
1

Numerical Methods

1.0 Problem set-up

We previously showed that we may write the swing

equation for a single machine as a pair of first-order

differential equations, according to:

))((
2

Re tPP
H

em

 −= (1)

 = (2)

Here, Pe(δ(t)) is given by the power flow equations:

=

+−+=

ij
j

jiijijjiiiiei YEEGEP
1

2)cos(
 (3)

where Ei, Ej are the internal bus voltage magnitudes having

angles of δi and δj, respectively, and Yij=Gij+jBij=Yij/_θij is

the element in the ith row, jth column of the appropriate Y-

bus. Depending on the particular time interval we are

integrating, the “appropriate Y-bus” will be Y1, Y2, or Y3,

corresponding to pre-fault, fault-on, and post-fault

conditions, respectively, as described in the notes called

“Multimachine.”

Comment: You are suggested to read the following portions of the text: Section 7.11, pp 262-264; Section 7.12, pg. 264 and

the first paragraph at the top of pg 265; Section 7.13, pp. 275-277; Section 7.14, pp. 277-278; Appendix B, 675-683. Also, you

can take entire courses on numerical methods for solving differential equations, e.g., Math 481, 561, and 581.

2

The solution to (1) and (2) is found by integrating both

sides of each equation, resulting in

 −==

t t

em dPP
H

dt
0 0

Re))((
2

)()(

 (4)

 ==−

tt

ddt
00

)()()0()(
 (5)

Note that δ appears in the integrand of (4),

and that ω appears in the integrand of (5).

But these functions are what we are trying to compute.

And so we observe that in general, we will not be able to

obtain any closed form expression for δ and ω; we cannot

solve for them in closed form. Thus, our only choice is to

resort to numerical integration.

More compactly, we may define x1=ω and x2=δ, so that (4)

and (5) may be written as

)(
),(

),(

2122

2111
xfx

xxfx

xxfx
=

=

=

 (6a)

3

At this point, we need to recall that,

if we want to represent additional nodes beyond the

internal machine nodes, i.e., if we want to represent any

load buses within the solution procedure so that related

information is available to us from the solution procedure,

➔the differential-algebraic system (DAS) of the power

system “electromechanical positive-sequence time-

domain simulation problem” has another set of

equations to deal with;

➔the algebraic set, which is a function of the

algebraic variables and the states.

Thus, our real problem is stated as (6a) plus the algebraic

set, i.e.,

�̇� = 𝑓 (𝑥, 𝑦)

0 = 𝑔(𝑥, 𝑦)
 (6b)

where x represent the state variables, y represents the

algebraic variables, and 0=g(x, y) represents the algebraic

equations.

One advantage we do have in seeking to solve (6b) is that

we do know x(0), i.e., we know the initial angles and

4

speeds δ(0) and ω(0), so it is an initial value problem (δ(0)

comes from the solution of the power flow equations, and

ω(0)=0).

Figure 0a, taken from a very famous paper on this subject

[1], shows the so-called “interface problem” between the

differential and algebraic equations of the DAS. This

problem refers to the need to solve both the ODEs of the

system (on the left of Fig. 0a) as well as the algebraic

equations of the system (on the right of Fig. 0a).

Fig. 0a

In general, there are two classes of methods for

addressing the interface problem and thus solving the

ODEs and the algebraic equations:

5

• Alternating (or partitioned) approach with initially, t=0:

1. solve the differential equations at t=Δt using values of

the algebraic variables from t=0 power flow solution;

2. solve the algebraic equations at t+ Δt using angles from

the differential equations;

3. let t ← t+Δt; solve the differential equations at t+Δt

using values of algebraic variables from step 2; return

to step 2.

The alternating method applies numerical integration to

only the discretized ODEs (and not to the original

algebraic equations). For this reason, the alternating

method may use either explicit integration (which

integrates only and so cannot include the algebraic

equations) or implicit integration (which integrates by

solving nonlinear algebraic equations and so can include

the algebraic equations).

• Direct (or simultaneous) solution method: Here, we

combine the ODEs (discretized, and therefore algebraic

equations) and the original algebraic equations into a

single set of algebraic equations. This single set of

algebraic equations are nonlinear, and so a nonlinear

6

solver such as Newton-Raphson is used to solve them.

