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Numerical Methods 

1.0 Problem set-up 

We previously showed that we may write the swing 

equation for a single machine as a pair of first-order 

differential equations, according to: 
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Here, Pe(δ(t)) is given by the power flow equations: 
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where Ei, Ej are the internal bus voltage magnitudes having 

angles of δi and δj, respectively, and Yij=Gij+jBij=Yij/_θij is 

the element in the ith row, jth column of the appropriate Y-

bus. Depending on the particular time interval we are 

integrating, the “appropriate Y-bus” will be Y1, Y2, or Y3, 

corresponding to pre-fault, fault-on, and post-fault 

conditions, respectively, as described in the notes called 

“Multimachine.” 

Comment: You are suggested to read the following portions of the text: Section 7.11, pp 262-264; Section 7.12, pg. 264 and 

the first paragraph at the top of pg 265; Section 7.13, pp. 275-277; Section 7.14, pp. 277-278; Appendix B, 675-683. Also, you 

can take entire courses on numerical methods for solving differential equations, e.g., Math 481, 561, and 581. 
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The solution to (1) and (2) is found by integrating both 

sides of each equation, resulting in 
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Note that δ appears in the integrand of (4), 

and that ω appears in the integrand of (5). 

But these functions are what we are trying to compute. 

And so we observe that in general, we will not be able to 

obtain any closed form expression for δ and ω; we cannot 

solve for them in closed form. Thus, our only choice is to 

resort to numerical integration. 

More compactly, we may define x1=ω and x2=δ, so that (4) 

and (5) may be written as 
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At this point, we need to recall that,  

if we want to represent additional nodes beyond the 

internal machine nodes, i.e., if we want to represent any 

load buses within the solution procedure so that related 

information is available to us from the solution procedure,  

➔the differential-algebraic system (DAS) of the power 

system “electromechanical positive-sequence time-

domain simulation problem” has another set of 

equations to deal with;  

➔the algebraic set, which is a function of the 

algebraic variables and the states.  

Thus, our real problem is stated as (6a) plus the algebraic 

set, i.e.,  

�̇� = 𝑓 (𝑥, 𝑦)

0 = 𝑔(𝑥, 𝑦)
       (6b) 

where x represent the state variables, y represents the 

algebraic variables, and 0=g(x, y) represents the algebraic 

equations.  

One advantage we do have in seeking to solve (6b) is that 

we do know x(0), i.e., we know the initial angles and 
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speeds δ(0) and ω(0), so it is an initial value problem (δ(0) 

comes from the solution of the power flow equations, and 

ω(0)=0). 

Figure 0a, taken from a very famous paper on this subject 

[1], shows the so-called “interface problem” between the 

differential and algebraic equations of the DAS. This 

problem refers to the need to solve both the ODEs of the 

system (on the left of Fig. 0a) as well as the algebraic 

equations of the system (on the right of Fig. 0a).  

 

Fig. 0a 

In general, there are two classes of methods for 

addressing the interface problem and thus solving the 

ODEs and the algebraic equations: 
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• Alternating (or partitioned) approach with initially, t=0:  

1. solve the differential equations at t=Δt using values of 

the algebraic variables from t=0 power flow solution;  

2. solve the algebraic equations at t+ Δt using angles from 

the differential equations;  

3. let t ← t+Δt; solve the differential equations at t+Δt 

using values of algebraic variables from step 2; return 

to step 2. 

The alternating method applies numerical integration to 

only the discretized ODEs (and not to the original 

algebraic equations). For this reason, the alternating 

method may use either explicit integration (which 

integrates only and so cannot include the algebraic 

equations) or implicit integration (which integrates by 

solving nonlinear algebraic equations and so can include 

the algebraic equations). 

• Direct (or simultaneous) solution method: Here, we 

combine the ODEs (discretized, and therefore algebraic 

equations) and the original algebraic equations into a 

single set of algebraic equations. This single set of 

algebraic equations are nonlinear, and so a nonlinear 
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solver such as Newton-Raphson is used to solve them. 

Because the direct solution method solves together the 

discretized ODEs and the algebraic equations, it cannot 

use explicit integration; rather, it must use implicit 

integration. 

