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Simulation of Synchronous Machines 
 
This chapter covers: 
(A) Sections 5.2-5.7: Determination of initial conditions 
(B) Section 5.8: Determination of machine parameters from 

manufacturers’ data 
(C) Sections 5.9: Digital simulation of synchronous machines 
 
We will only cover (A). This breaks down into: 

• Section 5.2: Steady-state and phasor diagrams 

• Section 5.3: Machine connected to an infinite bus through a line 

• Section 5.4: Machine connected to an infinite bus with local load 
at machine terminal 

• Section 5.5: Determining steady-state conditions 

• Section 5.6: Examples 

• Section 5.7: Initial conditions for a multimachine system 
Of the above, we will concentrate on Sections 5.2, 5.5, and 5.7, but 
I encourage you to read all of these sections 5.2-5.7. I will briefly 
touch on Sections 5.8 and 5.9. 
 
The basic problem is motivated by the following fact:  
Simulation of the transient response of any dynamical system 
represented by state variables requires initial conditions for those 
state variables.  
 
So what are our state variables?  

• In general, it depends on the machine model. 

• However, there are two state variables that are common to all 

machine models: , . 
 

The initial condition for  is easy: (t=0) = 1. 
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But what about the initial condition for ?  
 

What is ? See page 93, Section 4.2, which says: “At t=0 the phasor 
V is located at the axis of phase a, i.e., at the reference axis in Fig. 

4.1. The q-axis is located at an angle , and the d-axis is located at 

=+/2. At t>0, the reference axis is located at an angle Rt with 
respect to the axis of phase a. The d-axis of the rotor is therefore 

located at =Rt++/2 where R is the rated (synchronous) 

angular frequency in rad/sec and  is the synchronous torque angle 

in electrical radians.” (Note R=Re here). 
 

The below picture, Fig. 1, illustrates the relation between  and  

for t=0, i.e., at =+/2 
 

 

Direction of 

rotation 

Eq 
Va 

/2 

 

 

q-axis 

d-axis 

a-phase axis 

(fixed ref) 
At t=0, Ret=0, and the synchronous 

reference is aligned with the a-phase 

axis (a fixed reference),  

 
Fig. 1 

 

So we see that  is the angle between the synchronous reference 
and the q-axis of the machine. 

We have 

emphasized 

this point 

before in our 

class; see 

notes called 

“Torque 

Equation,” 

pp. 9-11. You 

should go 

back and re-

read that part. 
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So what is the reference? It is usually taken as the terminal bus 
voltage for one machine in the network. In the above picture, Va 
identifies the reference. 
 
So, the problem may be described by the following.  

• We are about to perform a time domain simulation of a multi-
machine system where each machine is represented using one 
of the Chapter 4 machine models. We will be simulating the 
electro-mechanical response of the power system to some 
identified disturbance. 

• We have the corresponding power flow solved case to initialize 
the simulation. This power flow solution provides  

o Va, the bus voltage (i.e., at the machine terminals) for all 
generator buses in the network, magnitude and angle, 
where the angle is given relative to the reference. 

o Ia, the bus current injection, magnitude and angle. 

Since  locates the q-axis for the machine, if we can find the angle 

of a quantity that lies along the q-axis, this angle will be .  
 
What steady-state quantity lies along the q-axis?  
 
This is the stator equivalent pu voltage corresponding to the field 
current iF in pu. It is denoted by E in your text, but other books often 
denote it as Eq, to emphasize that it lies along the q-axis (and some 
books use EI). It lies on the q-axis because it is entirely due to the 
field flux (see pp. 6-7 of “Simplified Models”). It is also equivalent 
to EFD (see Ex 5.1, p. 175, eqts. (4.209 and 5.8). 
➔VERY IMPORTANT TO REMEMBER THAT E LIES ON THE q-AXIS!!! 

From Section 4.7.4, we recall that FF ikME =3 . 

So our problem is now as follows: 
Given Va and Ia, find E. 
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Recall eq. 4.74 which was derived in the notes on per-unitization. 
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 (4.74) 

Recall also that 4.74 is correct independent of whether units are 
MKS or per-unit. We will assume that we are in MKS. 
 
We can obtain from 4.74 the steady-state relations between the d-
q voltages and currents, by setting 

• All derivatives to zero. 