Because the direct solution method solves together the

discretized ODEs and the algebraic equations, it cannot

use explicit integration; rather, it must use implicit

integration.

Figure 0b (7.13 in your text) illustrates the various design

decisions associated with building a time-domain

simulation software application. The top attribute

(hardware) is whether one wants to parallelize the

computations or not. The second layer is whether one

uses alternating or direct solution methods. The third

layer is whether one uses explicit or implicit integration

methods (we will discuss this further in these notes). The

fourth layer depicts the type of nonlinear solver chosen.

The fifth layer shows that a linear equation solver is also

needed, because most nonlinear solvers require one.

7

Figure 0b

Towards the end of these notes (Sec 5.2, pp. 38-40), we

return to the topic of solving ODEs vs. algebraic equations,

while explaining how to treat the network when retaining

nodes beyond those representing internal machine nodes.

Regardless of whether we use the alternating approach

(with either explicit or implicit integration) or the direct

solution approach (with implicit integration), we must

solve ODEs of the problem posed in (6b) (repeated here

for convenience):

�̇� = 𝑓 (𝑥, 𝑦)

0 = 𝑔(𝑥, 𝑦)
 (6b)

8

And so let’s look at a simpler initial value ODE problem in

one-dimension (i.e., a single state variable):

0)0()),((xxtxfx == (7)

So we want to solve

 ==

tt

dxfdxtx
00

))(()()((8)

If we are going to try a numerical solution, i.e., one using

computers, then we must deal with discrete time. In

discrete time, (8) becomes:

−

−

−

+=

=

kT

TkT

TkTx

TkT

kT

dkxfdkxf

dkxfkTx

))(())((

))(()(

)(

0

0

 (9)

From (9), we can write:

−

+−=

kT

TkT

dkxfTkTxkTx))(()()((10)

Equation (10) says the following:

9

If we want to know x at the “next” step, kT, we need

to know x at the “last” step, kT-T, and we need to

know the integral in (10). This integral is giving us the

change in x from the last step to the next, i.e.,

−

=

kT

TkT

dkxfx))(((11)

Since we do know x(0), we can say that we initially know x

at the “last” step. Thus, solving our problem requires only

the ability to compute the integral in (11).

There are many methods that will allow us to compute the

integral in (11). We will review only a few of them. You

should read Appendix B in VMAF as background material

for this topic.

2.0 Euler method

Consider plotting our function f(x(t)) as a function of t.

What we want to do, based on (11), is to obtain the area

under the curve of f(x(t)) from t=kT-T to t=kT, as illustrated

in Fig. 1.

10

Fig. 1

Here is a proposed approach: Assume that f is constant

throughout the interval at f(kT-T). This assumption is

clearly not good if kT is large, but it might be reasonable if

kT is made small enough.

This approach approximates the integral as the area

shaded by the vertical lines in Fig. 2. One observes that it

misses the area shaded by the horizontal lines in Fig. 2.

t
kT-T kT

f(x(kT)

)

f(x(kT-T))

f(x(t))

11

Fig. 2

−

+−=

kT

TkT

dkxfTkTxkTx))(()()((10)

Analytically, (10) becomes

))(()()(TkTxTfTkTxkTx −+−= (12)

where the last term is ∆x. This approach is also called the

“forward rule” because we assume a value for f and hold

it constant as we move forward in time.

t
kT-T kT

f(x(kT)

)

f(x(kT-T))

f(x(t))

error

12

2.1 Alternative development of forward rule

We may also develop the forward rule in another way….

Assume that we know x(kT-T) and that T is chosen small

enough so that x(kT) is close to x(kT-T). Then by Taylor

series,

)()(

....
!32

)()(

2

22

TxTTkTx

x
T

x
T

xTTkTxkTx

TkTt

TkTtTkTtTkTt

++−=

++++−=

−=

−=−=−=

 (13)

where O(T2) is the remainder of the Taylor series, and its

argument T2 indicates that the lowest power of T present

in the remainder is T2.

If T is small enough, O(T2) is negligible and

TkTt
xTTkTxkTx

−=
+−=)()((14)

where the last term is ∆x. This is illustrated in Fig. 3.

13

Fig. 3

Recalling that)(xfx = , (14) becomes

))(()()(TkTxTfTkTxkTx −+−= (15)

which is the same as (12), our forward rule.

