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Preliminary Fundamentals 

1.0 Introduction 

In all of our previous work, we assumed a very simple 

model of the electromagnetic torque Te (or power) that is 

required in the swing equation to obtain the accelerating 

torque. 

This simple model was based on the assumption that 

there are no dynamics associated with the machine 

internal voltage. This is not true. We now want to 

construct a model that will account for these dynamics. 

To do so, we first need to ensure that we have adequate 

background regarding preliminary fundamentals, which 

include some essential electromagnetic theory, and basics 

of synchronous machine construction & operation.  

2.0 Some essential electromagnetic theory 

2.1 Self inductance 

Self inductance indicates the magnitude of the magnetic 

coupling between a circuit and itself. It is given, with units 

of henries, by 



2 

 

1

11
11

i
L


=        (1) 

We see that the self-inductance L11 is the ratio of 

• the flux φ11 from coil 1 linking with coil 1, λ11 

• to the current in coil 1, i1. 

Since the flux linkage λ11 is the flux φ11 linking with coil 1, 

and since this flux “links” once per turn, and since the 

number of turns is N1, then  

11111  N=        (2) 

2.2 Faraday’s law 

Any change of flux linkages seen by a circuit induces a 

voltage in that circuit. The induced voltage is given by  

dt

Lid

dt

d
e

)(
==


      (3) 

where (3) accounts for the case of time variation in L, i, or 

both. If L does not vary with time, then  

dt

di
L

dt

d
e ==


       (4) 
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2.3 Mutual inductance 

For a pair of circuits, the mutual inductance L12 is  
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We observe that L12 is the ratio of  

• the flux from coil 2 linking with coil 1, λ12 

• to the current in coil 2, i2. 

More generally, for a group of circuits labeled 1, 2, …, we 

see that 


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      (6) 

Here, L11, L22, … are self inductances, and L12, L21,… are 

mutual inductances. From (6), we see a more general 

definition of self and mutual inductances, according to: 

i
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In the case of self inductance, because λi is produced by ii 

their directionalities will always be consistent such that 

current increases produce flux linkage increases. 

Therefore Lii is always positive.  

In the case of mutual inductance, whether current 

increases in one circuit produce flux linkage increases in 

the other circuit depends on the directionality of the 

currents and fluxes. The rule we will use is this:  

Lij is positive if positive currents in the two circuits produce 

self and mutual fluxes in the same direction. 

2.4 Inductance and magnetic circuits 

We define magnetomotive force (MMF), as the “force” 

that results from a current i flowing in N turns of a 

conductor. We will denote it with F , expressed by: 

MMF Ni= =F       (10) 
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If the conductor is wound around a magnetic circuit 

having reluctance R, then the MMF will cause flux to flow 

in the magnetic circuit according to 

Ni
 = =
F

R R       (11) 

If the cross-sectional area A and permeability μ of the 

magnetic circuit is constant throughout, then 

A

l


=R       (12a) 

where l is the mean length of the magnetic circuit. 

The permeance is given by 

R
P

1
=        (12b) 

Magnetic circuit relations described above are analogous 

to Ohm’s law for standard circuits, in the following way: 

F→V, φ→I, R→R, P→Y    (13) 

So that 

R

V
I =→=

R

F
      (14) 
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We also show in the appendix (see eqs (A8), (A9a)) that 
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21 12

N N
L L= =

R   
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11

N
L =

R    (15) 

2.5 Constant flux linkage theorem 

Consider any closed circuit having  

• finite resistance 

• flux linkage due to any cause whatsoever 

• other emf’s e not due to change in λ 

• no series capacitance 

Then  

 =+ e
dt

d
ri


      (16) 

We know that flux linkages can change, and (16) tells us 

how: whenever the balance between the emfs and the 

resistance drops become non-zero, i.e.,  

 −= rie
dt

d
      (17) 
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But, can they change instantly, i.e., can a certain flux 

linkage λ change from 4 to 5 weber-turns in 0 seconds? 

To answer this question, consider integrating (16) with 

respect to time t from t=0 to t=∆t. We obtain 


3

0
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0
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0

Term

t

Term

t

Term

t

dtedt
dt

d
idtr  



=+


    (18) 

Notice that these terms are, for the interval 0→∆t, 

• Term 1: The area under the curve of i(t) vs. t. 

• Term 2: The area under the curve of dλ/dt vs. t, which is 

∆λ(∆t) (read “delta lambda of delta t”). 

• Term 3: The area under the curve of e(t) vs. t. 

Now we know that we can get an instantaneous (step) 

change in current  

➔short the circuit or open the circuit,  

and we know that we can get an instantaneous (step) 

change in voltage  
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➔open/close a switch to insert a voltage source into the 

circuit. 

