State-Space Model for a Multi-Machine System
These notes parallel section 3.4 in the text. We are dealing with
classically modeled machines (IEEE Type 0.0), constant impedance
loads, and a network reduced to its internal machine terminals.

We have found that the linearized swing equation is given by:
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and it is important to observe that we have assumed no damping.
Let’s consider writing the linearized swing equations for a test
system (see example 3.1 in text), as shown below.
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The three swing equations are:
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One important fact: The stability of a power system depends on
relative rotor angles Ad; NOT absolute rotor angles Ad. This is
because synchronism is a relative phenomenon. That is, it makes no
sense to say “generator 1 is in synchronism.” Rather, we must say
with what it is in synchronism, i.e., “Generator 1 is in synchronism
with generators 2 and 3,” or “Generator 1 is in synchronism with the
rest of the system.”

So we need to define our states in terms of relative rotor angles. In
the above equations, the states (derivatives) are in terms of absolute
rotor angle. We can deal with this in the following way.

First, multiply through each equation by are/2H;, resulting in:
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Now subtract the last equation from each of the other two. When we
do this, the derivative terms on the left will be affected as follows
(and this is the main motivation for making this subtraction):
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which is dais/dt. However, this very convenient substitution of
variable will not help if damping is modeled (Dia) in the swing
equation AND the damping is nonuniform (we will see below what
this means) because then it is not possible to combine the
corresponding speed variables. Let’s look at this issue by re-writing
the above equations with damping.
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Subtracting the last equation from the other two (in the case of the
first equation) affects the 2" derivative terms on the left according
to:
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and the 1™t derivative terms on the left according to:
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We can combine angles if ratios Di/H; are the same for all i, which
Is the condition for uniform damping. In this case, the first derivative
terms become (when we subtract last equation from first):
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The implication is that we can ALWAYS reduce the number of
states by 1 due to the ability to use relative angles. But an additional

reduction of states by 1 due to the ability to use relative speeds only
occurs in the cases of no damping or of uniform damping.

In general, Di/Hi ratios will be different, and so modeling
nonuniform damping is necessary. When this is the case, we are only
able to get the state reduction for relative angles, but not for relative
speeds. The resulting system appears as below.
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And replacing the first derivative terms by speed deviations, we get:
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In the particular special case of no damping, we obtain:
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Recognizing that Adz1=-Ad13 and that Adz=-46,3, we may change
the sign of the second term in each equation if we also make this
change of variables. This results in:
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eq. (#)
So we have derivatives on Aoz and Ad3, and these are our states.
But observe that there are two other variables, namely A2, Ad.

This means we have 4 variables and only 2 equations.

Can we express Aoz and A1 in terms of Aoz and Adzs? Clearly,
since Ad,=-Ad,1, If we can do it for one, we can do it for the other.

This is done by noting first that



AO, + AD,, +Ad,, =0 (eq. *)
We can prove this as follows:
A6, + A0, + Aoy
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Therefore, from eq. (*), we can write that
Aoy, =—A0y; —Ady
Reversing the subscript order of the last term on the right-hand-side,
and changing signs, we get:

AS,, =—A0,, + Aoy, (eq. **)
Then, since Ad12=-46,1, we get
AS, = A0y — Ao, (eq. ***)

Substituting eg. (**) and (***) into eq (#), we obtain
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Gatherlng terms in each variable, we get two differential equations:
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Denote the coefficients of the above differential equations as o,

a2, a1, and apz, where (assuming the last equation, for bus n, is the
one that gets subtracted off in the above steps):
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Note these “alpha” expressions are the negation of the Ajj’s given in
VMAF, pg. 68, (or in 2" edition, in text’s addendum, pg. 650),
because the alphas are defined on the left-hand-side of the equation,

whereas the Ajj’s are defined on the right-hand-side of the equation.
(3.29) can be further modified as
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where the coefficients a; depend on the machine inertias and synchronizing power coefficients,
Equation (3.31) represents a set of n — 1 linear second-order differential equations or a set of
2(n—1) first-order differential equations. We will use the latter formulation to examine the free
response of this system.
Letxy, xa, ... .x,_ bethe angles &, a, dapns oo o S 1mas respectively, and let x,, ..., x5, o be
the ime derivatives of these angles. The system equations are of the form
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where n is the number of machines and a machine n is the reference.

Using the alphas (given p. 5 of these notes), | rewrite the differential
equations as
d 2A513
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d°Ad,,
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We can now convert these second order linear differential equations
into first order linear differential equations, in order to develop a
state-space form.

+ A, + 0, A0, =0



We do this by recognizing that
do, _do,,

dt A ="
Then, the above two second order differential equations become
four first order differential equations, as follows:

Aty =—0;,A0; — 21,0, =0

Aty = —0(21A513 - 0(22A523 =0
Ao, = Ay,
A523 = Aw,,

So let’s define the state vector as
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Note for our 3-machine system, we have only 4 states due to the
state reduction for relative angles and relative speeds.

Then
X = AX
Moreexplici_tly, )
Ao, | | O 0 1 0fAs,]
NSy | | O 0 0 1)Ad,
A, ) —ay —a, 0 0 Aoy,
Ady, | |[—ay —ap 0 0]|Aay,

VMAF on page 71 shows the computation of the alpha-coefficients
for the 9-bus, 3-generator system of Fig. 2.19. It is shown that
o11=104.096
012=59.524
021=33.841
022=153.460



Then, the state-space equation is:

Ab,, 0 0 1 0} Adg,
Ab,, ~ 0 0 0 1| Ao,
Ad,, | |-104.096 -59.524 0 0| Aw,
A, | | —33.841 -153.460 0 0] Ay, |

Question is, now, what to do with the above in order to obtain
useful information about the small-disturbance behavior of our
system. We will investigate this next....