Figure 0b (7.13 in your text) illustrates the various design 

decisions associated with building a time-domain 

simulation software application. The top attribute 

(hardware) is whether one wants to parallelize the 

computations or not. The second layer is whether one 

uses alternating or direct solution methods. The third 

layer is whether one uses explicit or implicit integration 

methods (we will discuss this further in these notes). The 

fourth layer depicts the type of nonlinear solver chosen. 

The fifth layer shows that a linear equation solver is also 

needed, because most nonlinear solvers require one.  
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Figure 0b 

Towards the end of these notes (Sec 5.2, pp. 38-40), we 

return to the topic of solving ODEs vs. algebraic equations, 

while explaining how to treat the network when retaining 

nodes beyond those representing internal machine nodes. 

Regardless of whether we use the alternating approach 

(with either explicit or implicit integration) or the direct 

solution approach (with implicit integration), we must 

solve ODEs of the problem posed in (6b) (repeated here 

for convenience): 

�̇� = 𝑓 (𝑥, 𝑦)

0 = 𝑔(𝑥, 𝑦)
       (6b) 
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And so let’s look at a simpler initial value ODE problem in 

one-dimension (i.e., a single state variable): 

0)0(     )),(( xxtxfx ==      (7) 

So we want to solve  
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If we are going to try a numerical solution, i.e., one using 

computers, then we must deal with discrete time. In 

discrete time, (8) becomes: 
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From (9), we can write: 
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Equation (10) says the following:  
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If we want to know x at the “next” step, kT, we need 

to know x at the “last” step, kT-T, and we need to 

know the integral in (10). This integral is giving us the 

change in x from the last step to the next, i.e., 
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Since we do know x(0), we can say that we initially know x 

at the “last” step. Thus, solving our problem requires only 

the ability to compute the integral in (11). 

There are many methods that will allow us to compute the 

integral in (11). We will review only a few of them. You 

should read Appendix B in VMAF as background material 

for this topic. 

2.0 Euler method 

Consider plotting our function f(x(t)) as a function of t. 

What we want to do, based on (11), is to obtain the area 

under the curve of f(x(t)) from t=kT-T to t=kT, as illustrated 

in Fig. 1. 
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Fig. 1 

Here is a proposed approach: Assume that f is constant 

throughout the interval at f(kT-T). This assumption is 

clearly not good if kT is large, but it might be reasonable if 

kT is made small enough.  

This approach approximates the integral as the area 

shaded by the vertical lines in Fig. 2. One observes that it 

misses the area shaded by the horizontal lines in Fig. 2. 

t 
kT-T kT 

f(x(kT)

) 

f(x(kT-T)) 

f(x(t)) 
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Fig. 2 
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Analytically, (10) becomes 

))(()()( TkTxTfTkTxkTx −+−=    (12) 

where the last term is ∆x. This approach is also called the 

“forward rule” because we assume a value for f and hold 

it constant as we move forward in time. 
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2.1 Alternative development of forward rule 

We may also develop the forward rule in another way…. 

Assume that we know x(kT-T) and that T is chosen small 

enough so that x(kT) is close to x(kT-T). Then by Taylor 

series, 
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where O(T2) is the remainder of the Taylor series, and its 

argument T2 indicates that the lowest power of T present 

in the remainder is T2. 

If T is small enough, O(T2) is negligible and 

TkTt
xTTkTxkTx

−=
+−= )()(    (14) 

where the last term is ∆x. This is illustrated in Fig. 3. 
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Fig. 3 

Recalling that )(xfx = , (14) becomes 

))(()()( TkTxTfTkTxkTx −+−=   (15) 

which is the same as (12), our forward rule. 

From both Figs. 2 and 3, we can observe that the forward 

method will incur some error, and this error will increase 

with larger values of T.  

 

kT-T kT 

x(kT) 

x(kT-T) 

x(t) 

 

 

error 
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One major problem with this method is that if T is too 

large, the error will propagate from one time step to 

another.  

This means that error incurred at one time step kT will add 

to the error incurred at later time steps. Solution methods 

where this can happen are said to be numerically 

unstable.  

However, occurrence of this phenomenon does depend 

on our choice of T. I will provide you with a way to consider 

this issue. 

