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Simplified Models of the Synchronous Machine 

From CC Young’s paper, “Equipment and System Modeling for 

Large-Scale Stability Studies,” we read on pg. 1: 

 
and on pg. 2: 

 

 
And VMAF write (p. 136), that 

In a stability study the response of a large number of synchronous machines to a 

given disturbance is investigated. The complete mathematical description of the system 

would therefore be very complicated unless some simplifications were used. Often only a 

few machines are modeled in detail, usually those nearest the disturbance, while others are 

described by simpler models. The simplifications adopted depend upon the location of the 

machine with respect to the disturbance causing the transient and upon the type of 

disturbance being investigated. Some of the more commonly used simplified models are 

given in this section. The underlying assumptions as well as the justifications for their use 

are briefly outlined. In general, they are presented in the order of their complexity. 

Some simplified models have already been presented. In Chapter 2 the classical 

representation was introduced. In this chapter, when the saturation is neglected as tacitly 

assumed in the current model, the model is also somewhat simplified. An excellent 

reference on simplified models is Young [24]… 

Below is a summary of the different models that we will discuss: 
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Youngs 

ID 

IEEE ID 

(d.q) 

Description and relevant 

section in the text 

G-

cct? 

Dmpr 

wdgs? 

No. of 

states 

States 

Model 

III 

2.2 Full model with G-cct; see 

4.12. 

Yes Yes 8 d,F,D,q,

G, Q,,, 

 2.1 Full model without G-cct. No Yes 7 d,F,D,q,

Q, , 

Model 

II 

1.1 Machine with solid round 

rotor; see 4.15.1. 

Yes No 6 d,F,q,G, 

, 

 1.0 E'q model: Same as 1.1 except 

for a salient pole machine; see 

4.15.1.  

No No 5 d,q,E'q, 

, 

Model 

III 

2.1 E'' model: for a salient pole 

machine & dd/dt= dq/dt=0; 

see 4.15.2. 

No Yes 5 

6 
E''d, D,Q, 

E'q,, 

Model 

II 

1.1 2-axis model: for a machine 

with solid round rotor & 

dd/dt= dq/dt=0; see 4.15.3. 

Yes No 4 E'd,E'q,, 

 1.0 One axis model: Same as 2-

axis model (1.1) but without 

G-cct; see 4.15.4. 

No No 3 E'q,, 

Model I 0.0 Classical; see 4.15.5. No No 2 , 

 Note that the IEEE ID is useful: d.q, where d indicates how many direct-axis rotor circuits 

are modeled (F, D) and q indicates how many quadrature-axis rotor circuits are modeled 

(G, Q). Note that these numbers do not include the stator windings (d, q). You can get the 

number of electrical states from these numbers according to: 

E=d+q+2-N 

where “2” is for the d and q winding states and N is the number of states for which the 

derivative is assumed zero. 

Then, the total number of states is E+M where M=2 is the number of mechanical states. 

 

In the rest of these notes, we summarize the models indicated in 

Table 4.6, p. 136, of VMAF (p. 2 of these notes).  

 

  

Model # 

1 

 

 

2 

 

3 

 

4 

 

 

5 

 

 

6 

 

 

 

7 

 

8 

Observe: 

• # of states 

decrease 

from 8 

(mod#1) to 2 

(mod#8) 

• First 4 mods 

alternate 

between rnd-

rot& sal-pole 

• First 2 mods 

have dmprs; 

next 2 do not 

• Mod#5-#8 

assume 

dd/dt= 

dq/dt=0 

• Mods#4, #7 

have no q-

axis ccts and 

are therefore 

“one-axis.” 
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Model 1 (2.2) Full model with G-cct. 

   (4.126) 

    (4.128) 

     (4.129) 

 

    (4.130) 

     (4.131a) 

     (4.131b) 

   (4.133) 

 

       (4.102) 

 

where 

  

and 

   

This is the model we have developed in Chapter 4. In this model, we have E=d+q+2-

N=2+2+2-0=6, and so the number of states is E+2=8, i.e., it is an 8-state model and is 

generally considered to be the model necessary for a round-rotor machine that is being 

studied in detail. 
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Model 2 (2.1): Full model without G-cct. 

