Simulation of Synchronous Machines

This chapter covers:

(A) Sections 5.2-5.7: Determination of initial conditions

(B) Section 5.8: Determination of machine parameters from
manufacturers’ data

(C) Sections 5.9: Digital simulation of synchronous machines

We will only cover (A). This breaks down into:

e Section 5.2: Steady-state and phasor diagrams

e Section 5.3: Machine connected to an infinite bus through a line

e Section 5.4: Machine connected to an infinite bus with local load
at machine terminal

e Section 5.5: Determining steady-state conditions

e Section 5.6: Examples

e Section 5.7: Initial conditions for a multimachine system

Of the above, we will concentrate on Sections 5.2, 5.5, and 5.7, but

| encourage you to read all of these sections 5.2-5.7. | will briefly

touch on Sections 5.8 and 5.9.

The basic problem is motivated by the following fact:

Simulation of the transient response of any dynamical system
represented by state variables requires initial conditions for those
state variables.

So what are our state variables?

e In general, it depends on the machine model.

e However, there are two state variables that are common to all
machine models: 3, ®.

The initial condition for o is easy: o(t=0) = 1.



But what about the initial condition for 8?

What is 8? See page 93, Section 4.2, which says: “At t=0 the phasor
V is located at the axis of phase g, i.e., at the reference axis in Fig.
4.1. The g-axis is located at an angle 9, and the d-axis is located at
0=0+1/2. At t>0, the reference axis is located at an angle wgt with
respect to the axis of phase a. The d-axis of the rotor is therefore
located at O=mwgrt+d3+71/2 where wgr is the rated (synchronous)
angular frequency in rad/sec and d is the synchronous torque angle
in electrical radians.” (Note wr=wmge here).

The below picture, Fig. 1, illustrates the relation between 0 and o
for t=0, i.e., at 0=0+m1/2

a-phase axis

Direction of (fixed ref)

rotation i At t=0, wgt=0, and the synchronous
reference is aligned with the a-phase
axis (a fixed reference),

g-axis

Fig. 1

So we see that 9 is the angle between the synchronous reference
and the g-axis of the machine.

We have
emphasized
this point
before in our
class; see
notes called
“Torque
Equation,”
pp. 9-11. You
should go
back and re-
read that part.




So what is the reference? It is usually taken as the terminal bus
voltage for one machine in the network. In the above picture, V,
identifies the reference.

So, the problem may be described by the following.

e We are about to perform a time domain simulation of a multi-
machine system where each machine is represented using one
of the Chapter 4 machine models. We will be simulating the
electro-mechanical response of the power system to some
identified disturbance.

e We have the corresponding power flow solved case to initialize
the simulation. This power flow solution provides

o V,, the bus voltage (i.e., at the machine terminals) for all
generator buses in the network, magnitude and angle,
where the angle is given relative to the reference.

o la, the bus current injection, magnitude and angle.

Since d locates the g-axis for the machine, if we can find the angle

of a quantity that lies along the g-axis, this angle will be 9.

What steady-state quantity lies along the g-axis?

This is the stator equivalent pu voltage corresponding to the field
currentirin pu. It is denoted by E in your text, but other books often
denote it as Eq, to emphasize that it lies along the g-axis (and some
books use E)). It lies on the g-axis because it is entirely due to the
field flux (see pp. 6-7 of “Simplified Models”). It is also equivalent
to Erp (see Ex 5.1, p. 175, eqts. (4.209 and 5.8).

=>VERY IMPORTANT TO REMEMBER THAT E LIES ON THE g-AXIS!!!

From Section 4.7.4, we recall that~/3E = «kM cle

So our problem is now as follows:
Given V, and |,, find E.




Recall eq. 4.74 which was derived in the notes on per-unitization.
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Recall also that 4.74 is correct independent of whether units are

MKS or per-unit. We will assume that we are in MKS.