2.2 Numerical stability of forward rule 

The following development may be hard to follow if you 

have not had a course in discrete-time systems and 

control. ISU offers such a course as EE 576. The text by 

Franklin & Powell is a well-known text in this area. 

I will state some “Facts,” without proof, that we need in 

order to consider numerical stability of integration 

schemes. This will give you a framework to consider this 

issue. If you want more depth, take EE 576, or read the 

Franklin & Powell book, or read a similar one. 
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Fact 1: A transfer function in Laplace, H(s) corresponding 

to continuous time impulse response h(t), may be 

obtained for a dynamical system. 

Fact 2: The eigenvalues of the system are the poles of the 

transfer function, i.e., the roots of the denominator of 

H(s). 

Fact 3: The system is stable if all poles are in the left-hand-

plane. 

Fact 4: We may discretize H(s) in a number of different 

ways, and the particular way of discretization will specify 

the mapping between the Laplace variable “s” (used in the 

transform H(s) of the continuous-time function h(t)) to the 

z-domain variable z (used in the transform H(z) of the 

discrete-time function h(kT)). Specifically, use of the 

forward integration rule corresponds to finding a z-

domain transfer function  

T

z
s

sHzH 1)()( −
=

=
    (16) 

where H(z) is the z-transform of the system’s discrete time 

impulse response (see Franklin & Powell, pp. 54-56) 
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Fact 5: Whereas the continuous-time system is stable if all 

poles of H(s) are in the left-half-plane, the discrete-time 

system is stable if all poles of H(z) are within the unit circle. 

This is because z/(z-γ) corresponds to a discrete-time pole 

at γ, which has a z-transform of: 

)(kTu
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where u(kT) is the unit step-function such that 

𝑢(𝑘𝑇) = {
0,   𝑘 < 0
1,   𝑘 ≥ 0

     (17b) 

From (17a), we see that if | γ|>1, the time-domain term 

will go to infinity as time increases. This would indicate 

unstable behavior. 

Fact 6: From Fact 4, a pole of H(s), call it sp, maps to the z-

plane according to: 

pp

p

p Tsz
T

z
s +=

−
= 1

1

    (18) 

Conclusion: The stability of the discrete-time system (as 

indicated by whether all zp are within unit circle) depends on 
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• The stability of the continuous time system through the 

location of continuous time system eigenvalues, sp, and 

• The time step T. 

Let’s look at how an eigenvalue sp maps to the z-plane 

through the function (18). 

 

Fig. 4 

From Fact 5, we recall that if all poles zp are within the unit 

circle, H(z) is stable. So this implies that for stability, the 

poles must map to the z-plane so that 
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1pz      (19) 

But the forward rule corresponds to a mapping of  

pp Tsz +=1      (20) 

Substitution of (20) into (19) yields: 

11 + pTs      (21) 

But  

ppp js  +=      (22) 

Substitution of (22) into (21) results in 

( ) 11 ++ pp jT       (23) 

Or 

11 ++ pp jTT       (24) 

Taking the magnitude of the complex number within (24) 

( ) ( ) 11
22
++ pp TT      (25) 

Squaring both sides results in 
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( ) ( ) 11
22
++ pp TT      (26) 

Observe, in (26), that if σp>0 (a right-half-plane pole!), 

then (25) will be violated. Since (25) must be satisfied for 

the discrete-time-system to be stable, we see that an 

unstable continuous time system necessarily implies an 

unstable discrete time system. This is a good thing, 

because we would not be happy if our integration method 

could stabilize an unstable simulation. 

And so we are no longer interested in unstable 

continuous-time systems since we know our integration 

method will also show them to be unstable, as desired. 

What we are interested in are the stable continuous time 

systems. Is it possible for our integration method to cause 

them to be unstable? 

And so we will assume now that σp<0 (implying a stable 

continuous time system). 

Expanding (26), we get 

121 2222 +++ ppp TTT     (27) 

Subtracting off 1 from both sides, and factoring out a T,  
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( ) 02 22 ++ ppp TTT     (28) 

Now T will always be positive (it is step size). Therefore for 

(28) to be true, it must be the case that 

02 22 ++ ppp TT     (29) 

Solving for T results in 
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Equation (30) must be satisfied in order to be sure that the 

forward integration method does not create numerical 

instability.  

