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Power Angle & Time Domain Plots 

Initial comment: Figs. 2.15, 2.16 in your VMAF text are to 

be compared; Fig. 2.15 is correct, but Fig. 2.16 is wrong. I 

have pasted both figures below to facilitate the 

comparison; for Fig. 2.16, I pasted incorrect (left) & 

correct (right) versions. The correct version is from an 

earlier edition of your text. 

 

Fig. 2.15: Application of the equal area criterion to a stable system 

 

Fig. 2.16: Application of equal area criterion to critically cleared system: left - incorrect; right - correct 

CORRECT 

CORRECT 
INCORRECT 
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1.0 The power-angle curves 

Consider a generator connected to an infinite bus 

through a network, as shown in Fig. 1 below (all in pu). 

 

Fig. 1 

We assume the network is lossless (all R=0), there is no 

station load, the machine is modeled classically, and that 

X includes network, transformer, and machine reactance. 

We consider 3 situations, consistent with previous notes. 

1. Steady-state operating conditions (pre-fault): 

sin11 Me PP =     (1) 

2. Fault-on conditions: 

sin22 Me PP =     (2) 

3. Post-fault conditions: 

3 3 sine MP P =     (3) 

= EE  

= 0VV  

NETWORK 

X 



3 

 

Inspection of (1), (2), and (3) indicates that the electrical 

power out of a machine is a sinusoidal function of angle 

δ. We can and will explore plots of these three power-

angle curves, but before doing that, let’s observe that in 

general, we will have: 

132 MMM PPP      (4) 

i

Mi
X

VE
P =

      (5) 

where we assume that |E| and |V| are constant 

throughout the sequence, and Xi is the impedance 

between the internal machine voltage and the infinite 

bus voltage under conditions i=1, 2, 3. 

Some comments about Xi: 

• For a fault at the machine terminals, X2=∞, because 

X2=(E-V)/I where I is the current flowing out of the 

generator into the network [or out of the network into 

the infinite bus with all other network sources and 

sinks idled (set to 0)]. When the machine terminals are 

short-circuited, I=0, so X2=∞. Having X2=∞ makes PM2=0. 
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• In general, faults occur away from the terminals, in the 

network, and so PM2>0. 

• It is possible for PM3=PM1. How? 

Answer: PM3=PM1 if the fault is only temporary, in which 

case the post-fault network is the same as the pre-fault 

network. 

We draw the power-angle curves, Fig. 2, which show the 

dependence of Pei on δ. It also shows the mechanical 

power, Pm, the pre-fault stable equilibrium angle δ1 

(Pe1=Pm), the post-fault stable equilibrium angle δ3 

(Pe3=Pm), & the post-fault unstable equilibrium angle δm. 

(We use δm here to be consistent with the nomenclature 

in Section 2.8 of the text; however, this δm should not be 

confused with the use of δm in previous notes as the 

angle of the rotor in mechanical radians.)  

Recall that δ is relative to a moving, synchronous 

reference; here, we define ω to be the relative speed so 

that it is zero if ωm=ωR. 
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Fig. 2 

Now we move through the sequence of events 

associated with occurrence of a fault, illustrating each 

change on the power-angle curves of Fig. 3. We focus on  

• the sign of Pa=Pm-Pe, which determines whether ω is increasing 

or decreasing (note: ω may be increasing or decreasing while 

being either positive or negative), and  

• the sign of ω, which determines whether δ is increasing or 

decreasing. 

Pm 

Pe 

δ→ δ1 180° 90° δ3 
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Pe1 

Pe2 
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0. At δ1, under the pre-fault condition, Pm-Pe1=0➔Pa=0. 

1. At t=0+, fault occurs, and Pe=Pe2. The angle remains δ1. 

 

Fig. 3 
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2. From t=0+ to clearing time tc (corresponding to clearing 

angle δc), Pm-Pe2=Pa2>0. So the machine accelerates, ω 

increases and is necessarily positive (since it was 

previously 0), and δ increases along the Pe2 curve.  