Same as model 1 except omit the state equation for G (4.131a) & 

modify the auxiliary equations, resulting in: 
 

   (4.126) 

   (4.128) 

    (4.129) 

 

   (4.130) 

    (4.131) 

 

 (4.133) 

 

      (4.102) 

 

where 

   

and 

   

In this model, we have E=d+q+2-N=2+1+2-0=5, and so the number of states is E+2=7, i.e., 

it is an 7-state model and is generally considered to be the model necessary for a salient-

pole (hydro) machine that is being studied in detail. 
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Model 3 (1.1): Machine with solid round rotor. (See page 137) 

(No D or Q-axis damper windings). 

For this model, VMAF (below left, p. 137) and A&F (below right, 

p. 127) reference Kimbark’s Vol. III, saying:   

 

 

 

 

 

On checking Kimbark Vol. III, pg. 73, one finds state equations for 

both λQ and λD have been dropped, but the G-winding is still there1. 

 

So this model is the same as model 1 except we omit the state 

equations for D (4.129) and Q (4.131b), and modify the auxiliary 

equations, resulting in: 

   (4.126) 

    (4.128) 

   (4.130) 

     (4.131a) 

   (4.133) 

       (4.102) 

where 

 
1 In the 2nd edition of A&F, the text was assuming no G-winding, whereas Kimbark includes the G-winding. 

That is, whereas Kimbark drops both Q and D windings (but retains G), A&F 2nd edition drop only the D 

(and retain Q). Thus, A&F 2nd edition implicitly allow the Q-winding to substitute for the G-winding. In both 

cases, the model is d.q=1.1, where both have the F-winding which justifies the first “1”; A&F have the Q-

winding (but not G) and Kimbark has the G-winding (but not Q) which justifies (in each case, respectively) 

the second “1”. VMAF have reconciled this rather confusing issue by assuming the full model of Sections 

4.0 and 4.12 include the G-winding, and the text in VMAF (as quoted in the left-box above) has been adjusted 

(relative to A&F 2nd edition) accordingly. 
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“In this model, designated Model 1.1, the G-winding of a solid 

round rotor acts as a q axis damper winding, even with the D- and 

Q-windings omitted. The mathematical model for this type of 

machine will be the same as given in Sections 4.10 and 4.12 with 

iD or λD omitted and iQ or λQ omitted. For example in (4.103) and 

(4.138), the third and sixth rows and columns are omitted.” 

 

“The solid round rotor acts as a q axis damper winding, 

even with the d axis damper winding omitted. The 

mathematical model for this type of machine will be the 

same as given in Sections 4.10 and 4.12 with iD or λD 

omitted. For example, in (4.103) and (4.138) the third 

row and column are omitted. 
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and 

    

In this model, we have E=d+q+2-N=1+1+2-0=4, and so the number of states is E+2=6, i.e., 

it is an 6-state model and is generally considered to be a reasonable one (but not the best 

since it omits damper windings) for a for a round-rotor machine. 

Model 4 (1.0): E'q model: Same as #3 except for a salient pole 

machine. (See Sec. 4.15.1, p. 137-142) (no D- or Q-axis dampers, 

& because it is salient pole, omit G-winding➔a “1-axis” model) 

From VMAF, p. 137, 

 

 

 

 

One version of this model can be obtained from model 3 (which has 

no D- or Q-axis dampers) by omitting the state equation for G 

(4.131a) and modifying Q-axis auxiliary equations appropriately.  
 

But we may also describe this model in terms of some new “stator-

side” states, E'q, d, and q, which are just scaled versions of three 

corresponding rotor quantities. We will do this for the E’q model, 

noting from the p. 2 table that models 5-7 also use these variables.  