We can obtain from 4.74 the steady-state relations between the d-

g voltages and currents, by setting

e All derivatives to zero.

® iD=iQ=iG=O

(because we are analyzing steady-state conditions).

The resulting equations are:

Vg =T, +olyly + kM ic =—ri, + X4iy ++/3E

From Park’s relation Vapc=P1vodq, With vo=0, which is

(*) Note the replacement
of wLq and wLq with
(¥*) Xq and Xgq, respectively.
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This provides that

Vv, = \E[Vd cos @ +V, sin 0]

where 0 is the angle of the D-axis given by 0 =wg, + 5 +7/2.

Substituting vg, vq given as in (*) and (**), we obtain:

v, _\/7[ iy — X, )cos(g,t + 6 +7/2)+ ( riq+xdid+\/§E)Sin(a)Ret+5+7z/2)]

Noting that the sin term in the above equation can be written as:
Sin(wg,t + 8 + 7/2) = cos(wg,t + 5), we have that:

v, _\f[ Fiy — X, )cOS(@pet + 6 +7/2)+ ( riq+xdid+\/§E)cos(coRet+5)]

Now the above expression is the instantaneous expression, so that
its magnitude is a peak quantity. To obtain RMS quantities, we need

to divide by V2, resulting in:

V, = %[(— Fiy — X,i, )cos(@g,t + 5 +7/2)+ (— iy +Xgiy + \/§E)cos(a)Ret + 5)]
Converting to phasor notation, we have:
_ (— riy —xqiq)

V,=—F——=46+712)+
=T s 1)

— iy + Xy

NE £(8)+EZ(5)

Combining terms in r yields:



v - —r[\'@ A5+7212)+ f (5)}_XT Ao r12)x, Y A6)+E46) (59)

Recognizing that «(s+z/2)= jzs, and using the RMS equivalent d-
and g-axis currents reflected to the stator as:

| = Id | = '_q See “SimplifiedModels” pp. 9-10 for this, where we wrote, “we
‘ \/§ 9 /3 | conclude that the pu value of any d or q axis quantity is
we have that numerically equal to </3 times the pu quantity on the stator side.”

V, = —r|jl 26 +1,25|- jx 1,26+ %1, £6 +EAS)  (#)

The quantity jI;£0+1,£46 is the stator current phasor
decomposed into the d- and g-axes, i.e.,

I, =il L6+1,£6=14+1, (##)

where the j in front of the |4 term provides the necessary 90 degree
rotation ahead of the g-axis for the d-axis component of the
current.

Thus using (##) in equation (#), the a-phase voltage phasor,
becomes:

V, =—rl, — jx, 1, £5+ X4 1, L6+ ELS

a

Solving for E£J, we have: Error in text in
(5.13) in that, in text,

the second “+” sign

E=EZS5=V,+rl + jx,1,£6 —x414£6 (5.13)] is erroneously an “=”

sign.

Now let’s focus on the last two terms of the above equation.



Clearly, 1,£6 = | . But what about |_

RecaII(##) I, —j| LS+, L8 =14 +1, (##)

From (##), we see that I, = jl ,£5

> 4 %I_d 1,28 -]l, =|d45

Therefore (5.13) becomes:

E=EL5 =V, +1T, + jx,1,£5C%,1,£5) (5.13)
E=EZ5=V,+rl,+ jx.I, (5.14)

Now, what has all of this work bought us?

If we have, from the power flow solution, vV, and I,, we
compute the first part of (5.14).

Error in VMAF in
(5.14) in that, in
VMAF, the first “+”
sign is erroneously
an “=" sign.

can

However, we do not yet know I, and 1 , which are required by the

second part of (5.14)...because we do not know the location of the

g-axis! That is, we do not yet know the angle 6.
What to do?