 

Fig. 4 
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3. At clearing time t=tc (corresponding to clearing angle 

δc), the breakers operate and remove the faulted line. 

Electric power Pe immediately changes (increases) to 

Pe3(δc), but δ does not change. 

 

 

Fig. 5 
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4. For t just after clearing time tc, Pm-Pe3=Pa3<0. The fact 

that accelerating power is negative means that the 

machine decelerates, i.e., its speed decreases (as long 

as δ<δm, implying a stable swing). However, ω is still 

positive, i.e., the angle δ is increasing, and it continues 

to increase until the speed reaches 0, at, say, δr. If the 

swing is stable, then at that angle δr, the speed 

reaches 0 and the angle δ begins to decrease.  

 

Fig. 6 
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5. The angle decreases from δr because speed is 

negative. Speed continues to be negative (actually 

becomes more negative) because Pa<0. This continues 

until δ=δ3.  

 

Fig. 7 
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6. As the rotor swings through the point δ=δ3, 

accelerating power goes positive, i.e., Pm-Pe3=Pa3>0, 

and speed begins to decrease (becomes less negative). 

The rotor will swing to some minimum angle, where its 

speed will reach 0, it will turn around, and come back. 

 

Fig. 8 
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7. The rotor will then oscillate back and forth about the 

post-fault stable equilibrium point δ3. If there is no 

damping, the oscillations will continue forever. If there 

is damping, the oscillations will continuously decrease 

in amplitude, and after some time, the system will 

stabilize at the post-fault stable equilibrium point δ3. 

 

Fig. 9 
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2.0 Time-domain plots 

We return to the example we worked on in the last set of 

notes where we had: 

Pre-fault:   sin8071.8316.30)( −=t  

Fault-on:   sin0958.3816.30)( −=t  

Post-fault:  sin8638.5916.30)( −=t  

We can observe the oscillations described in the last 

section by plotting the two state variables against time. 

To do this, we need to convert the second-order 

equation to two first order equations. We will do this to 

the fault-on equation and to the post-fault equation. 

Recognizing that )()( tt  =  and )()( tt   = , we may 

write the fault-on swing equation as: 

 



sin0958.3816.30)(

)()(

−=

=

t

tt





   (29) 

Similarly, the post-fault equation may be written as  





sin8638.5916.30)(

)()(

−=

=

t

tt





   (30) 
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Solution to these equations must be done numerically. 

We have not yet discussed numerical solutions of 

differential equations, but we will later in the course. For 

now, I simply provide you with the necessary Matlab 

commands.  

Before doing this, however, it is necessary to realize our 

problem is an initial value problem, i.e., in order to solve 

it, we must know initial values. Since our variables are δ 

and ω, we observe that the initial values we must find 

are δ(0) and ω(0). 

Of course, the initial value of ω, speed deviation, is very 

simple. Since the system is initially “at rest,” the initial 

speed deviation is zero.  

But what about the angle δ? To get this, we return to the 

pre-fault equation, and solve it for Pa=Pm-Pe1=0, i.e.,  

rad

t

3681.0

16.30sin8071.83

0sin8071.8316.30)(

=

=

=−=







 

And so we see that δ(0)=0.3681 radians (21.09°). This is 

what we have called δ1 in all of our power-angle plots. 
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Now we are in a position to perform numerical solution. 

Note that Matlab offers a number of different solvers for 

ordinary differential equations. I choose ode45. The 

Matlab code is below (damping is zero). 

 

%initial conditions have delta at 21.09 degrees and omega at 0. 

delta0=21.09*pi/180; 

X0=[delta0;0]; 

% Simulation time from 0 to 4 cycles. 

TCLEAR=4/60; 

TSPAN = [0  TCLEAR]; 

%call ODE solver to integrate from 0 to TCLEAR 

[t, x]=ODE45('go1',TSPAN,X0); 

% 

% Now prepare to perform the post-fault integration. 