But there are many eigenvalues sp! Which one to choose?  

The answer is to choose the one with the smallest ratio 

corresponding to the right-hand-side of (30), as that one 

will most restrict what T can be. This means we want the 

eigenvalues with small |σp| and large ωp. For these kind of 

eigenvalues, it will be the case that |σp|<< ωp. Therefore, 

(30) collapses to 



21 

 

2

2

p

p
T



−


     (31) 

These eigenvalues are typically the “fast” modes, usually 

associated with the excitation system. These eigenvalues 

are closely related to the time constants of the control 

systems.  

You can test out the above theory with a stability program 

that uses the forward integration rule by decreasing the 

time constant of the excitation system for one of your 

generators, keeping the time step fixed. At some point, 

you will see instability. Then begin decreasing your time 

step, and then you will see it stabilize! 

The “cost” of decreasing the time step is that it increases 

the computation time. 

There are other ways of improving numerical performance of 

an integration method. We will look at two of these. 

1. Reduce the error: we will look at two methods of doing 

this. 

2. Use an implicit integration method: we will look at two 

methods of doing this. 
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3.0 Reducing the error 

Two algorithms that improve on the forward (Euler) 

method are predictor-corrector and Runge-Kutta. We will 

look at both briefly. 

3.1 Predictor-corrector method 

This method is called the modified Euler in your text. The 

idea here is that we will take a step to compute x(kT) (a 

predictor) and then we will use that calculation to 

recalculate that same step (the corrector). 

Step 1: Predict x(kT) using Euler to get x(kT): 
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Step 2: Use xp(kT) to obtain a corrected value xc(kT): 

a. Get a corrected derivative fc as the average of the 

derivatives at x(kT-T) and xp(kT): 
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In (32), the expression 

under f is “x-dot of kT-T”.  
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b. Then apply the forward rule: 
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This method is illustrated in Fig. 5. 

 

Fig. 5 

Understanding the method is facilitated by observing the 

sequence of points in Fig. 5. The derivative f(x(kT-T)) is 

obtained at point 1. The predicted point xp(kT) is obtained 

at point 2. The derivative of the predicted point f(xp(kT)) is 

kT-T kT 

x p(kT) 

x(kT-T) 
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obtained at point 3. The final point, point 4, is obtained 

from averaging the two obtained derivatives f(x(kT-T)) and 

f(xp(kT)). 

One can observe intuitively from Fig. 5 that the error will 

be reduced. This method can be shown to be equivalent 

to considering up to the second derivative term in the 

Taylor series, therefore the error is of O(T3). 

This is a significant improvement over the Euler method, 

but it is still a numerically unstable algorithm. In other 

words, for the predictor-corrector method, for a given 

minimum eigenvalue, T can be larger than it can be in the 

Euler method, but it is still true that the algorithm may be 

unstable if T is too large. 

3.2 Runge-Kutta method 

(pronounced Run-gah Kut-tah) 

This algorithm was developed in 1895, and it also applies 

the idea of averaging, similar to predictor-corrector, but in 

a slightly different way.  

There are different R-K algorithms of different order. We 

will only study one of them, the 4th order R-K. 
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The 4th order R-K method requires, at each successive time 

step, computing 4 different increments ∆xj, as follows: 

Increment ∆xj Derivative 

used 

))((11 TkTxTfKx −==  Start-point 

derivative only 









+−==
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22
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Second interior 

derivative 

( )344 )( KTkTxTfKx +−==  Approx. end-

point derivative 

 

Note the following about the Ki’s.  

1. Ki is always used to compute Ki+1.  

2. Each Ki is not a derivative but rather an increment in the 

integration variable, i.e.,  

)()( TkTxkTxKx iii −−==   (35) 
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Any of the Ki’s could be used to obtain the new value 

x(kT). 

3. Use of K1 to obtain the new value x(kT) is equivalent to 

the Euler method. 