It has been common in the literature to express machine models in 

terms of stator-side quantities because it provides for the ability to 

efficiently think about (and draw phasor diagrams for) the 

magnitudes of the various quantities. VMAF state (p. 107) “The 

basis for converting a field quantity to an equivalent stator EMF is 

that at open circuit a field current iF A corresponds to an EMF of 

iFωReMF V peak” (see p. 17 of perunitization notes).  
 

The three new stator-side quantities are developed below: 

• E'q is the pu value of the stator equivalent EMF corresponding to 

the field flux linkage F, in phase with the q-axis, given by: 

   (4.203) 
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This is Model 1.0, where the G-winding and both amortisseur windings are omitted. Omitting these windings rests on the 

assumption that the effect of the G-windings and damper windings on the transient under study is small enough to be 

negligible. This is particularly true in system studies where the damping between closely coupled machines is not of interest. 

In this case the effect of the amortisseur windings may be included in the damping torque, i.e., by increasing the damping 

coefficient D in the torque equation. This model is obtained by omitting iG, iD, and iQ in (4.103) or λG, λD, and λQ in (4.138). 
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This comes about as follows. We call it E’q because it is in phase 

with the q-axis. This is the case because it is a voltage due entirely 

to the field flux, and the field flux is generated along the d-axis. 

Because the corresponding induced stator winding voltage is 

proportional to dλ/dt, the induced voltage must be 90 degrees out 

of phase, meaning it must be along the q-axis. 

 

Its magnitude can be deduced as follows. (This expands on the 

discussion in VMAF text, pp. 107-108). Recall that the mutual 

inductance between field and a-phase winding (before Park’s 

transformation!) is given by 
tMML FFaF Recoscos  ==     (1) 

We know that the mutual flux linking the a-phase winding is  

FaFaF iL=       (2) 

and that the time derivative of this flux linkage gives the induced 

voltage in the a-phase winding, i.e.,  

dt

iLd

dt

d FaFaF )(
=


      (3) 

Assuming iF is constant, (3) becomes 

dt

Ld
i

dt

d aF
F

aF )(
=


      (4) 

Substitution of (1) into (4) yields 

tMi
dt

tMd
i

dt

d
FF

F
F

aF
ReRe

Re sin
)cos(




−==     (5) 

and we see that the peak value of the induced a-phase voltage is  

ReFFpeak MiE =       (6) 

The RMS value of this voltage would be Vpeak/sqrt(2), i.e.,  

Re
2

1
FFrms MiE =       (7) 

 If we multiple both sides by sqrt(3), we get 

Re
2

3
3 FFrms MiE =       (8) 

But recall our familiar k=sqrt(3/2), therefore 

Re3 FFrms kMiE =       (9) 
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To be consistent with the text, we will use E for Erms, so that (9) 

becomes 

Re3 FF kMiE =       (10) 

Equation (10) is given in your text at the bottom of page 107. 

Note that this is the voltage contribution to the a-phase from a 

certain value of field current. 

 

VMAF text now (p. 108) considers the case of identifying the a-

phase voltage that results from a certain amount of flux linkage 

seen by the field winding λF under steady-state (iQ=iD=0) and 

open circuit (id=iq=0) conditions. Under these conditions, the 

only flux seen by the field winding is its own flux, and  

 F
F F F F

F

λ
λ = L i i =

L
      (11) 

Substitution of (11) into (10) results in 

Re3 


F

F

F kM
L

E =       (12) 

The corresponding voltage is what VMAF call E’q, to remind us 

that it is a voltage in phase with the q-axis, i.e.,  

Re3 


F

F

F
q kM

L
E =       (4.58, 4.202) 

We would like to per-unitize the above relation. To do so, recall 

the per-unit relations: 

FBFBFuFBFuFFBFuFFBFuFBquq ILLLLMkMkMVEE  ===== ,,,  

 Substituting into (4.59), we have that 

Re3 


FBFu

FBFu

FBFBFu
Bqu MkM

LL

IL
VE = (just before (4.203), p. 138 VMAF) 