% 

% First, get initial conditions for post-fault  

% integration. These are the final conditions 

% for the fault-on integration. 

last=length(t); 

X0=[x(last,1); x(last,2)]; 

%Save solution to another matrix so it does  

%not get overwritten. But do not save last point 

%because last point will be first point in  

%new solution. 

xold=x(1:last-1,:); 

told=t(1:last-1); 

% Simulation time from 4 cycles to 5 seconds 

TSPAN = [TCLEAR   5]; 

%call ODE solver to integrate from TCLEAR to 5 seconds. 

[t, x]=ODE45('go2',TSPAN,X0); 

% Now join xold with x. 

delta=[xold(:,1)' x(:,1)']'; 

delta=delta*180/pi; 

omega=[xold(:,2)' x(:,2)']'; 

ttot=[told' t']'; 

plot(ttot,delta) 

grid 

ylabel('Angle, delta (degrees)') 

xlabel('Time (seconds)') 

plot(ttot,omega) 

grid 

xlabel('Time (seconds)') 

ylabel('Speed deviation, omega (rad/sec)') 
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The two functions “go1” and “go2” are given below. 

 

 

 

 

 

 

% FUNCTION 

function xp2 = go2(t,x) 

% 

% In:  t (time) is a scalar. 

%   x is a 2-element vector whose elements are: 

%    x(1)= delta(t) 

%    x(2)= omega(t) 

%    

% Out: xp2 is a 2-element vector whose elements are 

%    xp2(1)=d delta(t)/dt 

%    xp2(2)=d omega(t)/dt 

% 

xp2(1)=x(2); 

xp2(2)=30.16-59.8638*sin(x(1)); 

% ODE45 expects the function to return a column vector. 

xp2=xp2'; 

 

% FUNCTION 

function xp1 = go1(t,x) 

% 

% In:  t (time) is a scalar. 

%   x is a 2-element vector whose elements are: 

%    x(1)= delta(t) 

%    x(2)= omega(t) 

%    

% Out: xp1 is a 2-element vector whose elements are 

%    xp1(1)=d delta(t)/dt 

%    xp1(2)=d omega(t)/dt 

% 

xp1(1)=x(2); 

xp1(2)=30.16-38.095*sin(x(1)); 

% ODE45 expects the function to return a column vector. 

xp1=xp1'; 
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The resulting plots are shown in Figs. 10 and 11.  

 

Fig.10: Angle 

 

Fig. 11: Speed deviation 
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Observe in the plots the following: 

• Initial angle is 21.09°; initial speed deviation is 0.  

• Oscillations are undamped. 

• Angle oscillates about a value just above 30°. We can 

verify this by solving the post-fault equation for the 

equilibrium as follows: 

rad

t

528.0

16.30sin8638.59

0sin8638.5916.30)(

=

=

=−=







 

This is 30.2524°. 

• Speed deviation oscillates about a value of 0.  

 

We have developed two different ways of understanding 

synchronous machine response to faults: the power 

angle curve and the time-domain simulation. You should 

understand how these two ways of viewing the situation 

are related. Fig. 12 on the next page illustrates. 
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Fig. 12 
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3.0 Additional observations & clarifications 

We discuss two significant concepts in this section. 

a. Stability vs. instability 

It is possible for the machine to accelerate too much so 

that the angle does not “come back” after the first swing. 

What causes this to happen?  

➔ It is too much acceleration, or, equivalently, not 

enough deceleration.  

Notice that 

• Pm-Pe2 causes the acceleration, and this occurs 

between t=0+ and t=tc. During this time interval, our 

system will be “safer” if we decrease Pm (e.g., fast 

valving) and increase PM2 (e.g., transient excitation 

boosting) (recall PM2 is the maximum value of the fault-

on-power-angle curve ).  