4. The derivatives are computed at four different locations 

in the interval: 

• The beginning of the time step x(kT-T) 

• The first interior point x(kT-T)+K1/2 

• The second interior point x(kT-T)+K2/2 

• The approximate end-point point x(kT-T)+K3 

Figure 6 below illustrates the sequence of calculations, 

which can be understood by following the single arrows 

from point 1 to point 2 to point 3, and then the double 

arrows from point 3 to point 4 to point 5, and then the 

triple arrows from point 5 to point 6 to point 7 to  point 8.  
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Fig. 6 
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Once each of the increments K1-K4 are computed, then the 

final increment is obtained by taking a weighted average 

of the four increments, where the middle increments are 

weighted heaviest, according to (36). 

( )4321 22
6

1
KKKKx +++=

   (36) 

The middle increments (K2 and K3) are weighted heaviest 

as they are computed based on slopes that will be more 

representative of the slope in the interval than the 

beginning (K1) and final (K4) increments. 

The R-K method can be shown to be equivalent to 

considering up to the fourth derivative term in the Taylor 

series, therefore the error is O(T5).  

Although this is a significant improvement over the Euler 

or the P/C method, R-K is also a numerically unstable 

algorithm therefore the stability domain, although 

enlarged relative to the unit circle of the Euler, is bounded, 

as shown in the appendix. 
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4.0 Two general types of integration methods 

We have so-far explored the Euler method, the P/C 

method, and the R-K method of numerical integration. 

These are in a class of integration methods called explicit 

methods. They are so-called because they evaluate x(kT) 

explicitly as a function of values at previous steps and their 

derivatives. 

All explicit methods are numerically unstable, i.e., they 

have a bounded stability domain. 

Another class of integration methods that does not have 

this problem is called implicit methods. We will study two 

of these: Backwards rule and Trapezoidal rule. 

Implicit methods require a value of the function x(kT) at a 

future time step. To get this, we need to perform an extra 

procedural step.  

Implicit methods are good for “stiff” problems, where 

explicit methods must utilize small step-sizes to work. Stiff 

problems are often characterized by large differences 

between the real parts of system eigenvalues.  
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5.0 Backwards rule 

Recall that our integration problem is characterized by 

(10), repeated here for convenience.  


−

+−=

kT

TkT

dkxfTkTxkTx  ))(()()(    (10) 

where we have the 1rst term (because we know the initial 

value) and need to evaluate the 2nd term, which 

corresponds to the area under the curve of f vs. time, as 

illustrated in Fig. 1, repeated here for convenience. 

 

Fig. 1 

kT-T kT 

f(x(kT)) 

f(x(kT-T)) 

f(x(t)) 
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In the forward (Euler) method, we assumed f is constant 

throughout the interval at f(kT-T). This was simple, and 

convenient, since we already knew f(kT-T).  

Now we will again assume f is constant throughout the 

interval. This time, however, we will assume that it is 

constant at f(kT) instead of f(kT-T), as illustrated in Fig. 8. 

 

Fig. 8 

Then, (10) becomes 

))(()()( kTxTfTkTxkTx +−=    (37a) 

kT-T kT 

f(x(kT)) 
f(x(t)) 

error 

f(x(kT-T)) 



32 

 

Of course, (37a) is still an approximation, but this time it 

includes area as indicated in Fig. 8 (as opposed to the error 

of the Euler method as indicated by Fig. 2).  

But note a problem with this method:  

➔ we do not know x(kT) !!!! 

If we do not know x(kT), how do we evaluate f(x(kT))? 

The answer to this question lies in observing that (37a) is 

not a differential equation, but rather it is an algebraic 

equation, and there is only one unknown, x(kT). Therefore 

we may solve it! 

Of course, we will need to account for the fact that there 

is no reason to assume f is linear and in fact, most of the 

time, f is nonlinear. Therefore we will need to use a 

nonlinear algebraic solver to solve it.  

The Newton-Raphson is one such solver with which we are 

familiar. To apply it, let’s rewrite (37a) as 

𝑥(𝑘𝑇) − 𝑥(𝑘𝑇 − 𝑇) − 𝑇𝑓(𝑥(𝑘𝑇)) = 0  (37b) 

and then define: 

0))(()()())(( =−−−= kTxTfTkTxkTxkTxF  (38) 

Observe that, in the multi-dimensional case, (38) is just a set of nonlinear algebraic equations. Thus, we may also include 

the network equations into this set which enables us to solve the differential equations and the algebraic equations of the 

DAE simultaneously!  This is one of the beauties of implicit integration methods (the other one being that they are 

numerically stable). See section 5.2 in these notes for additional perspective on this issue. 
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Apply Taylor series expansion up to the first derivative, 

yielding 

0)())(())((

))()((

=+=

+

kTxkTxFkTxF

kTxkTxF

  (39) 

The derivative F’(x(kT)) is the derivative of F with respect 

to x, not t.  