• iD=iQ=iG=0 
(because we are analyzing steady-state conditions). 
 
The resulting equations are: 

qqdqqdd ixriiLriv −−=−−=       (*) 

EixriikMiLriv ddqFFddqq 3++−=++−=   (**) 

 
From Park’s relation vabc=P-1v0dq, with v0=0, which is  

Note the replacement 

of ωLq and ωLd with 

xq and xd, respectively. 
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This provides that 

  sincos
3

2
qda vvv +=  

where  is the angle of the D-axis given by 2/Re  ++= . 

 
Substituting vd, vq given as in (*) and (**), we obtain: 
 

( ) ( ) ( ) ( ) 2/sin32/cos
3

2
ReRe  ++++−+++−−= tEixritixriv ddqqqda  

Noting that the sin term in the above equation can be written as: 
( ) ( ) +=++ tt ReRe cos2/sin , we have that: 

 

( ) ( ) ( ) ( )  +++−+++−−= tEixritixriv ddqqqda ReRe cos32/cos
3

2
 

Now the above expression is the instantaneous expression, so that 
its magnitude is a peak quantity. To obtain RMS quantities, we need 

to divide by 2, resulting in: 
 

( ) ( ) ( ) ( )  +++−+++−−= tEixritixriV ddqqqda ReRe cos32/cos
3

1
 

Converting to phasor notation, we have: 
 

( )
( ) ( ) ( ) +

+−
++

−−
= E

ixriixri
V

ddqqqd

a
3

2/
3

 

 
Combining terms in r yields: 
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 (5.9) 

 
Recognizing that ( )  =+ j2/ , and using the RMS equivalent d- 

and q-axis currents reflected to the stator as: 

3

d
d

i
I =   

3

q

q

i
I =  

we have that 
 

  ( ) ++−+−= EIxIjxIjIrV ddqqqda  (#) 

 

The quantity  + qd IjI   is the stator current phasor 

decomposed into the d- and q-axes, i.e., 
 

qdqda IIIjII +=+=       (##) 

 
where the j in front of the Id term provides the necessary 90 degree 
rotation ahead of the q-axis for the d-axis component of the 
current. 
 
Thus using (##) in equation (#), the a-phase voltage phasor, 
becomes: 
 

 ++−−= EIxIjxIrV ddqqaa  

 
Solving for E , we have: 
 

 −++== ddqqaa IxIjxIrVEE    (5.13) 

 
Now let’s focus on the last two terms of the above equation. 

See “SimplifiedModels” pp. 9-10 for this, where we wrote, “we 

conclude that the pu value of any d or q axis quantity is 

numerically equal to 3  times the pu quantity on the stator side.”  

Error in text in 

(5.13) in that, in text, 

the second “+” sign 

is erroneously an “=” 

sign.  
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Clearly, qq II = . But what about dI ? 

Recall (##): qdqda IIIjII +=+=       (##) 

From (##), we see that = dd jII  

➔ = dd II
j

1
➔ =− dd IIj ➔ d djI = -I δ  

Therefore (5.13) becomes: 

 −++== ddqqaa IxIjxIrVEE    (5.13) 

ddqqaa IjxIjxIrVEE +++==     (5.14) 

Now, what has all of this work bought us?  
 
If we have, from the power flow solution, aV  and aI , we can 

compute the first part of (5.14). 
 
However, we do not yet know dI  and 

q
I , which are required by the 

second part of (5.14)…because we do not know the location of the 
q-axis! That is, we do not yet know the angle δ. 
 
What to do? 
 
Here is a trick... Add and subtract dq Ijx  to (5.14) to obtain: 

dd

subtracted

dq

Added

dqqqaa IjxIjxIjxIjxIrVEE +−+++==


  

Collect terms in (jxq) and in (jId) to yield: 
 

( ) ( )qdddqqaa xxIjIIjxIrVEE −++++==   (*) 

 
To see the significance of eqt. (*), let’s do two exercises in drawing 
phasor diagrams. 
 
These exercises will use eqs. (5.14) and (*) as “instruction manuals” 
for drawing the phasor diagrams. 

Error in VMAF in 

(5.14) in that, in 

VMAF, the first “+” 

sign is erroneously 

an “=” sign.  
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In both exercises, we will use two facts: 

1. We know the angle of aV  so that it can be our reference 

angle, and we can assume that this reference is 0 degrees. 

