the 

first equation) affects the 2nd derivative terms on the left according 

to: 
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and the 1rst derivative terms on the left according to: 
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We can combine angles if ratios Di/Hi are the same for all i, which 

is the condition for uniform damping. In this case, the first derivative 

terms become (when we subtract last equation from first): 
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The implication is that we can ALWAYS reduce the number of 

states by 1 due to the ability to use relative angles. But an additional 

reduction of states by 1 due to the ability to use relative speeds only 

occurs in the cases of no damping or of uniform damping.  

 

In general, Di/Hi ratios will be different, and so modeling 

nonuniform damping is necessary. When this is the case, we are only 

able to get the state reduction for relative angles, but not for relative 

speeds. The resulting system appears as below. 
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And replacing the first derivative terms by speed deviations, we get: 
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In the particular special case of no damping, we obtain: 

    0
22

32323131

3

Re
13131212

1

Re

2

13

2

=+−++








SSSS PP
H

PP
Hdt

d

    0
22

32323131

3

Re
23232121

2

Re

2

23

2

=+−++








SSSS PP
H

PP
Hdt

d
 

Recognizing that 31=-13 and that 32=-23, we may change 

the sign of the second term in each equation if we also make this 

change of variables. This results in: 
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eq. (#) 

So we have derivatives on 13 and 23, and these are our states. 

But observe that there are two other variables, namely 12, 21.  

 

This means we have 4 variables and only 2 equations.  

 

Can we express 12 and 21 in terms of 13 and 23? Clearly, 

since 12=-21, if we can do it for one, we can do it for the other. 

 

This is done by noting first that  
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We can prove this as follows: 
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Therefore, from eq. (*), we can write that 
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Reversing the subscript order of the last term on the right-hand-side, 

and changing signs, we get: 
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Then, since 12=-21, we get 
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Substituting eq. (**) and (***) into eq (#), we obtain 
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Gathering terms in each variable, we get two differential equations: 
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Denote the coefficients of the above differential equations as 11, 

12, 21, and 22, where (assuming the last equation, for bus n, is the 

one that gets subtracted off in the above steps): 
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Note these “alpha” expressions are the negation of the Aij’s given in 

VMAF, pg. 68, (or in 2nd edition, in text’s addendum, pg. 650), 

because the alphas are defined on the left-hand-side of the equation, 

whereas the Aij’s are defined on the right-hand-side of the equation. 

 
Using the alphas (given p. 5 of these notes), I rewrite the differential 

equations as 
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We can now convert these second order linear differential equations 

into first order linear differential equations, in order to develop a 

state-space form.  
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We do this by recognizing that  
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So let’s define the state vector as 
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Note for our 3-machine system, we have only 4 states due to the 

state reduction for relative angles and relative speeds. 

 

Then  

xAx =  

More explicitly,  
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VMAF on page 71 shows the computation of the alpha-coefficients 

for the 9-bus, 3-generator system of Fig. 2.19. It is shown that 

11=104.096 

12=59.524 

21=33.841 

22=153.460 
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Then, the state-space equation is: 
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Question is, now, what to do with the above in order to obtain 

useful information about the small-disturbance behavior of our 

system. We will investigate this next…. 