Solving (39) for ∆x(kT) results in 

  ))(())(()(
1

kTxFkTxFkTx
−

−=   (40) 

In Newton-Raphson, we must guess an initial solution, and 

then we use (40) to iterate. 

In the multi-dimensional case, (40) becomes 

  ))(())(()(
1

kTxFkTxJkTx
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where J is the Jacobian given by1 

 
1 See Kundur, pp. 862-864 for more on this. 
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Of course, (41) is solved using a linear solver such as LU-

decomposition, based on  

  ))(()())(( kTxFkTxkTxJ −=    (43) 

We address three issues regarding this method: linear 

solvers, network solutions, and numerical instability.  

5.1 Linear solvers [2] 

An important observation about implicit methods is that 

(43) is just a problem in the form of Ax=b and therefore 

simply requires a linear solver to obtain the answer. 

Although solution to simultaneous linear equations is a 

very old topic, because implicit methods devote over 90% 

of their computation to this problem, it is still a very 

important topic for problems that require high 

computational speed.  
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Researchers have put much effort into writing 

computational libraries for performing solution of linear 

equations. The people who write these libraries know 

much more about solving linear equations than you do. 

➔Never invert the matrix; 

➔Always use the libraries; 

➔Never write your own method. 

There are a number of standard, portable solver libraries 

available, including: 

• BLAS (Basic linear algebra subprograms): Many linear 

algebra packages including LAPACK, ScaLAPACK and 

PETSc, are built on top of BLAS. Most supercomputer 

vendors have versions of BLAS that are highly tuned for 

their platforms. 

• ATLAS (Automatically Tuned Linear Algebra Software 

package) is a version of BLAS that, upon installation, 

tests and times a variety of approaches to each routine 

and selects the version that runs fastest. ATLAS is 

substantially faster than the generic version of BLAS. 
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• LAPACK (Linear Algebra PACKage) solves dense or 

special case sparse systems of equations depending on 

matrix properties such as:  

o Precision: single, double 

o Data type: real, complex 

o Shape: diagonal, bidiagonal, tridiagonal, banded, triangular, 

trapezoidal, Hesenberg, general dense 

o Properties: orthogonal, positive definite, Hermetian (complex), 

symmetric, general.  

LAPACK is built on top of BLAS, which means it can 

benefit from ATLAS. LAPACK is a library that you can 

download for free from www.netlib.org.  

• ScaLAPACK is the distributed parallel (MPI) version of 

LAPACK. It contains only a subset of the LAPACK 

routines. ScaLAPACK is also available from 

www.netlib.org.  

• PETSc (Portable, Extensible Toolkit for Scientific 

Computation) is a solver library for sparse matrices that 

uses distributed parallelism (MPI). It is designed for 

general sparse matrices with no special properties, but 

it also works well for sparse matrices with simple 

http://www.netlib.org/
http://www.netlib.org/


37 

 

properties like banding & symmetry. It has a simpler 

Application Programming Interface than ScaLAPACK. 

When choosing a solver, pick a version that’s tuned for the 
platform you’re running on, and use the information that 
you have about your system to select the one that will be 
most efficient. You will have to do some research and 
discuss with people to gain a level of knowledge to enable 
you to most effectively make this selection. 
Figures 9 and 10 illustrate the relation between implicit 
integration methods, nonlinear solvers, & linear solvers. 

 

Fig. 9 
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Fig. 10 

 
 
5.2 Network solutions 

This section recaps information given on pp. 3-5 of these 

notes. 

In our problem formulation, because we eliminate all 

nodes except machine internal nodes, we are able to 

know all node voltage magnitudes and thus write the 

entire problem (swing dynamics and network equations) 

as a single set of state equations where the only unknowns 

are the states (angles and speed). 
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However, if we represent load as something other than 

constant impedance, then we may want to retain identity 

of these buses. But there are no swing dynamics at these 

buses, and so there will be no state equation for them, and 

so if we only solve the system differential equations, we 

will have no way to obtain the bus voltage magnitudes or 

the angles of these buses. 