Here is a trick... Add and subtract jx i, to (5.14) to obtain:
E=EZ5=V, +rl, + jx, I+ X 14— ix | ] + x4 1,

Ad\aed subtracted
Collect terms in (jxq) and in (jlq) to yield:

E=E/5 =V, +rl, + jx (I, + 1, )+ il,(xs —x,)

(*)

To see the significance of eqt. (*), let’s do two exercises in drawing

phasor diagrams.

These exercises will use eqs. (5.14) and (*) as “instruction manuals”

for drawing the phasor diagrams.
.




In both exercises, we will use two facts:

1. We know the angle of \73 so that it can be our reference
angle, and we can assume that this reference is 0 degrees.

2. The stator-side voltage E=EZ6 must lie on the g-axis (see
bottom of p. 3 of these notes), which says:
2> VERY IMPORTANT TO REMEMBER THAT E LIES ON THE g-AXIS!!!




Exercise 1: Use eq. (5.14). Let’s assume that we know the phasors

1, and I, (an important assumption!!!). Error in text in

(5.14) in that, in text,
the first “+” sign is

_ - _ o I ares
E=EZS6=V, +rl,+ X1, + X414 (5.14) :gﬁtlleousyan
Observe:
(1) We wrote on the top of p. 7 (from (##) on p. 6) that —ji, =1,2£5, Summary of
which implies that 1,=-jl,£6. Since 1,4 is necessarily on the g- | these 2 points:
. 1 . . . . . 1.7 =5 i
axis, then |d must be 90° behind it, i.e., on the negative d-axis. Ty =-i1a£0 15
on the d-axis.
2. addition of

(2) The addition of jXq |q to \76‘ + r|_a must locate to the g-axis, since

E = EZJ must be on the g-axis and J'Xd|_d is already on the g-axis

1,0V, +rl,

must locate to

and therefore its addition can offer no “directional correction.” | the g-axis.
i g-axis
rotation
\d-axis
\
\
\
\
\
\ =
\ The addition of Jx,/, to
\ —_ _
\ V,+rl,is in red.
Fl?a
1. This approach does locate the g-axis, but it does so
Tay using JX, 1, . We only can know JX, 1, if we
. \ know 6, which means we have located the g-axis.
Fig. 2 \
\




Exercise 2: Use eq. (*). Again, assume that we know the phasors 1
and I,.

E=E£5 =V, +rl, + jx (I, + T, )+ T, (x, —x,) (*)
Observe from (##), p. 6, that I, =1, +1,and so the term JX, (|_q +1, )
must be rotated 90° from 1, and (similar to reasoning of ex 1), the
addition of jXq (l_q +|_d)to \7a + l’|_a must locate to the g-axis, since
E = EZS must be on the g-axis and jla(X, —X, )is already on the
g-axis, and so its addition can offer no “directional correction.”

'mation

\d-axis

The addition of the
addition of Jx, (Tq +7a’)

to 176, +f"7a isin red.

Fig. 3
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Locating 6
Note that in exercise 2, we can express eq. (*) as
E=Es5 =V, +rl, + jx (I, + T, )+ T, (x, = %) (*)
E=Es5 =V, +rl, +jx (I, +T, )+ il (x, —x, )= E, + iT, (%, = %)
Ea

where the first part of eq. (*) is given by:
E, =V, +rl, +Jx]1,

a

where I, =1, +1,.

If E is on the g-axis (and we have already proven that it is), then

Ea must also be on the g-axis because the only difference between
them is ji,(x, —x,) which is a component along the g-axis (if a vector

on the g-axis is added to another vector on the g-axis, the resultant
vector must also be on the g-axis).

The important point here is that E, requires only V, and I, to

compute it, which are known from the power flow solution! So we
may locate the g-axis using equation (*). Note that, in exercise 1,

we were required to first know Iy and Iq individually (which
cannot be known without knowing 6).

Computing |d
In using eq. (*), we need V. and la to obtain Ea and thus 6. Then

we need |4 to compute iy (Xd - X ), which is done as follows....