2. The stator-side voltage E E =   must lie on the q-axis (see 
bottom of p. 3 of these notes), which says: 

➔VERY IMPORTANT TO REMEMBER THAT E LIES ON THE q-AXIS!!! 
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Exercise 1: Use eq. (5.14). Let’s assume that we know the phasors

dI  and qI  (an important assumption!!!). 

 

ddqqaa IjxIjxIrVEE +++==     (5.14) 

Observe:  
(1)   We wrote on the top of p. 7 (from (##) on p. 6) that =− dd IIj , 

which implies that d dI = -jI δ . Since dI δ  is necessarily on the q-

axis, then dI  must be 90° behind it, i.e., on the negative d-axis. 

(2)  The addition of q qjx I to a aV rI+  must locate to the q-axis, since 

E E =  must be on the q-axis and d djx I is already on the q-axis 

and therefore its addition can offer no “directional correction.”

 

d-axis 

q-axis 

 

 

 

 

 

 

 

rotation 

 

The addition of to 

is in red. 

Fig. 2 

This approach does locate the q-axis, but it does so 

using . We only can know  if we 

know δ, which means we have located the q-axis. 

Error in text in 

(5.14) in that, in text, 

the first “+” sign is 

erroneously an “=” 

sign.  

Summary of 

these 2 points: 

1. d dI = -jI δ is 

on the d-axis. 

2. addition of 
q qjx I to 

a aV rI+  
must locate to 
the q-axis. 
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Exercise 2: Use eq. (*). Again, assume that we know the phasors dI  

and qI . 

( ) ( )qdddqqaa xxIjIIjxIrVEE −++++==    (*) 

Observe from (##), p. 6, that a d qI I I= + and so the term ( )q q djx I I+  

must be rotated 90° from aI , and (similar to reasoning of ex 1), the 

addition of ( )q q djx I I+ to a aV rI+ must locate to the q-axis, since 

E E =  must be on the q-axis and ( )−d d qj I x x is already on the 

q-axis, and so its addition can offer no “directional correction.” 

 
Fig. 3 

d-axis 

q-axis 

 

 

 

 

 

 rotation 

 

 

The addition of the 

addition of 

to  is in red. 
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Locating δ 
Note that in exercise 2, we can express eq. (*) as 

( ) ( )qdddqqaa xxIjIIjxIrVEE −++++==    (*) 

➔

( ) ( ) ( )qddaqdd

E

dqqaa xxIjExxIjIIjxIrVEE

a

−+=−++++==
  

  

where the first part of eq. (*) is given by: 

aqaaa IjxIrVE ++=   

where qda III += . 

 

If E  is on the q-axis (and we have already proven that it is), then 

aE  must also be on the q-axis because the only difference between 

them is ( )qdd xxIj −  which is a component along the q-axis (if a vector 

on the q-axis is added to another vector on the q-axis, the resultant 
vector must also be on the q-axis).  
 

The important point here is that aE  requires only aV   and aI  to 

compute it, which are known from the power flow solution! So we 
may locate the q-axis using equation (*). Note that, in exercise 1, 

we were required to first know dI and qI individually (which 

cannot be known without knowing δ). 

Computing dI  

In using eq. (*), we need aV  and aI  to obtain aE  and thus δ. Then 

we need dI  to compute ( )d d qjI x - x , which is done as follows…. 

 

Define the familiar power factor angle as , the angle by which aI

lags aV  (see p. 172 in VMAF), or the angle by which aV leads aI . 
The power factor angle is greater than zero for lagging current. 
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Let’s also define  as the angle of aV , relative to the reference 
(necessary in a multi-machine system). Then it is the case that  

 −= aI  

The phasor diagram below illustrates the situation (see Fig. 5.1, p. 
167, in VMAF): 

 
Fig. 4 

 
From the phasor diagram, we can observe that 

( )



+−=

−=

sin

90

ad

d

II

I

   (yellow triangle) 

 

d-axis 

q-axis 

 

 

 

 

rotation 

reference 

δ 

ϕ β ϕ-β+δ 
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The above relations provide us with dI , from which we may 

compute E E =   from 

( )qdda xxIjEEE −+==   

 
Some remarks on this…. 