 Bring over VB to the right-hand-side & cancel the LFB’s , to obtain 

Re3 
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FuB

FBFu
qu MkM
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I
E =  

 Rearranging the right-hand-side 
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 Noting that  
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FBBB

FB

MtV

I 1
=  

 we may substitute to obtain 

Fu

Fu

Fu

FB

FBFu

Fu

Fu
qu kM

LM
MkM

L
E


==

1
3  

But in pu, kMFu=LAD, and dropping the pu notation results in 

AD

F

F
q L

L
E


=3     (4.203) 

• We also need to define a “stator-side” quantity corresponding to 

the field voltage vF, as vF is our forcing function (and so we need 

to obtain the forcing function on the stator-side). This can be 

obtained by recognizing that in steady-state, iF=vF/rF. Using (10), 

repeated here for convenience, 

Re3 FF kMiE =      (10) 

 and denoting the stator-side emf as EFD, we have 

Re3 F

F

F
FD kM

r

v
E =     (4.59) 

Going through a similar process as in previous bullet to convert 

to per-unit, we get 

        (4.209) 

• Finally, we need to obtain stator-side quantities of  

o d, the pu value of the stator equivalent flux linkage 

corresponding to the d-winding flux linkage d, 

o q, the pu value of the stator equivalent flux linkage 

corresponding to the q-winding flux linkage q 

o The d- and q- winding voltages vd and vq. 

To obtain these, we recall that when we applied Park’s 

transformation to a set of balanced a-b-c (stator-side) voltages, 

we got: 

    (4.43) 
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From (4.203), (4.209), and the (4.43), we conclude that the pu 

value of any d or q axis quantity is numerically equal to 3 times 

the pu quantity on the stator side. Therefore, the stator-side per-

unit equivalents of rotor side quantities are the rotor side quantity 

divided by 3. And so we have: 

             (4.212) 

It is important to realize that E'q (4.203), d, q (4.212), and EFD 

(4.209) are given in pu. 
 

With the above relations, we may substitute them into the model 3 

state equations and then perform a considerable amount of algebra 

to obtain the state equations for the E'q model, given as follows: 
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We may also generate a block diagram for this model by taking the 

LaPlace transform of all equations. The resulting block diagram is 

shown in Figures 4.9 and 4.10 of your text, provided below. 

 
A final comment with respect to this model is that the driving functions 

are the inputs EFD (stator-side field voltage which is regulated by the 

excitation system), Tm (mechanical power which is regulated by the 

turbine-governor system), and the voltages Vd and Vq which are 

functions of the external network. 
 

In this model, we have E=d+q+2-N=1+0+2-0=3, and so the number of states is E+2=5. 

 

Comment on dd/dt=dq/dt=0. 

Reference to the above table indicates that the E’’ model, the 2-axis 

model, the one-axis model, and the classical model all have 

dd/dt=dq/dt=0.  This issue is addressed in [1, 2], Kundur’s book 

Sections 3.7 and 5.1.1 [3], and Krause’s book Chapter 8 [4]. Some 

comments about this issue follow: 

1. Analysis of a voltage source ( ) sin( )me t E t = + connected to an 

RL circuit will show that the time-domain response of the 

current to a short circuit consists of two terms: a transient 

unidirectional (DC offset) component and a steady-state 

alternating component, i.e.,  
/

1 2( ) sin( )Rt Li t K e K t  −= + + −  (*) 
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2. Each of the three phases of a synchronous machine behave 

similarly under the conditions of a bolted three-phase fault 

applied to the machine terminals at t=0. Kundur [3, p. 107] 

illustrates this with the below figure. Here, we observe  

a. The DC offset (the dotted line) component decaying 

exponentially to zero within about 20 cycles, as represented 

in the first term of (*).  

b. The fundamental frequency component, as represented in 

the second term of (*), except here there is a difference in 

that this component has amplitude that also decays with 

time to a steady-state value, with  

i. the initial rapid decay due to decay of flux linking the 

subtransient windings (D and Q) and  

ii. the slower decay due to decay of flux linking the 

transient windings (F and G).   