Define the familiar power factor angle as ¢, the angle by which I

lags Va (see p. 172 in VMAF), or the angle by which Valeads |a.
The power factor angle is greater than zero for lagging current.

11



Let’s also define B as the angle of V., relative to the reference
(necessary in a multi-machine system). Then it is the case that

ZI_a = ﬂ_¢
The phasor diagram below illustrates the situation (see Fig. 5.1, p.
167, in VMAF):

. g-axis
rotation
-~ -
d . P - -
\d-axis _
reference

Fig. 4

From the phasor diagram, we can observe that
A, =5-90°
Sin (¢ — [+ 5) (yellow triangle)

1=

Ia

12



The above relations provide us with 1,, from which we may
compute E =EZS from
E=E/5=E, +ji,(x,—x,)

Some remarks on this....

Remark 1: 4 = —“ ‘

Note that eq. 5.44 in your text indicates that

|, =—1_sin(¢— S +5)
which is different than the expression given above (p. 12) for |
1| =

), as the text is assigning a sign to the

magnltude of 4. Why is this?

We have said that I, = I, + I, where:

Ty =|le| 2590

3 Which is right?
I, =|la| 20

Note that the text indicates, in eq. 5.12, that Ia =(|q + jld)eja,

which we can write as

la=(1,+ jl,)e’ = 1,25+ jl,£5=1,£5 K1, 25+ 9

13



But we have said that I, =|l,|£6—-90. The implication is that

I :_‘Id

‘Td ‘ £0-90, 35 follows:

To=1,25+90=—la|£5+90
:ﬁqz—18m45+90=ﬁq45+90—1ay47q45—90

Remark 2: Phasors

a

the alternating currents.

, Which, if true, proves the equivalence of 1,£6+90 and

Andso | d can
either be written as

1,£5+90 o
ﬁq45—9o

where

Iy =l

I, is a phasor getting its rotation from the sinusoidal variation of

On the other hand, 1, and 1, are equivalent values of ig and ig,

respectively, and ig and iq are direct currents. So what are i, and T,

?

They are phasors, but their rotation comes from the rotor motion,

not from the current variation.

Remark 3: Saliency

Recall eq. (*), where we found that
E=E£5=V_ +rl_+ jxq(l_q +1,)+ ]

and with 1, =1, + |_q, we have that:
E=Es5=V, +rl, +jx (I, )+ ]

An equivalent circuit for this appears in Fig. 5.

14
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- X

[(1 \D(DOL)]COO)
E ?(J
J(x, —x, )jd
C
Fig. 5

Here, x4 and xq are the synchronous machine reactances in the d-
and g- axes. For a salient-pole machine, x4>>xq, and the lower
voltage source is significant. For a round-rotor machine, xg=xq, and
the lower voltage source is insignificant. We sometimes call the
lower voltage the “voltage due to saliency.”

Recall that for round rotor machines, the equivalent circuit for
steady-state analysis is as in Fig. 6.

r
- xd

[a OO0

oy
<

Fig. 6
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The above circuit is likely quite familiar based on an undergraduate
course in electromechanical energy conversion.

When r=0, we may derive from the circuit for the round-rotor
machine the two familiar per-unit expressions (see appendix A):

P,= ‘Exisin (6-5)

2

Qout :‘Exicos(é‘_ﬁ)_

V.
d
If v, is the reference, then =0 in the above relations.
But what about the case of the salient-pole machine? The voltage
due to saliency should change these expressions. Let’s find out....
Let r=0 as in the round-rotor case, and return to eq. (5.14), which

was ed. (*) before we performed the “add and subtract” trick. This
equation was:

E=E/S :\7a + rl_a + jXq I_q + JX, I_OI (5.14)

x
=4

To simplify the development, let
E =|E|£0° V, =V, |£-6
Thus we can write that:
V, =NV, [e7" =V,|coss - jV,|sin &
We want S :\7al_a* Z\Z(rd + I_q )*
We can obtain I, and I, from inspecting the phasor diagram

resulting from eq. (5.14) (use 5.14 as “instruction manual” with E
as the reference and r,=0):