And so i(t) and/or e(t) may change instantaneously in (18). 

But consider applying the limit as Δt→0 to (18). In this 

case, we have: 

0 0 0
0 02

1 3

lim lim ( ) lim

t t

t t t

Term

Term Term

r idt t edt
 

 →  →  →
+   =  

  (19) 

Even with a step change in i(t) or e(t) at t=0, their integrals 

will be zero in the limit. Therefore we have: 

0

2

0 lim ( ) 0
t

Term

t
 →

+   =
    (20) 

This implication of (20) is that the flux linkages cannot 

change instantaneously. This is the constant-flux-linkage 

theorem (CFLT). 

CFLT: In any closed electric circuit, the flux linkages will 

remain constant immediately after any change in 

• The current 

• The voltage 
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• The position of other circuits to which the circuit is 

magnetically coupled. 

There is an easier way to prove CFLT: Faraday’s law states 

that if λ changes instantly, then there in an infinite 

induced voltage, but this is impossible, and so it must be 

the case that λ cannot change instantly. 

The CFLT is particularly useful when Lii or Lij of a circuit 

changes quickly. It allows us to assume λ stays constant so 

that we can obtain currents after the change as a function 

of currents before the change. 

3.0 Basics of synchronous machines 

2.1 Basic construction issues 

In this section, we present only the very basics of the 

physical attributes of a synchronous machine. We will go 

into more detail regarding windings and modeling later. 

The synchronous generator converts mechanical energy 

from the turbine into electrical energy.  

The turbine converts some kind of energy (steam, water, 

wind) into mechanical energy, as illustrated in Fig. 1 [i]. 
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Fig. 1 [i] 

The synchronous generator has two parts:  

• Stator: carries 3 (3-phase) armature windings, AC, 
physically displaced from each other by 120 degrees 

• Rotor: carries field windings, connected to an external 
DC source via slip rings and brushes or to a revolving DC 
source via a special brushless configuration. 

Fig. 2 shows a simplified diagram illustrating the slip-ring 

connection to the field winding. 

http://geothermal.marin.org/GEOpresentation/sld039.htm
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Fig. 2 

Fig. 3 shows the rotor from a 200 MW steam generator. 

This is a smooth rotor. 

  

Fig. 3 
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Fig. 4 shows the rotor and stator of a hydro-generator, 

which uses a salient pole rotor. 

 

Fig. 4 

Fig. 5 illustrates the synchronous generator construction 

for a salient pole machine, with 2 poles. Note that Fig. 5 

only represents one “side” of each phase, so as to not 

crowd the picture too much. In other words, we should 

also draw the Phase A return conductor  180° away from 

the Phase A conductor shown in the picture. Likewise for 

Phases B and C. 
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A Two Pole Machine 
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Fig. 5 

Fig. 6 shows just the rotor and stator (but without stator 

winding) for a salient pole machine with 4 poles. 

 

A Four Pole Machine 

 (p=4) 

(Salient Pole 

Structure) 
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Fig. 6 
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The difference between smooth rotor construction and 

salient pole rotor construction is illustrated in Fig. 7. Note 

the air-gap in Fig. 7. 

 

Air-gap 

 

Fig. 7 

We define synchronous speed as the speed for which 

the induced voltage in the armature (stator) windings is 

synchronized with (has same frequency as) the network 

voltage. Denote this as ωeR.  

In North America,  

ωeR=2π(60)= 376.9911≈377rad/sec 

In Europe,  

ωeR=2π(50)= 314.1593≈314rad/sec 
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On an airplane, 

ωeR=2π(400)= 2513.3≈2513rad/sec 

The mechanical speed of the rotor is related to the 

synchronous speed through: 

( )
em

p


2
=

     (21) 

where both ωm and ωe are given in rad/sec. This may be 

easier to think of if we write 

( )
me

p


2
=      (22) 

Thus we see that, when p=2, we get one electric cycle 

for every one mechanical cycle. When p=4, we get two 

electrical cycles for every one mechanical cycle. 

If we consider that ωeR must be constant from one 

machine to another, then machines with more poles 

must rotate more slowly than machines with less. 

It is common to express ωmR in RPM, denoted by N; we 

may easily derive the conversion from analysis of units: 
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NmR=(ωm rad/sec)*(1 rev/2π rad)*(60sec/min) 

 = (30/π)ωmR 

Substitution of ωmR=(2/p) ωeR=(2/p)2πf=4πf/p 

NmR= (30/π)(4πf/p)=120f/p   (23) 

Using (3), we can see variation of NmR with p for f=60 Hz, 

in Table 1. 