Remark 1: dd II −=  

 
Note that eq. 5.44 in your text indicates that 

( ) +−−= sinad II  

which is different than the expression given above (p. 12) for dI ,  

( )sind aI I   = − + , as the text is assigning a sign to the 

magnitude of dI . Why is this? 

 

We have said that qda III +=  where: 

90

                       
3 3

dd

qq

qd

d q

I I

I I

ii
I I





=  −

= 

= =

 

 

Note that the text indicates, in eq. 5.12, that ( ) = + j
a q dI I jI e , 

which we can write as 

 
( )    jδ

a q d q d q d q dI = I + jI e = I δ+ jI δ= I δ+ I δ+90= I + I

Which is right? 
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But we have said that 90−= dd II . The implication is that 

dd II −= , which, if true, proves the equivalence of 90dI  +  and 

90dI  − , as follows: 

901809090180

9090

−=−+=+−=

+−=+=





ddd

ddd

III

III

 

 
Remark 2: Phasors  
 

aI  is a phasor getting its rotation from the sinusoidal variation of 

the alternating currents.  
On the other hand, 

dI  and qI  are equivalent values of id and iq, 

respectively, and id and iq are direct currents. So what are dI  and 
qI

? 
 
They are phasors, but their rotation comes from the rotor motion, 
not from the current variation. 
 
Remark 3: Saliency 
 
Recall eq. (*), where we found that 

( ) ( )qdddqqaa xxIjIIjxIrVEE −++++==    (*) 

and with qda III += , we have that: 

( ) ( )qddaqaa xxIjIjxIrVEE −+++==   

 
An equivalent circuit for this appears in Fig. 5. 

And so dI  can 

either be written as  

90dI  +  or  

90dI  −  

where 

dd II −=  
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Fig. 5 

Here, xd and xq are the synchronous machine reactances in the d- 
and q- axes. For a salient-pole machine, xd>>xq, and the lower 

voltage source is significant. For a round-rotor machine, xdxq, and 
the lower voltage source is insignificant. We sometimes call the 
lower voltage the “voltage due to saliency.” 
 
Recall that for round rotor machines, the equivalent circuit for 
steady-state analysis is as in Fig. 6. 

 
Fig. 6 

ωωωωω 

 

 

 
 

 

--   + 

 
 

ωωωωω 

 

 

 
 

 
 



16 

 

The above circuit is likely quite familiar based on an undergraduate 
course in electromechanical energy conversion.  
 
When r=0, we may derive from the circuit for the round-rotor 
machine the two familiar per-unit expressions (see appendix A): 

( )

( )

2

sin

cos

a

out

d

a a

out

d d

E V
P

x

E V V
Q

x x

 

 

= −

= − −

 

If aV  is the reference, then =0 in the above relations. 

But what about the case of the salient-pole machine? The voltage 
due to saliency should change these expressions. Let’s find out…. 
Let r=0 as in the round-rotor case, and return to eq. (5.14), which 
was eq. (*) before we performed the “add and subtract” trick. This 
equation was: 

ddqqaa IjxIjxIrVEE +++==     (5.14) 

To simplify the development, let 

−== aa VVEE                0  

Thus we can write that: 

 sincos aa

j

aa VjVeVV −== −
 

We want ( )**

qdaaaout IIVIVS +==  

We can obtain dI  and 
qI  from inspecting the phasor diagram 

resulting from eq. (5.14) (use 5.14 as “instruction manual” with E
as the reference and ra=0): 
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Fig. 7 

From the above, we can see that  
 

d

a

ddda
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VE
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q

a

qqqa
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V
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
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Substitution into the expression for Sout yields: 
 

( ) ( )( )
**

cossin
sincos

sincos













 −
−−=














+

−
−=

d

a

q

a

a

q

a

d

a

aout
x

VE
j

x

V
jV

x

V

jx

VE
VS





  

Now taking care of the conjugation yields: 
 

d-axis 

q-axis 

 

 

 

 

rotation 

δ  
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( )( )












 −
+−=

d

a

q

a

aout
x

VE
j

x

V
jVS




cossin
sincos  

 
Taking the real part to find Pout: 
 













 −
+=

d

a

q

a

aout
x

VE

x

V
VP

 sincossinsincos
 

 
Multiplying through by aV  and rearranging the order of the terms 

yields: 
 












−+=

dq

a

d

a

out
xx

V
x

VE
P

11
sincos

sin 2




 

 
Recalling the trigonometric identity sin2x=2 cosx sinx, we have: 
 




2sin
11

2

sin
2












−+=

dq

a

d

a

out
xx

V

x

VE
P  

Similarly, we may derive from Sout the expression for reactive 
power out of a salient-pole machine, as: 

( ) ( )
2

cos
cos 2

2

a a

out d q d q

d d q

E V V
Q x x x x

x x x


 = − + − −

   

Note that both Pout and Qout collapse to round-rotor equations if 
xd=xq. 
 