16



mation

jxdjd
—
= —p— — = —— — g-axis
- E
x,1q
Fig. 7
From the above, we can see that
_ _ _ |E|- %)
Eﬂﬂzszﬁm5+ygd::LfJ‘ &km
d
. : .- _ sino
O:—JNJ9n5+¢qu:::>u::BEL———
X
q

Substitution into the expression for Sout yields:

E:E45:l70+rfa+jxqfq+jxdl_d

Sout = (I\Ta

Now taking care of the conjugation yields:

4—5{‘E‘_[\_/a|cosa Halsi 5} -(¥.

de Xq q

17
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|E|-M,|coss)
J

X4



i E|- 5
(cos5—jsin5){wajm5+j | =N cos }

:>:> SOUt = Qva
q Xq

Taking the real part to find Pout:

Pout = ’\Ta

[’Va co)s(ésin 5 N [E|sins -V,

cosdsin o
X4

q

Multiplying through by ;| and rearranging the order of the terms

yields:

_\E sing

P, Na—+’\7a‘2 cosdsin 5|:i—i}

X, Xq g

Recalling the trigonometric identity sin2x=2 cosx sinx, we have:

P :‘E[\ZsinéJ\Zz 11 sin 20
o X, 2 | X, X

q

Similarly, we may derive from Sout the expression for reactive
power out of a salient-pole machine, as:

‘E ¢ A [(xd+xq)—(xd—xq)c0325]

Va a
X4 2X4%,

Note that both Poy: and Qout collapse to round-rotor equations if

Xd=Xq.

CcoSo

Qout =

Question: What does saliency do to stability?

Refer back to the expression for P,y and call the first term “term 1”
and the second term “term 2.”

18



— | — . — 2
E|[V,|sind V[ [1 1],
P,= : + 2| ———|sin26

X4 2 | %X, Xy
_ . ~

Terml Term2

Term 1:
Pout P Fundamental

Term 2: Double
frequency term

From the above figure, we observe that P is greater for a salient-
pole machine relative to a round-rotor machine. This fact means
that, for a given power output level, a salient-pole machine will
typically have more decelerating energy available than a
corresponding round-rotor machine, with all other things being
equal. =» Saliency tends to improve stability (but the effect is not

large).

See pp. 80-89 of Kimbark Vol. Ill — it provides sample calculations
regarding the above conclusion.

Initial conditions for a multi-machine system (Section 5.7):

Assume that the power flow solution give us v, and i, for every

generator such that

\Ta=’\7a4ﬂ I_azl_alﬂ_¢

19



Then, for each generator, we need to perform the following
procedure in order to obtain the initial conditions:

1. Compute E, =V, +ri, + jx,I,(and this gives us d)
2. Compute I, and T from:
b—p+6) p—B+95)

where s = ZE,, ¢=ﬁ—4|‘a, T, =\Td\45—9o, and I, =\|q\45
3. Compute E=E/5=E, + ji,(x, - x,)
4. Compute: I, =_‘|‘d" and 1, =‘I_q‘ The relati_on for i is obtained from

irorkME=\3 E (section 4.7.4),
5. Compute i, =+31,, i, =31, and i, = V3 \e’\;(hpigsg:ﬁﬁ’f;;é and Lao=kM, as
AD

6. Now compute vq4 and vq. From below phasor diagram (Fig. 5.1),
we can decompose V, into its component in phase with the d-

axis and its component in phase with the g-axis. This results in:

Note Vg, like lg, is a negative number. This is consistent
N ‘ _ N N ‘ _ N with its assumed location, see below (Fid. 5.1 in VMAF).
ql — [Ya df —|Ya
Vo = M‘

q axis

7. Compute v, =i.r,

All of the above steps are “generic;” they apply to all of the
machines. The remaining steps, however, depend on the particular
model being used for the generator at this bus.