 
3. Kundur [3], p. 173, indicates that the effect on power system 

stability of the torque corresponding to the DC offset currents 

is to produce a DC braking torque which reduces rotor 

acceleration following a disturbance. Neglecting it is therefore 

conservative; in addition, its effects can be approximated via 

another torque term on the right-hand-side of the swing 

equation [5], [6, pg. 233-234], [7]. Of most importance, 

neglecting it has some major benefits, as follows: 

a. There is a similar DC offset effect in the network (it is an 

RLC circuit!), but including that effect increases the system 

size significantly, contributes high frequency components 
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(requiring small time steps for numerical integration), and 

inhibits use of phasor representation for the network 

solution part of time-domain simulation. Section 7.3.1 of 

VMAF addresses this last point, which is further 

characterized by the following statement from [2]: 
“In stability studies it has been found adequate to represent the network as 

a collection of lumped resistances, inductances, and capacitances, and to 

neglect the short-lived electrical transients in the transmission 

system.[8],[5],[9],[10] As a consequence of this fact, the terminal constraints 

imposed by the network appear as a set of algebraic equations which may 

be conveniently solved by matrix methods.” 
b. Neglecting synchronous machine DC offsets and in the 

network means that both are being treated consistently. ➔ 

4. The above figure shows abc (phase) currents. The 

corresponding quantities following Park’s transformation are 

id and iq, where 
a. The fundamental frequency components in the phase currents 

are reflected as unidirectional components in id and iq. We have 

encountered this idea before when we recognized that balanced 

steady-state phase (abc) currents transform to DC quantities. 

b. The DC offsets in the phase currents are reflected as 

fundamental frequency components in id and iq. Neglecting 

phase current DC offsets is equivalent to setting did/dt=diq/dt=0, 

and since our transformed inductance matrix is constant, setting 

did/dt=diq/dt=0 is equivalent to setting dλd/dt=dλq/dt=0.  

5. Setting dλd/dt=dλq/dt=0 is referred to in the literature as 

“neglecting stator transients” (is this the same as “neglecting 

network transients” per section 7.3.1?) 

6. Other ways this assumption is expressed include: 

a. “transformer voltages are neglected,” 

b. “transformer voltages are assumed small compared to 

speed voltages” or 

 

c. The stator equations become algebraic. 

dq

qd













This is an interesting 

issue for those of you 

considering how to 

handle IBRs in DSA... 

you might consider 

reviewing the refs in 

this section of my notes! 

VMAF 

Section 

7.3.1: 

“Network in 

the transient 

state”. 

Although 

treating them 

consistently is 

good, it is not 

essential in 

DSA studies; 

stator transients 

are fast but not 

as fast as 

network 

transients. Is 

this correct? 
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7. In this case, the state-space equations become, from p. 11 in 

“flux linkage equations,” become (changes made to 4.126 and 

4.129).  

0d d AD q d

d d

r r
v

l l
   = = − + − −    (4.126) 

FAD

F

F
F

F

F
F v

l

r

l

r
++−=       (4.128) 

0 D D

D D AD

D D

r r

l l
  = = − +              (4.129) 

qdAQ

q

q

q

q v
l

r

l

r
−++−=      (4.130) 

AQ

G

G
G

G

G
G

l

r

l

r
 +−=

     (4.131a) 

AQ

Q

Q

Q

Q

Q

Q
l

r

l

r
 +−=

     (4.131b) 



























−
+












−+=

j

q

jd

AD
d

jq

AQ

j

m D

ll

T

33
   (4.133) 

1−=       (4.102) 
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Model 5 (2.1): E'' model, for a salient pole machine & dd/dt= 

dq/dt=0. See section 4.15.2, p. 142-150. 

 

The intent of this model is to develop a simple model but one that 

does account for the effects of both damper windings. So this model 

includes both transient and subtransient effects. However, we do not 

represent the G-winding, therefore it should only be used for a 

salient pole machine. 