Question: What does saliency do to stability? 
 
Refer back to the expression for Pout and call the first term “term 1” 
and the second term “term 2.” 
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2

a

d

1 2

E V sinδ 1 1
sin 2

x 2

a

out

q d

Term Term

V
P

x x


 
= + − 

  
 

 

Pout 

 

Term 2: Double 

frequency term 

Term 1: 

Fundamental 

 
From the above figure, we observe that Pmax is greater for a salient-
pole machine relative to a round-rotor machine. This fact means 
that, for a given power output level, a salient-pole machine will 
typically have more decelerating energy available than a 
corresponding round-rotor machine, with all other things being 
equal. ➔ Saliency tends to improve stability (but the effect is not 
large). 
 
See pp. 80-89 of Kimbark Vol. III – it provides sample calculations 
regarding the above conclusion. 
 
Initial conditions for a multi-machine system (Section 5.7): 
  
Assume that the power flow solution give us aV  and aI  for every 

generator such that 
= aa VV           −= aa II  
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Then, for each generator, we need to perform the following 
procedure in order to obtain the initial conditions: 
 
1. Compute 

aqaaa IjxIrVE ++= (and this gives us δ) 

2. Compute dI  and 
qI  from: 

( ) +−= sinad II    ( ) +−= cosaq II  

where aE= , aI−=  , 90ddI I =  − , and qqI I =   

3. Compute ( )qdda xxIjEEE −+==   

4. Compute: dd II −= , and qq II =  

5. Compute 
dd Ii 3= ,  qq Ii 3 = , and 

AD

F
L

E
i

3
=  

6. Now compute vd and vq. From below phasor diagram (Fig. 5.1), 
we can decompose aV  into its component in phase with the d-

axis and its component in phase with the q-axis. This results in: 
 

)cos(  −= aq VV      )sin(  −= ad VV  

 

qq VV =      dd VV −=  

 

qq Vv 3=      
dd Vv 3=  

 
 
7. Compute FFF riv =  

 
All of the above steps are “generic;” they apply to all of the 
machines. The remaining steps, however, depend on the particular 
model being used for the generator at this bus. 
 
Let’s assume we are using the E’q model (model 1.0). In this model, 
we neglect the G-winding and both D- and Q-damper windings, so 
that the only rotor winding accounted for is the main field winding. 

Note Vd, like Id, is a negative number. This is consistent 

with its assumed location, see below (Fig. 5.1 in VMAF). 

The relation for iF is obtained from 

iFωRkMF=√3 E (section 4.7.4), 

where, in pu, ωR=1 and LAD=kMF, as 

expressed in 4.226. 
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8. From 4.104, we obtain d, q, and F from: 
 

































=

















F

q

d

FF

q

Fd

F

q

d

i

i

i

LkM

L

kML

0

00

0







 

 
9. We also need EFD as an input. (EFD is the RMS stator value 

corresponding to the field current of vF/rF; it differs from E’q, 
which is the RMS stator value corresponding to the field flux 
linkage λF, as explained on p. 108 of VMAF). We obtain it from  

F

F

AD

FD
v

r

L
E

3

1
=  

10. Get the initial conditions on the other states: 

F

F

F
q

L

kM
E 

3

1
=   

3

d
d


=                   

3

q

q


=  

These, along with  (see step 2) & =1 comprise initial conditions.  
 
Additional comment on step 2 above (Section 5.5 in VMAF): 

If the angle  (angle of aV ) is not explicitly given, then the 

calculation can still be made except it is necessary to think a bit 
more about how to make it (see p. 172). 
 
Consider decomposing the current aI  into components Ir in phase 

and Ix in quadrature with the terminal voltage Va so that  

xra jIII +=  

With  as the power factor angle (the angle by which aI  lags aV , 

positive for lagging power factor), then  

cos||
ar

II =   sin||
ax

II −=  

The minus sign on the expression for Ix is to account for the fact 

that when  is positive, current is lagging the voltage so that the x-
component should be negative in this case. 