• Pe3-Pm causes the deceleration, and this just after t=tc. 

During this time interval, our system will be “safer” if 

we increase PM3 and decrease Pm.  
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(Aside: Indeed, there are “special protection systems” (also 

known as “remedial action schemes”) which perform fast 

valving and transient excitation boosting to do just these 

things! See papers on website for these issues.) 

Overall conclusion: 

The system is “less stable” when  

• Pm is high; then acceleration is larger and deceleration 

is smaller. 

➔ “Worst-case” stability performance occurs when 

you are operating a machine at maximum output, and 

so this condition is what you study in design/planning. 

• Pe2 is low. 

➔The worst case is when Pe2=0. This occurs when the 

fault is at the machine terminals. Fig. 13 illustrates. 



22 

 

 

Fig. 13 

• tc is large; then we will see Pm-Pe2=Pa2>0 for a longer 

time, & the machine has more time to accelerate. 

➔So-called “stuck breaker operation” requires backup 

protection to clear the fault, and backup protection 

always takes longer time than primary protection. 

• Pe3 is low. 

➔Losing “strong” lines is worse than losing “weak” lines. 
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b. Unstable equilibrium point 

What about the point δm? 

 

Fig. 14 

• Notice that it can be computed as δm=180- δ3. In the 

case of our example, this is 180-30.25=149.75°. 

• This is an unstable equilibrium point. Why? 
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➔If you were ever able to maneuver a generator to 

this point, with ω=0 (and thus in equilibrium), then  

➢ Any disturbance causing an angle decrease would 

immediately result in deceleration because Pm<Pe3. 

The deceleration would cause negative speed, and 

further angle decrease, until the machine reached 

δ3. At that point, if further angle decrease 

occurred, then the machine would begin 

accelerating, tending to reduce (make smaller in 

absolute value) the negative speed, eventually 

reaching zero speed at which point the speed 

would become positive, and the angle would begin 

to move back towards the stable equilibrium point 

δ3 about which it would oscillate; eventually, the 

machine would settle on the stable equilibrium 

point δ3. 

➢ Any disturbance causing an angle increase would 

immediately result in acceleration because Pm>Pe3. 

The acceleration would cause further angle 

increase, which would cause more acceleration, 
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and so on, with the angle increasing without 

bound. This is an unstable situation. 

Note that this is similar to the case of the inverted 

pendulum, where the point at the top of the 

pendulum’s apex is an unstable equilibrium point, in 

that movement in either direction causes the system 

to find a new equilibrium point, as shown in Fig. 15. 

 

Fig. 15 

• Is it possible to get the machine to operate at δm by 

using gradual changes to Pm? (Assume we are in post-

fault state and so the electrical power out is 

characterized by Pe3). 

http://en.wikipedia.org/wiki/File:Pendulum-osc.png
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➔ Answer: No! Because at δ=90°, any further increase in 

Pm causes a permanent state of acceleration, and the 

machine loses synchronism, as illustrated in Fig. 16. 

 

Fig. 16 

• Is it possible that the machine reaches δm during a 

post-fault transient? 

 

Pe 

δ→ δ1 180° 90° δ3 

PM3 

PM1 

PM2 

Pe3 

Pe1 

Pe2 

δm δc δr 

Pm 



27 

 

➔Yes! If the fault-on acceleration is enough, the angle 

could swing to δm, as shown in Fig. 17. 

 

Fig. 17 

 

• What is the significance of this point, δm, during a 

transient? 
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➔It is the maximum angular swing for stability.  

If when δ=δm, ω>0 (which it could be on a “first swing”), 

the angle increases beyond δm. At this point, the rotor 

begins to accelerate again, and there is no way to obtain 

deceleration because Pm>Pe3 permanently.  

And so the condition for stability is that 

• δmax< δm➔STABLE! 

• δmax= δm➔MARGINALLY STABLE 

• δmax> δm➔UNSTABLE 

 