From both Figs. 2 and 3, we can observe that the forward

method will incur some error, and this error will increase

with larger values of T.

kT-T kT

x(kT)

x(kT-T)

x(t)

error

14

One major problem with this method is that if T is too

large, the error will propagate from one time step to

another.

This means that error incurred at one time step kT will add

to the error incurred at later time steps. Solution methods

where this can happen are said to be numerically

unstable.

However, occurrence of this phenomenon does depend

on our choice of T. I will provide you with a way to consider

this issue.

2.2 Numerical stability of forward rule

The following development may be hard to follow if you

have not had a course in discrete-time systems and

control. ISU offers such a course as EE 576. The text by

Franklin & Powell is a well-known text in this area.

I will state some “Facts,” without proof, that we need in

order to consider numerical stability of integration

schemes. This will give you a framework to consider this

issue. If you want more depth, take EE 576, or read the

Franklin & Powell book, or read a similar one.

15

Fact 1: A transfer function in Laplace, H(s) corresponding

to continuous time impulse response h(t), may be

obtained for a dynamical system.

Fact 2: The eigenvalues of the system are the poles of the

transfer function, i.e., the roots of the denominator of

H(s).

Fact 3: The system is stable if all poles are in the left-hand-

plane.

Fact 4: We may discretize H(s) in a number of different

ways, and the particular way of discretization will specify

the mapping between the Laplace variable “s” (used in the

transform H(s) of the continuous-time function h(t)) to the

z-domain variable z (used in the transform H(z) of the

discrete-time function h(kT)). Specifically, use of the

forward integration rule corresponds to finding a z-

domain transfer function

T

z
s

sHzH 1)()(−
=

=
 (16)

where H(z) is the z-transform of the system’s discrete time

impulse response (see Franklin & Powell, pp. 54-56)

16

Fact 5: Whereas the continuous-time system is stable if all

poles of H(s) are in the left-half-plane, the discrete-time

system is stable if all poles of H(z) are within the unit circle.

This is because z/(z-γ) corresponds to a discrete-time pole

at γ, which has a z-transform of:

)(kTu
z

z kT

− (17a)

where u(kT) is the unit step-function such that

𝑢(𝑘𝑇) = {
0, 𝑘 < 0
1, 𝑘 ≥ 0

 (17b)

From (17a), we see that if | γ|>1, the time-domain term

will go to infinity as time increases. This would indicate

unstable behavior.

Fact 6: From Fact 4, a pole of H(s), call it sp, maps to the z-

plane according to:

pp

p

p Tsz
T

z
s +=

−
= 1

1

 (18)

Conclusion: The stability of the discrete-time system (as

indicated by whether all zp are within unit circle) depends on

17

• The stability of the continuous time system through the

location of continuous time system eigenvalues, sp, and

• The time step T.

Let’s look at how an eigenvalue sp maps to the z-plane

through the function (18).

Fig. 4

From Fact 5, we recall that if all poles zp are within the unit

circle, H(z) is stable. So this implies that for stability, the

poles must map to the z-plane so that

s-plane

j*Im(s)=jω

σ=Re(s)
●

sp

σp

jω

STABLE

z-plane

j*Im(z)

STABLE
Re(z)

1 -1

-1

1

zp=1+Tsp

18

1pz (19)

But the forward rule corresponds to a mapping of

pp Tsz +=1 (20)

Substitution of (20) into (19) yields:

11 + pTs (21)

But

ppp js += (22)

Substitution of (22) into (21) results in

() 11 ++ pp jT (23)

Or

11 ++ pp jTT (24)

Taking the magnitude of the complex number within (24)

() () 11
22
++ pp TT (25)

Squaring both sides results in

19

() () 11
22
++ pp TT (26)

Observe, in (26), that if σp>0 (a right-half-plane pole!),

then (25) will be violated. Since (25) must be satisfied for

the discrete-time-system to be stable, we see that an

unstable continuous time system necessarily implies an

unstable discrete time system. This is a good thing,

because we would not be happy if our integration method

could stabilize an unstable simulation.

And so we are no longer interested in unstable

continuous-time systems since we know our integration

method will also show them to be unstable, as desired.

What we are interested in are the stable continuous time

systems. Is it possible for our integration method to cause

them to be unstable?

And so we will assume now that σp<0 (implying a stable

continuous time system).