Let’s assume we are using the E’q model (model 1.0). In this model,
we neglect the G-winding and both D- and Q-damper windings, so
that the only rotor winding accounted for is the main field winding.

20



8. From 4.104, we obtain A4, Aq, and A from:

9. We also need Efp as an input. (Erp is the RMS stator value
corresponding to the field current of ve/rg; it differs from E’,,
which is the RMS stator value corresponding to the field flux

linkage Af, as explained on p. 108 of VMAF). We obtain it from
1L,

E =_—
FD \/§ r': VF
10. Get the initial conditions on the other states:
1 kM A A
E.=—=—F2 Ay =—% Ay=—
V3L T RN T3

These, along with 0 (see step 2) & w=1 comprise initial conditions.

This “additional

Additional comment on step 2 above (Section 5.5 in VMAF): comment” which
. . : izes S
If the angle B (angle of V,) is not explicitly given, then the 5.5 In VMAE I8

. . i . .. | notsignificant
calculation can still be made except it is necessary to think a bit Sime%vewm

more about how to make it (see p. 172). :Lvevﬁy‘/;iffrgn:‘“

the power flow
solution.

Consider decomposing the current I, into components I in phase

and Iy in quadrature with the terminal voltage V, so that

I a — Ir + JI x
With ¢ as the power factor angle (the angle by which 1. lags v,
positive for lagging power factor), then

,={1,]cosg  1,=—|1,]sing
The minus sign on the expression for I, is to account for the fact

that when ¢ is positive, current is lagging the voltage so that the x-
component should be negative in this case.
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Now recall our Ea vector is

E, =V, +rl + X1,

Substituting for |, we have:

E, =V, +r(l, +jl,)+ jx,(1, + jI,)

Collecting real and imaginary parts, we have:

E =V +(r1, —x 1)+ j(r, +x]1,)

With V, having an angle of B, the above calculation results in an
E. with an angle of o.

i.e., so that V, is aligned with the reference. | have repeated Fig. 4
below.

ﬁation

But let’s rotate V, by -B (see Fig. 4) so that it has an angle of B-B=0,

g-axis
_-
_-
\d-axis P
\ -%
\ “* - \\
\ -7 \
- \ k
\\ - \
-
-
\\ I, _ - -

O

reference

22



In this case, the computed quantity on the left-hand-side, Ea, will
have an angle of 8-B (without the rotation of -f3, it has an angle of

d), and we may rewrite the above expression for E. so that V, is

expressed as an entirely real number, i.e., with zero imaginary part
(since it has angle of 0). Thus V_ =V, and

E =V, +rl, —x1,)+j(rl +x1,)
Thus, we have that

5— p=tan" rl, + X1,

Vo+rl —x1,
which locates Ea and thus the g-axis.

There are a series of examples in the text which deserve some
study, but our time does not allow us to treat them in class. These
examples use the machine data from Examples 4.1-4.3 in Chap. 4.
Here are comments on main points to draw from these examples.
Example 5.1: Steps 1-6 are illustrated here. Subsequent steps
assume_the full flux linkage model, i.e., model 2.2 and initial
conditions are computed for the corresponding states Ag, Ag, Ar, Ao,
Ac, Aq. Per-unit electrical torque on a per-phase base is then
computed from Tey =iq Ad-id Aq, and we divide by 3 to get it on a 3-
phase base. We then compute the infinite bus voltage.

An important relation that is used is

E =V, +rl, —x,],

We have not developed this relation in our notes, but it comes from
noticing that it is computing magnitude only (i.e., it is not a phasor),
and then just observing that this magnitude is the sum of the
corresponding terms in Fig 5.1, repeated below for convenience.

