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Participation Factors 

This material is related to VMAF, p. 281-284.  

The mode shape, as indicated by the right eigenvector, gives the 

relative phase of each state in a particular mode.  

However, it does not give the influence of each state on the mode.  

 

We would like to be able to obtain the influence of states on modes 

because then we will know which states (machines) to control in 

order to increase damping of a certain problem mode. 

 

Let’s define a new state variable (“xi”) as follows: 
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Notice that k is a scalar since the transpose of the left eigenvector 

is a 1n and the state vector is an n1.  

 

Thus, k is a combination of all states, but the manner in which all 

states are combined is through the left eigenvector elements of the 

kth mode. In the words of VMAF (p.284), “The left eigenvector 

describes what weighted combination of state variables is needed to 

construct the mode, referred to as the mode composition.” 

 

An important attribute of k, and the reason why it is of great interest 

here, is that it is a state that is associated with the kth mode and no 

other mode, proven as follows. Start with system state equations: 
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Pre-multiply both sides by 
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Recall that the left eigenvector is defined as  

    (P-2) 

Notice that the left-hand-side of eq. (P-2), is on the right-hand-side 

of eq. (P-1). Substituting the right-hand-side of eq. (P-2) into the 

right-hand-side of eq. (P-1), we obtain: 
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Returning to the definition of our new state variable, which is 

xqxq
T

kk

T

kk
 ==  , we note the left-hand-side of eq. (P-3) is 

k
  while the right hand side of eq. (P-3) is kk . Making these 

substitutions, eq. (P-3) becomes: 

kkk  =      (P-4) 

Now eq. (P-4) is a time-domain expression. So let’s take the LaPlace 

transform to obtain (“Ξ” is upper case “ξ”, letter “xi” pronounced 

“zigh”). 
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Taking the inverse LaPlace transform, we find that 
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This confirms that k is associated with only the kth mode and no 

other mode. That is, the only dynamics associated with k are e(k)t. 

 

What is the implication of this fact? The state variables that 

influence k are the state variables that influence the kth mode. So we 

can study k to learn about the kth mode. 

 

Let’s see if we can determine which state variables influence k…. 

 

Recall from the notes called “Linear system theory” eq. (L-5), which 

was: 
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I will change the summation index so as to not confuse with the 

index (k) used previously in these notes: 
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Now substitute eq. (P-6) into the definition of k: 
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Note that the part of the summation in brackets is a scalar. Therefore 

we can move the 
T

k
q  inside the summation, beyond the brackets, so 

as to pre-multiply 
j

p . This results in: 
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Recalling that the matrices P and Q are orthogonal, we know that  

0=
j

T

k
pq   for k  j   (P-9) 

Therefore, there is only one non-zero term in the summation of eq. 

(P-8), and that is the term for which k=j. As a result, eq. (P-8) is: 
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Rearranging slightly, we have, 
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We may express the above vector product as a summation: 
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Substitution of eq. (P-13) into eq. (P-11), we obtain: 
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Now we are in a position to make a definition: 

 

Participation factor:  

jkjkjk pq=     (P-15) 

Substitution of eq. (P-15) in eq. (P-14) results in: 
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Three observations: 

1. If all 
jk = 0, then the kth mode would not exist, an observation 

that leads to a conclusion that existence, or prevalence, of a mode 

depends on the magnitudes of the various
jk .  

2. The first bracketed term of (P-16) and the exponential to the right 

are independent of subscript “j”, that is, they are independent of 

states. However, the second bracketed term, the summation, 

depends not only on mode “k” but also on state “j”, that is, it 

depends on both the mode and the state. 

3. Inspection of (P-15) shows that 
jk  depends on “state-related” 

terms, the jth
 elements in the kth left and right eigenvectors.  

 

It is the intention that these three observations provide that the 

definition of the participation factor be intuitive: 

The participation factor jk  indicates the participation 

(influence) of the jth state in the kth mode. 
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The participation factor is extremely useful. Consider you learn via 

eigenvalue calculation and/or time-domain simulation that mode k 

is a “problem mode,” i.e., it is marginally damped or negatively 

damped. Then one can identify what to do about this problem mode 

(which state to control) by inspecting participation factors for it.  

 

There will be “n” participation factors for each mode k, jk , 

j=1,…,n (where “n” is the number of states). The states having the 

larger participation factors (magnitudes) are the states which should 

be most strongly considered to control to affect problem mode k.  

Note: in contrast to )0(xq
T

k
, jk  is less1 dependent of the initial 

conditions and therefore serves as more of a structural indicator of 

participation than does )0(xq
T

k
. 

 

Let’s look at big picture - how do we proceed in a small-signal 

analysis study? 

1. Compute eigenvalues & eigenvectors for an operating condition.  

2. Choose an ; If any k=kjk has |k|<, or k>0, then this is a 

problem mode at that operating condition. 

3. Identify right pk and left qk eigenvectors for mode k. 

a. Identify “groups” of generators based on mode shape using pk 

(use the angles of the elements of pk corresponding to the speed 

deviation states). 

b. For each group, identify the speed deviation states (and thus 

the generators) most heavily participating (influencing) the 

mode, based on jk . 