Expanding (26), we get

121 2222 +++ ppp TTT (27)

Subtracting off 1 from both sides, and factoring out a T,

20

() 02 22 ++ ppp TTT (28)

Now T will always be positive (it is step size). Therefore for

(28) to be true, it must be the case that

02 22 ++ ppp TT (29)

Solving for T results in

22

2

pp

p
T

+

−

 (30)

Equation (30) must be satisfied in order to be sure that the

forward integration method does not create numerical

instability.

But there are many eigenvalues sp! Which one to choose?

The answer is to choose the one with the smallest ratio

corresponding to the right-hand-side of (30), as that one

will most restrict what T can be. This means we want the

eigenvalues with small |σp| and large ωp. For these kind of

eigenvalues, it will be the case that |σp|<< ωp. Therefore,

(30) collapses to

21

2

2

p

p
T

−

 (31)

These eigenvalues are typically the “fast” modes, usually

associated with the excitation system. These eigenvalues

are closely related to the time constants of the control

systems.

You can test out the above theory with a stability program

that uses the forward integration rule by decreasing the

time constant of the excitation system for one of your

generators, keeping the time step fixed. At some point,

you will see instability. Then begin decreasing your time

step, and then you will see it stabilize!

The “cost” of decreasing the time step is that it increases

the computation time.

There are other ways of improving numerical performance of

an integration method. We will look at two of these.

1. Reduce the error: we will look at two methods of doing

this.

2. Use an implicit integration method: we will look at two

methods of doing this.

22

3.0 Reducing the error

Two algorithms that improve on the forward (Euler)

method are predictor-corrector and Runge-Kutta. We will

look at both briefly.

3.1 Predictor-corrector method

This method is called the modified Euler in your text. The

idea here is that we will take a step to compute x(kT) (a

predictor) and then we will use that calculation to

recalculate that same step (the corrector).

Step 1: Predict x(kT) using Euler to get x(kT):

)(

))(()()(

TkTx

p TkTxfTTkTxkTx

−

−+−=
 (32)

Step 2: Use xp(kT) to obtain a corrected value xc(kT):

a. Get a corrected derivative fc as the average of the

derivatives at x(kT-T) and xp(kT):

))(())((
2

1
kTxfTkTxff pc +−=

 (33)

In (32), the expression

under f is “x-dot of kT-T”.

23

b. Then apply the forward rule:

))(())((
2

)(

)()(

kTxfTkTxf
T

TkTx

TfTkTxkTx

p

cc

+−+−=

+−=

 (34)

This method is illustrated in Fig. 5.

Fig. 5

Understanding the method is facilitated by observing the

sequence of points in Fig. 5. The derivative f(x(kT-T)) is

obtained at point 1. The predicted point xp(kT) is obtained

at point 2. The derivative of the predicted point f(xp(kT)) is

kT-T kT

x p(kT)

x(kT-T)
x(t)

Average these

two slopes

1
2 3

4

And you get

this one.

kTt
x

=

24

obtained at point 3. The final point, point 4, is obtained

from averaging the two obtained derivatives f(x(kT-T)) and

f(xp(kT)).

One can observe intuitively from Fig. 5 that the error will

be reduced. This method can be shown to be equivalent

to considering up to the second derivative term in the

Taylor series, therefore the error is of O(T3).

This is a significant improvement over the Euler method,

but it is still a numerically unstable algorithm. In other

words, for the predictor-corrector method, for a given

minimum eigenvalue, T can be larger than it can be in the

Euler method, but it is still true that the algorithm may be

unstable if T is too large.

3.2 Runge-Kutta method

(pronounced Run-gah Kut-tah)

This algorithm was developed in 1895, and it also applies

the idea of averaging, similar to predictor-corrector, but in

a slightly different way.

There are different R-K algorithms of different order. We

will only study one of them, the 4th order R-K.

25

The 4th order R-K method requires, at each successive time

step, computing 4 different increments ∆xj, as follows:

Increment ∆xj Derivative

used

))((11 TkTxTfKx −== Start-point

derivative only

+−==

2
)(1

22

K
TkTxTfKx

First interior

derivative

+−==

2
)(2

33

K
TkTxTfKx

Second interior

derivative

()344)(KTkTxTfKx +−== Approx. end-

point derivative

Note the following about the Ki’s.