23



q axis

Example 5.2: Example 5.1 is repeated, except here it is assumed
that the g-axis leads the d-axis. Calculations are the same except
we get a sign change for lg, in which case the above diagram
indicates we must use

E=V,+rl, + X1

Example 5.3: This repeats Example 5.1 except instead of computing
the infinite bus voltage (given the terminal voltage), we are given
the infinite bus voltage. This is no different than Ex. 5.1 in terms of
finding initial conditions, except for the fact that the point of known
voltage is electrically further away from the internal voltage.
Example 5.4: This repeats Example 5.3 (where infinite bus voltage
is given) except the “external network” is a little more complex in
that it has load at the machine terminals (so-called “station load”).
Example 5.5: Given the initial conditions of Example 5.1, this
example models station load (a different station load than the one
in Example 5.4) and computes the infinite bus voltage.

Section 5.8: This is useful material related to Sec.4.16 on parameter
determination for gen dynamic models. In Sec.4.16, we learned
most measurement methods provide so-called standard
parameters. These parameters are used with simplified models
(Sec. 4.15), but they cannot be used for model 2.2 (flux or current),
which requires so-called fund. parameters. This section, 5.8, shows
how to compute fund. parameters from standard parameters.
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Section 5.9: This section, titled “Digital simulation of synchronous
machines,” briefly touches on the topic of Chapter 7, except here
we remain focused on just a single synchronous machine without
incorporating the network as we will do in Chapter 7. The main
focus in Section 5.9 is the incorporation of saturation in the
simulation, as indicated in Fig. 5.13, a flowchart provided below.

Compute initial conditions

(see Section 5.7)
.IE'L‘” = f|'_'|

~
-5

L P T L
v

Agp AT = Ly ! W) Ag+ Lygp/ L) Ap+ Ly ) L) Ay, (4.120)

Compute next point

L X(kA) = x(k — DA? + Ax(kAD)
Update 4, T
v Estimate integral
AAD. {J:AAD ikﬂ.f} iS.?Z}I kﬁf
G m"é i e Ax(kAf= [ f(xu,kA7) dr
ld'— d~Aapoad) ' ta F = F l.m. Lla:d P 573) (—T)At
ip=(Ap—Aapoa) 'tp tMp=ig+ip+ip) T
S6=Ac exp [Bo (Aup,a 1 V3 - 0.8)] (5.64) Compute integrands
Ao = Aap ot (1 + Sgp)  An= Lapimp (5.74) .
x = f(x,u.kAD)
AAD.HE'H": AA.D.GIQ‘ + {rllp.'r—:lﬂ}-l'l [l + SCD] {5.?6‘_]

s | A4D,new — AAD,0ld |-r:.-3

A3 = A4D, pew + Ed‘i'?'
Ap= A4p, pew + LHp 4110)

Ap = 44D, new + Epip

Aup (KAL) = Agp ot — B (Agp pew — Aap oid)
‘ld: ﬂﬁﬂ{kﬁﬂ + Eﬂrilar

Ap= Ay (kAP + Lpip
Ap = Ayp(kAD) + Epip

(4.110)

(5.78)
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Appendix A: Derivation of Steady-State Power Relations for
Round Rotor Machine from Equivalent Circuit

Power relationships
Recall the power angle, 9, as the angle at which the

excitation voltage, E,=£,25 ,leads the terminal
voltage, 7 =1« . Therefore, from the circuit....

Ia
—
L

X, [
vV

¢ |::| Zload

Power relationships

E£5-VAP E, c0s5+)E,sn-V,
X JX,

_Ejeosd=T] jEsing

I=

t

But I =1 cos6—jI siné (2)
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Power relationships (cont’d)

Equating real and imaginary parts of eqs. 1 and 2
and multiplying both sides of the equations by 37, :
3V,E ,sin o

X, 3)

3V,E,cosé 37}

— )

P

out

=3V.1,cos0 =

QOllf = 3VTIH Sin 0 =

Note: reactive power is positive when the machine is
operated overexcited, i.e., when it is lagging
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