4. Install, or retune the power system stabilizer (PSS) on the 

generators identified in step 3-b using speed deviation as a control 

signal so that they increase damping of the kth mode. 

Last comment: This is for linearized (small-signal) analysis, not 

large-signal (fault) analysis. 
 

1 We say “less dependent” instead of “independent” because eigenvalues and both right/left eigenvectors 

are initially computed as a function of initial conditions, as our 3-generator example has shown.  
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Going back to our example (see notes on linear system theory), we 

recall that 
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Observe the eigenvalues in Table 3.2.  

 
Also observe the relative rotor angle plots of Fig. 3.3-b, where we 

see that one mode can be clearly observed having a period of about 

0.7 sec (f=1.4 hz). The other mode is not readily observable, 

although its presence is probably responsible for the distortion seen 

in the 31 plot. 
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Using matlab… 

[P,D]=eig(A) where A is the matrix given above. 

 

Then the matrix of eigenvalues D is given by 

 

+13.4164i        0                   0                  0           

        0            -13.4164i        0                  0           

        0                  0             +8.8067i          0           

        0                  0                  0             - 8.8067i 

And the matrix of right eigenvectors P is given by  
-0.0459 - 0.0000i  -0.0459 + 0.0000i  -0.1030 - 0.0000i  -0.1030 + 0.0000i 

  -0.0585 - 0.0000i  -0.0585 + 0.0000i   0.0459 + 0.0000i   0.0459 - 0.0000i 

   0.0000 - 0.6154i   0.0000 + 0.6154i   0.0000 - 0.9075i   0.0000 + 0.9075i 

   0.0000 - 0.7847i   0.0000 + 0.7847i  -0.0000 + 0.4046i  -0.0000 - 0.4046i 

And the matrix of left eigenvectors QT is given by P-1, which is: 
  -2.8240 + 0.0000i  -6.3340 + 0.0000i   0.0000 + 0.2105i   0.0000 + 0.4721i 

  -2.8240 - 0.0000i  -6.3340 - 0.0000i   0.0000 - 0.2105i   0.0000 - 0.4721i 

  -3.5951 + 0.0000i   2.8194 - 0.0000i   0.0000 + 0.4082i  -0.0000 - 0.3201i 

  -3.5951 - 0.0000i   2.8194 + 0.0000i   0.0000 - 0.4082i  -0.0000 + 0.3201i 

Note that here, the eigenvectors are along the rows. Taking 

transpose, we get Q, which is 
  -2.8240 + 0.0000i  -2.8240 - 0.0000i  -3.5951 + 0.0000i  -3.5951 - 0.0000i 

  -6.3340 + 0.0000i  -6.3340 - 0.0000i   2.8194 - 0.0000i   2.8194 + 0.0000i 

   0.0000 + 0.2105i   0.0000 - 0.2105i   0.0000 + 0.4082i   0.0000 - 0.4082i 

   0.0000 + 0.4721i   0.0000 - 0.4721i  -0.0000 - 0.3201i  -0.0000 + 0.3201i 

 

Now I compute the participation matrix below. 
a=[0 0 1 0; 0 0 0 1; -104.096 -59.524 0 0; -33.841 -153.46 0 0]; 

[P, D]=eig(a); 

QT=inv(P); 

Q=QT'; 

j=1; 

% j is index on columns (modes) 

% i is index on rows (states) 

while j<5, 

   i=1; 

   while i<5, 

      pf(i,j)=Q(i,j)*P(i,j); 

      i=i+1; 

   end 

   j=j+1; 

end 

pf  
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This gives 
  DELTA13 0.1295 + 0.0000i   0.1295 - 0.0000i   0.3705 + 0.0000i   0.3705 - 0.0000i 

  DELTA23 0.3705 + 0.0000i   0.3705 - 0.0000i   0.1295 + 0.0000i   0.1295 - 0.0000i 

  OMEGA13 -0.1295 - 0.0000i  -0.1295 + 0.0000i  -0.3705 - 0.0000i  -0.3705 + 0.0000i 

  OMEGA23 -0.3705 - 0.0000i  -0.3705 + 0.0000i  -0.1295 - 0.0000i  -0.1295 + 0.0000i 

              MODE 1   MODE 1       MODE 2  MODE2 

 

From this, we see that ω23 participates most heavily in mode 1. 

ω13 participates most heavily in mode 2.  

This is the information that we would use to decide where to  

place a PSS to enhance damping of a particular mode, although there 

is some ambiguity regarding whether ω1k is a state associated with 

unit 1 or unit k. 

 

Returning to Fig. 3.3 in the book (and given above), we observe that 

although mode 1 is clearly visible in both plots, mode 2 is only 

visible in the ω13 plot. This is consistent with the indication from the 

participation factors.  

Recall that with uniform damping, we were able to eliminate one 

speed deviation state. In general, this is not possible, and so you end 

up with one speed generation state for each generator, a 

development which solves the ambiguity problem mentioned above. 

 

As an example, the paper by Mansour provides participation factors 

for several cases, as indicated below. Note that for all participation 

“vectors” the participation factor is a normalized magnitude. 
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