Table 1 

 

No. of Poles (p)                      Synchronous speed (NmR) 

-------------------                        ----------------------------- 

          2                                                    3600 

          4                                                    1800 

          6                                                    1200 

          8                                                      900 

         10                                                     720 

         12                                                     600 

         14                                                     514 

         16                                                     450 

         18                                                     400 

         20                                                     360 

    24         300 

    32         225 

    40         180 
 

Because steam-turbines are able to achieve high speeds, 

and because operation is more efficient at those speeds 

(due to use of higher pressure steam), most steam 



17 

 

turbines are 2 pole, operating at 3600 RPM. At this 

rotational speed, the surface speed of a 3.5 ft diameter 

rotor is about 450 mile/hour. Salient poles incur very high 

mechanical stress and windage losses at this speed and 

therefore cannot be used. All steam-turbines use smooth 

rotor construction. 

Because hydro-turbines cannot achieve high speeds, they 

must use a higher number of poles, e.g., 24 and 32 pole 

hydro-machines are common. But because salient pole 

construction is less expensive, all hydro-machines use 

salient pole construction. 

Fig. 8 illustrates several different constructions for smooth 

and salient-pole rotors. The red arrows indicate the 

direction of the flux produced by the field windings. 
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• Synchronous generator

Rotor construction

Round Rotor Salient Pole

Two pole s = 3600 rpm

Four Pole
s = 1800 rpm

Eight Pole
s = 900 rpm

  

Fig. 8 

The synchronous machine typically has two separate 

control systems – the speed governing system and the 

excitation system, as illustrated in Fig. 9 below. Our main 

interest in this course is synchronous machine modeling. 

However, we will still touch on a few issues related to the 

control systems. 
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Fig. 9 

2.2 Rotating magnetic field 

The following outlines the conceptual steps associated 

with production of power in a synchronous generator. 

1. DC is supplied to the field winding.  
2. If the rotor is stationary, the field winding produces 

magnetic flux which is strongest radiating outwards 
from the center of the pole face and diminishes with 
distance  along the air-gap away from the pole face 
center. Figure 10 illustrates. The left-hand-figure plots 
flux density as a function of angle from the main axis. 
The right-hand-figure shows the main axis and the lines 
of flux. The angle θ measures the point on the stator 
from the main axis, which is the a-phase axis. In this 
particular case, we have aligned the main axis with the 
direct-axis of the rotor. 
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Fig. 10 

3. The turbine rotates the rotor. This produces a rotating 
magnetic field (or a sinusoidal traveling wave) in the air 
gap, i.e., the plot on the left of Fig. 10 “moves” with 
time. Figure 11 illustrates, where we see that, for fixed 
time (just one of the plots), there is sinusoidal variation 
of flux density with space. Also, if we stand on a single 
point on the stator (e.g., θ=90°) and measure B as a 
function of time, we see that for fixed space (the vertical 
dotted line at 90°, and the red eye on the pictures to the 
right), there is sinusoidal variation of flux density 
w/time. 
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Fig. 11 

4. Given that the stator windings, which run down the 
stator sides parallel to the length of the generator are 
fixed on the stator (like the eye of Fig. 11), those 
conductors will see a time varying flux. Thus, by 
Faraday’s law, a voltage will be induced in those 
conductors.  
a. Because the phase windings are spatially displaced by 

120°, then we will get voltages that are time-
displaced by 120°.  

b. If the generator terminals are open-circuited, then 
the amplitude of the voltages are proportional to  

• Speed 
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• Magnetic field strength 
And our story ends here if generator terminals are 

open-circuited. 

5. If, however, the phase (armature) windings are 
connected across a load, then current will flow in each 
one of them. Each one of these currents will in turn 
produce a magnetic field. So there will be 4 magnetic 
fields in the air gap. One from the rotating DC field 
winding, and one each from the three stationary AC 
phase windings. 

6. The three magnetic fields from the armature windings 
will each produce flux densities, and the composition of 
these three flux densities result in a single rotating 
magnetic field in the air gap. We develop this here…. 
Consider the three phase currents: 

)240cos(

)120cos(

cos

−=

−=

=

tIi

tIi

tIi

ec

eb

ea







    (24) 

Now, whenever you have a current carrying coil, it will 

produce a magnetomotive force (MMF) equal to Ni. And 

so each of the above three currents produce a time 

varying MMF around the stator. Each MMF will have a 
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maximum in space, occurring on the axis of the phase, 

of amF , bmF , cmF , expressed as 

( ) cos

( ) cos( 120 )

( ) cos( 240 )

am m e

bm m e

cm m e

t F t

t F t

t F t







=

= − 

= − 

F

F

F
   (25) 

Recall that the angle θ is measured from the a-phase 

axis, and consider points in the airgap. At any time t, the 

spatial maximums expressed above occur on the axes of 

the corresponding phases and vary sinusoidally with θ 

around the air gap. We can combine the time variation 

with the spatial variation in the following way:  

( , ) ( )cos

( , ) ( )cos( 120 )

( , ) ( )cos( 240 )

a am

b bm

c cm

t t

t t

t t

 

 

 

=

= − 

= − 

F F

F F

F F
   (26) 

Note each individual phase MMF in (26) 

• varies with θ around the air gap and 
• has an amplitude that varies with time. 
 