This “additional 

comment” which 

summarizes Sec 

5.5 in VMAF is 

not significant 

since we will 

always have β for 

every bus, from 

the power flow 

solution. 
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Now recall our aE  vector is 

aqaaa IjxIrVE ++= . 

Substituting for Ia, we have: 

( ) ( )
xrqxraa

jIIjxjIIrVE ++++=  

Collecting real and imaginary parts, we have: 

( ) ( )
rqxxqraa

IxrIjIxrIVE ++−+=  

With aV  having an angle of , the above calculation results in an 

aE  with an angle of . 
 

But let’s rotate aV  by - (see Fig. 4) so that it has an angle of -=0, 

i.e., so that aV  is aligned with the reference. I have repeated Fig. 4 

below. 

 
 

 

d-axis 

q-axis 

 

 

 

 

rotation 

reference 

δ 

ϕ β ϕ-β+δ 
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In this case, the computed quantity on the left-hand-side, aE , will 

have an angle of - (without the rotation of -, it has an angle of 

), and we may rewrite the above expression for aE  so that aV  is 

expressed as an entirely real number, i.e., with zero imaginary part 
(since it has angle of 0). Thus a aV V=  and 

( ) ( )
rqxxqraa

IxrIjIxrIVE ++−+=  

Thus, we have that 















−+

+
=− −

xqra

rqx

IxrIV

IxrI
1tan

 

which locates  aE  and thus the q-axis. 
 
There are a series of examples in the text which deserve some 
study, but our time does not allow us to treat them in class. These 
examples use the machine data from Examples 4.1-4.3 in Chap. 4. 
Here are comments on main points to draw from these examples. 
Example 5.1: Steps 1-6 are illustrated here. Subsequent steps 
assume the full flux linkage model, i.e., model 2.2 and initial 
conditions are computed for the corresponding states λd, λq, λF, λD, 
λG, λQ. Per-unit electrical torque on a per-phase base is then 
computed from Teϕ =iq λd-id λQ, and we divide by 3 to get it on a 3-
phase base. We then compute the infinite bus voltage. 
An important relation that is used is 

q q d dE V rI x I= + −  

We have not developed this relation in our notes, but it comes from 
noticing that it is computing magnitude only (i.e., it is not a phasor), 
and then just observing that this magnitude is the sum of the 
corresponding terms in Fig 5.1, repeated below for convenience. 
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Example 5.2: Example 5.1 is repeated, except here it is assumed 
that the q-axis leads the d-axis. Calculations are the same except 
we get a sign change for Id, in which case the above diagram 
indicates we must use 

q q d dE V rI x I= + +  

Example 5.3: This repeats Example 5.1 except instead of computing 
the infinite bus voltage (given the terminal voltage), we are given 
the infinite bus voltage. This is no different than Ex. 5.1 in terms of 
finding initial conditions, except for the fact that the point of known 
voltage is electrically further away from the internal voltage. 
Example 5.4: This repeats Example 5.3 (where infinite bus voltage 
is given) except the “external network” is a little more complex in 
that it has load at the machine terminals (so-called “station load”).  
Example 5.5: Given the initial conditions of Example 5.1, this 
example models station load (a different station load than the one 
in Example 5.4) and computes the infinite bus voltage.  
Section 5.8: This is useful material related to Sec.4.16 on parameter 
determination for gen dynamic models. In Sec.4.16, we learned 
most measurement methods provide so-called standard 
parameters. These parameters are used with simplified models 
(Sec. 4.15), but they cannot be used for model 2.2 (flux or current), 
which requires so-called fund. parameters. This section, 5.8, shows 
how to compute fund. parameters from standard parameters. 
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Section 5.9: This section, titled “Digital simulation of synchronous 
machines,” briefly touches on the topic of Chapter 7, except here 
we remain focused on just a single synchronous machine without 
incorporating the network as we will do in Chapter 7. The main 
focus in Section 5.9 is the incorporation of saturation in the 
simulation, as indicated in Fig. 5.13, a flowchart provided below. 
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Appendix A: Derivation of Steady-State Power Relations for 
Round Rotor Machine from Equivalent Circuit 
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