 

Recall from our fundamental voltage equations (4.36) that: 

 

(Note the above are in MKS, not per-unit) 

An important simplifying assumption for this model is that  
 

 

(see “Comment on dd/dt=dq/dt=0. on p. 11 of these notes). 

 

We will use E'q as a state, as defined for model 4. But we will also 

define one new state: 

 

• The d-axis component of the EMF produced by subtransient flux 

voltages: 

 

(There is a corresponding q-axis component, defined by e''q=-q, 

but it will not be used as a state, since we have E’q.) 

 

There are three basic steps to the development of this model given 

in the book. I refer to these steps as Step A, Step B, and Step C. Each 

one has several sub-steps, as summarized in what follows: 
 

dqqq

qddd

riv

riv





+−−=

−−−=





dq

qd













q d e  =   



 16 

Step A: Derive the auxiliary equations. 

 

Step A-1: Derive auxiliary equations for e''q and e''d. 

1. Substitute expressions for currents id and iq (4.134) into the 

equations for ''d and ''q (4.230). 

2. Use 3E'q=LADF/LF to write in terms of E'q. 

3. Express e''q=q and e''d=-d to get (4.243, 4.245). 

Step A-2: Derive the auxiliary equation for E (4.248). 

Step A-3: Derive the auxiliary equation for iD. 
 

Step B: Derive the differential equations. 

 

For each of these, we begin from the voltage equation from the 

corresponding winding. 

 

Step B-1: D-axis damper: Derive differential equation for D. 

Step B-2: Q-axis damper: Derive differential equation for e''d (which 

is produced by dq/dt). 

Step  B-3: Field winding: Derive differential equation for E'q (which 

is produced by dF/dt). 

 

State equations are given by (4.263, 4.264, 4.265, 4.267, 4.268). 

 

Step C: Convert to a state-space form: 

 

Step C-1: Convert the state variables to stator-side equivalents by 

dividing by 3, and define the constants K1-K4. 

Step C-2: Bring in the inertial equations. This results in the 

equations of (4.270) in the text, which are written in the LaPlace 

domain (with “s” indicating differentiation).  

Step C-3: Write equations (4.270) in the time domain and express 

them in matrix form to get a state-space model (your book does not 

do this part, so you do it). 

NOTE: The remainder of these notes are incomplete. Please 

read your text p. 142-155. 
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
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














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




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
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
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



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



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







=

































'

''

'

''

q

d

d

q

d

d

E

E

E

E










 

Note: We have 5 states in this model:  

 

,,E''d,d,E'q 

 

but we are modeling the following windings: 

d, q, F, D, Q 

 

With the E'q model (model 4), we only had 3 windings: 

 

d, q, F 

 

but we also had 5 states 

 

,,d,q,E'q 

 

Why is it that we are modeling more windings in the E'' model than 

in the E'q model, but we have the same number of states???? 
 

Because in the E'' model, we set dd/dt= dq/dt=0, thus eliminating 

two stator states. 

 
In this model, we have E=d+q+2-N=2+1+2-2=3, and so the number of states is E+2=5. 
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Model 6 (1.1): “Two-axis model” for a machine with solid round 

rotor & dd/dt= dq/dt=0 (pg. 138-140), Section 4.15.3 

 

Overview 

This model accounts for the transient effects but not the subtransient 

effects. It includes only two rotor circuits, F and G.  So we are 

neglecting the D- and Q- damper windings. A&F say “The transient 

effects are dominated by the rotor circuits which are the field circuit 

in the d-axis and an equivalent circuit in the q-axis formed by the 

solid rotor.”  

 

The “equivalent circuit in the q-axis formed by the solid rotor” is the 

G-circuit (although A&F do not call it that in their second edition). 

 

A&F also write, “An additional assumption made in this model is 

that in the stator voltage equations the terms d-dot and q-dot are 

negligible compared to the speed voltage terms…” This means that 

we let dd/dt= dq/dt=0, as in the E’’ model. 