Substitution of (25) into (26) yields: 
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( , ) cos cos
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F

F
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Now do the following: 

• Add the three MMFs in (27): 

 

( , ) ( , ) ( , ) ( , )

cos cos

cos( 120 )cos( 120 )

cos( 240 )cos( 240 )
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m e
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   (28) 

• Use cosαcosβ=0.5[cos(α-β)+cos(α+β)] and then 
simplify, and you will obtain: 

3
( , ) cos( )

2
m et F t  = −F     (29) 

Equation (29) characterizes a rotating magnetic field, as 

illustrated in Fig. 11. 

7. This rotating magnetic field from the armature will have 
the same speed as the rotating magnetic field from the 
rotor, i.e., these two rotating magnetic fields are in 
synchronism.  

8. The two rotating magnetic fields, that from the rotor 
and the composite field from the armature, are “locked 
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in,” and as long as they rotate in synchronism, a torque 
(Torque=P/ωm=Force×radius, where Force is tangential 
to the rotor surface), is developed. This torque is 
identical to that which would be developed if two 
magnetic bars were fixed on the same pivot [ii, pg. 171] 
as shown in Fig 3. In the case of synchronous generator 
operation, we can think of bar A (the rotor field) as 
pushing bar B (the armature field), as in Fig. 12a. In the 
case of synchronous motor operation, we can think of 
bar B (the armature field) as pulling bar A (the rotor 
field), as in Fig. 12b. 

 
Fig 12a: Generator operation Fig 12b: Motor operation 
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Fig. 12 
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Appendix: Mutual inductance 
Let’s consider another arrangement as shown in Fig. A1 below. 

 

Fig. A1 

We have for each coil: 

1

11
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i
L


=        (A1) 

2

22
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i
L


=        (A2) 

We can also define L12 and L21. 

L12 is the ratio of  

• the flux from coil 2 linking with coil 1, λ12 

• to the current in coil 2, i2. 

That is, 

2

12
12

i
L


=        (A3) 

i1 
φ 

N1 

i2 

N2 
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where the first subscript, 1 in this case, indicates “links with coil 1” and the second subscript, 2 in this case, 

indicates “flux from coil 2.” 

Here, we also have that  

2

121
1212112

i

N
LN


 ==       (A4) 

Likewise, we have that 

1

21
21

i
L


=        (A5a) 

1

212
2121221

i

N
LN


 ==      (A5b) 

Now let’s assume that all flux produced by each coil links with the other coil. The implication of this is that 

there is no leakage flux, as illustrated in Fig. A2. 

 

Fig. A2 

Although in reality there is some leakage flux, it is quite small because the iron has much less reluctance 

than the air. With this assumption, then we can write:  

• the flux from coil 2 linking with coil 1 is equal to the flux from coil 2 linking with coil 2, i.e.,  

i1 
φ 

N1 

i2 

N2 

This leakage flux is assumed to be zero. 
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222212 iN
l

A
 ==       (A6a) 

• the flux from coil 1 linking with coil 2 is equal to the flux from coil 1 linking with coil 1, i.e.,  

111121 iN
l

A
 ==       (A6b) 

Substitution of (A6a) and (A6b) into (A4) and (A5b), respectively, results in: 

1 2 2
1 12 1 2

12 1 2

2 2

A
N N i

N N NAlL N N
i i l


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= = = =
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    (A7a) 

2 1 1
2 21 2 1

21 2 1

1 1

A
N N i

N N NAlL N N
i i l


 

= = = =
R

    (A7b) 

Examination of (A7a) and (A7b) leads to  

1 2
21 12

N N
L L= =

R
      (A8) 

Also recall  

2N
L =
R

          

or in subscripted notation 

2

1
11

N
L =

R
      (A9a) 

2

2
22

N
L =

R
      (A9b) 

Solving for N1 and N2in (A9a) and (A9b) results in 

1 11N L= R       (A10a) 
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2 22N L= R       (A10b) 

Now substitute (A10a) and (A10b) into (A8) to obtain 

11 22

21 12 11 22

L L
L L L L= = =

R R

R
      (21) 

Definition: L12=L21 is the mutual inductance and is often denoted M. 

Mutual inductance gives the ratio of 

• flux from coil k linking with coil j, λjk  

• to the current in coil k, ik, 

That is,  


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
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