We will see later that the solution to this problem is to 

write a set of algebraic equations for the network. These 

equations, essentially the Y-bus relation, are then solved 

together with the state equations of the swing dynamics.  

In the explicit integration methods, the only way to do this 

is through what is called a partitioned approach where the 

state equations are first solved and then the network 

equations are solved separately. The reason why this is 

the only way to do this is because the two sets of 

equations (ODEs and algebraic equations) must use 

different methods for solutions. 

One problem encountered by the partitioned approach is 

referred to as the interface error, where the solution to 
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the state equation is not quite consistent with the solution 

to the network equations.  

The partitioned approach may be used with implicit 

integration methods also. In this case, implicit methods 

will also encounter the problem of interface error.  

In addition, implicit integration methods enable a second 

approach called the direct solution (or simultaneous) 

approach, where the network equations are embedded in 

(43) and solved at the same time as the state equations. 

This very convenient method eliminates interface error. 

5.3 Numerical stability for backwards rule 

The following development is very similar to that given in 

Section 2.2. Again, additional reading may be found in the 

the text by Franklin & Powell. 

I will again state “facts,” and in fact Facts 1-3 and 5 are 

exactly as before. This analysis differs only in Facts 4 and 

6. 

Fact 1: A transfer function in Laplace, H(s) corresponding 

to continuous time impulse response h(t), may be 

obtained for a dynamical system. 
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Fact 2: The eigenvalues of the system are the poles of the 

transfer function, i.e., the roots of the denominator of 

H(s). 

Fact 3: The system is stable if all poles are in the left-hand-

plane. 

Fact 4: We may discretize H(s) in a number of different 

ways. Whereas use of the forward integration rule 

corresponds to finding a z-domain transfer function  

T

z
s

sHzH 1)()( −
=

=
    (16) 

where H(z) is the z-transform of the system’s discrete time 

impulse response (see Franklin & Powell, pp. 54-56), use 

of the backwards integration rule corresponds to finding a 

z-domain transfer function 

Tz

z
s

sHzH 1)()( −
=

=
    (44) 

 

Fact 5: The discrete-time system is stable if all poles of H(z) 

are within the unit circle. This is because z/(z-γ) 
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corresponds to a discrete-time pole, which has a z-

transform of: 

)(kTu
z

z kT





−     (17) 

From (17), we see that if | γ|>1, the time-domain term will 

go to infinity as time increases. 

Fact 6: From Fact 4, whereas a pole of H(s), call it sp, maps 

to the z-plane in the forward rule according to: 

pp

p

p Tsz
T

z
s +=

−
= 1

1

    (18) 

in the backwards rule, a pole of H(s), sp, maps to the z-

plane according to: 

p

p

p

p
Ts

z
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z
s

−
=

−
=

1

11

    (45) 

 

Conclusion: For the forward rule, the stability of the 

discrete-time system depends on 
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• The stability of the continuous time system through the 

continuous time system eigenvalues, sp, and 

• The time step T. 

For the forward rule, we concluded that the dependence 

on T was that T had to satisfy 

22

2

pp

p
T





+

−


     (30) 

The question we must answer now is: For the backwards 

rule, (a) does stability of the discrete-time also depend on 

T, and (b) if so, in what way? 

Let’s take the same approach by looking at how an 

eigenvalue sp maps to the z-plane through the function 

(45). Our real question here is: what are the conditions on 

T to force all left-hand-plane eigenvalues of H(S) to map 

into the unit circle of the z-plane? 
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Fig. 11 

From Fact 5, we recall that if all poles zp are within the unit 

circle, H(z) is stable. So this implies that for stability, the 

poles must map to the z-plane so that 

1pz      (19) 

But the backwards rule corresponds to a mapping of  
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p
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Trick: Add and subtract ½ to the right-hand-side: 
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Getting common denominator for the term in brackets: 
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Now substitute sp=σp+jωp to obtain 
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Now collect real and imaginary terms to get 
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Now we will use this rule: 

If for three vectors a, b, and c, a=b+c, then |a|<|b|+|c|.  