 

A&F derive two state equations for this model, which are: 

0

0

1
( ( )

1
( )

d d d q q

q

q FD

d

E E x x I

E E E





  = − − −


 = −


  (4.288), (4.290) 

In this model, we have E=d+q+2-N=1+1+2-2=2, and so the number of states is E+2=4. 

 

I will derive the above equations in what follows. 

 

Derivation of (4.288) 

From (4.282) we have 
  puG AQ q G GL i L i = +     (4.282) 

Differentiating, we obtain: 
  puG AQ q G GL i L i = +     (4.282’) 
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The G-cct voltage equation is 
  0G G Gr i + =  

Substitute (4.282’) in the G-cct voltage equation to obtain: 
  0G G AQ q G Gr i L i L i+ + =    (*) 

From (4.286) we have 
 3 pu   

3
           (4.286')

3
           (4.286'')

d d AQ G

G d

AQ

G d

AQ

E e L i

i E
L

i E
L

= = −

−
 =

−
 =

 

We also have from (4.47) (and see (5.11)) that 

 3 3q q q qI i I i=  =   (4.286’’’) 

Substitution of (4.286’), (4.286’’), and (4.286’’’) into (*) results in 
3 3

  - 3    0G d AQ q G d

AQ AQ

r E L I L E
L L

+ − =  

Eliminating the square root of 3, multiplying by -1, and moving 

terms to the right-hand-side, results in 
 

 G G
d AQ q d

AQ AQ

L r
E L I E

L L
= −   (#) 

Now consider the right-hand equation of (4.287) and its derivative: 

( )

( )

d q q d q q

d d q q q

d d q q q

E x I E x I

E E x x I

E E x x I

 − = −

  = + −

 = + −

 

Substituting into (#) results in 

( ) ( )
 

 ( ) ( )G G
d q q q AQ q d q q q

AQ AQ

L r
E x x I L I E x x I

L L
   + − = − + −  

Now expand the terms and then multiply through by LAQ/rG to obtain 

( )
2

 ( ) ( )
AQG G

d q q q q d q q q

G G G

LL L
E x x I I E x x I

r r r
   + − = − + −  

Now gather terms in qI  

( ) ( )21
 ( ) ( )G

d G q q AQ q d q q q

G G

L
E L x x L I E x x I

r r
   + − − = − + −  

and because, in per-unit, xq=Lq and x’q=L’q, we can write the left-

hand-side of the previous expression as 
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( ) ( )21
 ( ) ( )G

d G q q AQ q d q q q

G G

L
E L L L L I E x x I

r r
   + − − = − + −   (*#) 

 Now we recall from (4.180) that 
2

 
AQ

q q

G

L
L L

L
 = −   (4.180) 

Substitution of (4.180) into the left-hand-side of (*#) results in 

( )
2

21
 ( ) ( )

AQG
d G q q AQ q d q q q

G G G

LL
E L L L L I E x x I

r r L

 
  + − + − = − + −  

 

 

which becomes 

( ) ( )2 21
 ( ) ( )G G

d AQ AQ q d q q q d d q q q

G G G

L L
E L L I E x x I E E x x I

r r r
     + − = − + −  = − − −  

And using 
0 /q G GL r  = from (4.289) we obtain  

( )0q d d q q qE E x x I    = − − −  

which is (4.288) in the A&F text. 

QED 

 

Derivation of (4.290) 

From (4.280a) 
puF AD d F FL i L i = +  

Differentiating, we obtain: 
puF AD d F FL i L i = +  

Substitute the last equation into the voltage equation (4.127) 

F F F F F F AD d F F Fr i r i L i L i v = +  + + =    (&) 

From (4.286) we have 
3 3

3 pu

3  pu  3

q AD F F F

AD AD

d d d d

E E
E e L i i i

L L

I i I i

= =  =  =

=  =

  (4.286) 

And from (4.209),  

3 3AD F
FD F F FD

F AD

L r
E v v E

r L
=  =    (4.209) 

Substitution of these last two relations into (&) results in 
3 3

3 3F
F AD d F FD

AD AD AD

E E r
r L I L E

L L L
+ + =  

Divide through by the square root of 3: 
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F
F AD d F FD