Application of this rule to (5) results in 
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Define A as the square-root term in the numerator of (51); 

B as the square-root term in the denominator, i.e., 
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Then (51) becomes: 

B

A
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2
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    (53) 

Now consider one eigenvalue having σP<0, corresponding 

to a stable pole of the continuous time system.  

Then (52) indicates that B>A>0. 

Then 0<A/B<1.  

Then the right-hand-side of (53) must be in (0.5,1), i.e., 

1
2

1

2
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+
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A
z p     (54) 
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And so the discrete-time-system must be stable. The 

implication is that numerical integration using the 

backwards rule of a stable continuous-time-system will 

result in a stable discrete-time-system, independent of 

choice of T.  

Likewise, we can consider the case of having one 

eigenvalue having σP>0, corresponding to an unstable 

pole of the continuous time system. But in this case, it will 

not be good enough to simply show that |zp| can be 

greater than 1; we will need to show that |zp| must be > 1 

so that we can be certain an unstable continuous time 

system results in an unstable discrete time system.  Doing 

so results in  

222

22

)1(

1

pp

p

p

TT

T
z





+−

+
=

    (55) 

Here we can see that, for σP>0, if TσP<1, then the 

numerator is greater than the denominator, and |zp|>1. 

The condition TσP<1 is easy to satisfy in practice, since 

unstable eigenvalues typically have very small real parts. 

I think I started from (46) to derive 

(55), but need to check this… 
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Equation (55) may also be used to verify our earlier 

conclusion: for σP<0, the denominator is always greater 

than the numerator, and |zp|<1. 

6.0 Trapezoidal rule 

The trapezoidal rule is an implicit method that 

approximates the area under the curve of the second term 

below 


−

+−=

kT

TkT

dkxfTkTxkTx  ))(()()(    (10) 

using the formula for the area of a trapezoid, as: 

TbaA )(
2

1
+=      (56) 

 

Fig. 12 
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Figure 13 illustrates the application of the trapezoidal 

method.  

 

 

Fig. 13 

Therefore (10) becomes 
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Discretization using Trapezoidal integration corresponds 

to finding a z-domain transfer function of  
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(Tustin’s method, or the bilinear transformation). This 

corresponds to the mapping  
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as indicated in Fig. 14. 

 

Fig. 14 
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We may again show that the trapezoidal integration 

approach is numerically stable.  

 

Appendix: Stability Domain Analysis of Integration 

Methods 

Assume that the general form of a differential equation is ),( xtfx = . We linearize f in its 

neighborhood as follows. 
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The high order items can be omitted. Let 
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If 0 , we can do transformation 
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Thus (1) can be transformed to 

xx =      (3) 

Expression (3) is usually called test equation (see the definition as follows). For a set of differential 

equations, i are the engenvalues of Jacobian matrix. 

 

Now we apply a numerical method to expression (3), for example Forward Euler method. 

nnnnnn xzRxhRxhxhxx )()()1(1 ==+=+=+    (4) 

where hz = . 

Assume that there is disturbance n  on nx , and the resulting disturbance on 1+nx is 1+n . 
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Then,  
nn zR  )(1 =+

 

If we want nn  +1 , we just need 1)( zR . 

 

Definition3: The function )(zR  is called the stability function of the method. It can be interpreted as 

the numerical solution after one step for 

  xx = ,  with 10 =x , hz = , 

the famous Dahlquist test equation. The set  

   1)(; = zRzS C  

is called the stability domain of the method. 

 

In order to analyze the numerical stability of p-order Explicit Runge-Kutta(ERK) method, we just need to 

calculate their stability domain. 

 

Conclusion3 : If the Explicit Runge-Kutta is of order p,  then  
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The stability domain of first to fourth order Explicit Runge-Kutta methods is shown in the figure below.  
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Stability domain of p-order Explicit Runge-Kutta 

Similarly, we can find stability domain of some implicit methods, as generalized in below table. 

Numerical 

Method 

Formula 

Expression 

Stability 

Function 
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For power system domain simulation, Trapezoidal rule is usually used. It can be seen from its stability 

function that the stability domain of Trapezoidal rule is the whole left complex domain. 
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