AD AD AD

E E r
r L I L E

L L L
+ + =    (#0a) 

Now recall the left-hand-side of (4.287), and its derivative: 

( )     ( )

d d q d d

q d d d q d d d

E x I E x I

E E x x I E E x x I

 + = +

    = + − = + −
  (#0b) 

Substitution of the last two equations in (#0b) into (#0a) results in 

( ) ( )( ) ( )F F F
q d d d AD d q d d d FD

AD AD AD

r L r
E x x I L I E x x I E

L L L
   + − + + + − =   (#0c) 

Now, according to the text, just after (4.280), it says: “By 

eliminating iF and using (4.174) and (4.203), 

3d q d dE L i  − =   ”   (#1) 

Differentiate (#1) to obtain 

3d q d dE L i  − =    (#2) 

But according to the assumptions of this model, 0d = , i.e., the left-

hand-side of (#2) is 0, therefore (#2) becomes 
3

3
q

q d d d

d

E
E L i i

L

−
 − =  =


 (#3) 

But recall from (4.286) 
3  pu  3q q q qI i I i=  =  

And so (#3) becomes 

q

d

d

E
I

L

−
=


    (#4) 

Substitution of (#4) into (#0c) results in 

( )( ) ( )
q qF F F

q d d d AD q d d FD

AD d AD d AD

E Er L r
E x x I L E x x E

L L L L L

  
   + − − + − − =    

 

Distributing, 

( ) ( )
q qF F F F F

q d d d AD q d d FD

AD AD d AD AD d AD

E Er r L L r
E x x I L E x x E

L L L L L L L

 
   + − − + − − =

 
 

( ) ( )
qF F F F F

q d d d AD d d q FD

AD AD AD d AD AD

Er r L L r
E x x I L x x E E

L L L L L L

 
   + − − + − + = 

 
 

Bring the first term to the right-hand-side: 

F
AD d d

AD

TERM  A

L
L + (x -x ) ( )

L

q F F F F
q FD q d d d

d AD AD AD AD

E L r r r
E E E x x I

L L L L L

 
   − + = − − − 

 
  (#5) 
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Now consider TERM A of (#5), accounting for the fact that in per-

unit, x’d=L’d and xd=Ld, and recalling that L’d=Ld-LAD
2/LF: 

2 2

F F F F
AD d d AD AD AD

AD AD AD AD

L L L L
L + (x -x ) L + ( ) L + ( ) L 0

L L L L

AD AD
d d d d

F F

L L
L L L L

L L
 = − = − − = − =  

Application of the above TERM A into (#5) results in 

( )F F F F
q FD q d d d

AD AD AD AD

L r r r
E E E x x I

L L L L
  = − − −   (#6) 

Multiply through by LAD/LF to obtain 

( )F F F
q FD q d d d

F F F

r r r
E E E x x I

L L L
  = − − −    (#7) 

Factor out the rF/LF from the last two terms: 

( )( )F F
q FD q d d d

F F

r r
E E E x x I

L L
  = − + −    (#8) 

Recall from the left-hand-side of (4.287) that 
( )q d d dE E x x I = + −  

which is recognized in the parentheses of the last term on the right-

hand-side of (#8), so that we have 
F F

q FD

F F

r r
E E E

L L
 = −    (#9) 

Recalling from (4.189) that τ’d0=LF/rF, (#9) becomes 

0 0

1 1
q FD

d d

E E E
 

 = −
 

   (#10) 

which is equation (4.290) in the A&F text. 

QED 

 

Model 7 (1.0): One-axis model (4.15.4) 

Here, we neglect the dynamics of E’d.  
In this model, we have E=d+q+2-N=1+0+2-2=1, and so the number of states is E+2=3. 

 

Model 8 (1.0): Classical model. 

 

Here, we assume constant E’q. 

 
In this model, we have E=d+q+2-N=0+0+2-2=0, and so the number of states is E+2=2. 
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