1. Ki is always used to compute Ki+1.

2. Each Ki is not a derivative but rather an increment in the

integration variable, i.e.,

)()(TkTxkTxKx iii −−== (35)

26

Any of the Ki’s could be used to obtain the new value

x(kT).

3. Use of K1 to obtain the new value x(kT) is equivalent to

the Euler method.

4. The derivatives are computed at four different locations

in the interval:

• The beginning of the time step x(kT-T)

• The first interior point x(kT-T)+K1/2

• The second interior point x(kT-T)+K2/2

• The approximate end-point point x(kT-T)+K3

Figure 6 below illustrates the sequence of calculations,

which can be understood by following the single arrows

from point 1 to point 2 to point 3, and then the double

arrows from point 3 to point 4 to point 5, and then the

triple arrows from point 5 to point 6 to point 7 to point 8.

27

Fig. 6

28

Once each of the increments K1-K4 are computed, then the

final increment is obtained by taking a weighted average

of the four increments, where the middle increments are

weighted heaviest, according to (36).

()4321 22
6

1
KKKKx +++=

 (36)

The middle increments (K2 and K3) are weighted heaviest

as they are computed based on slopes that will be more

representative of the slope in the interval than the

beginning (K1) and final (K4) increments.

The R-K method can be shown to be equivalent to

considering up to the fourth derivative term in the Taylor

series, therefore the error is O(T5).

Although this is a significant improvement over the Euler

or the P/C method, R-K is also a numerically unstable

algorithm therefore the stability domain, although

enlarged relative to the unit circle of the Euler, is bounded,

as shown in the appendix.

29

4.0 Two general types of integration methods

We have so-far explored the Euler method, the P/C

method, and the R-K method of numerical integration.

These are in a class of integration methods called explicit

methods. They are so-called because they evaluate x(kT)

explicitly as a function of values at previous steps and their

derivatives.

All explicit methods are numerically unstable, i.e., they

have a bounded stability domain.

Another class of integration methods that does not have

this problem is called implicit methods. We will study two

of these: Backwards rule and Trapezoidal rule.

Implicit methods require a value of the function x(kT) at a

future time step. To get this, we need to perform an extra

procedural step.

Implicit methods are good for “stiff” problems, where

explicit methods must utilize small step-sizes to work. Stiff

problems are often characterized by large differences

between the real parts of system eigenvalues.

30

5.0 Backwards rule

Recall that our integration problem is characterized by

(10), repeated here for convenience.

−

+−=

kT

TkT

dkxfTkTxkTx))(()()((10)

where we have the 1rst term (because we know the initial

value) and need to evaluate the 2nd term, which

corresponds to the area under the curve of f vs. time, as

illustrated in Fig. 1, repeated here for convenience.

Fig. 1

kT-T kT

f(x(kT))

f(x(kT-T))

f(x(t))

31

In the forward (Euler) method, we assumed f is constant

throughout the interval at f(kT-T). This was simple, and

convenient, since we already knew f(kT-T).

Now we will again assume f is constant throughout the

interval. This time, however, we will assume that it is

constant at f(kT) instead of f(kT-T), as illustrated in Fig. 8.

Fig. 8

Then, (10) becomes

))(()()(kTxTfTkTxkTx +−= (37a)

kT-T kT

f(x(kT))
f(x(t))

error

f(x(kT-T))

32

Of course, (37a) is still an approximation, but this time it

includes area as indicated in Fig. 8 (as opposed to the error

of the Euler method as indicated by Fig. 2).

But note a problem with this method:

➔ we do not know x(kT) !!!!

If we do not know x(kT), how do we evaluate f(x(kT))?

The answer to this question lies in observing that (37a) is

not a differential equation, but rather it is an algebraic

equation, and there is only one unknown, x(kT). Therefore

we may solve it!

Of course, we will need to account for the fact that there

is no reason to assume f is linear and in fact, most of the

time, f is nonlinear. Therefore we will need to use a

nonlinear algebraic solver to solve it.

The Newton-Raphson is one such solver with which we are

familiar. To apply it, let’s rewrite (37a) as

𝑥(𝑘𝑇) − 𝑥(𝑘𝑇 − 𝑇) − 𝑇𝑓(𝑥(𝑘𝑇)) = 0 (37b)

and then define:

0))(()()())((=−−−= kTxTfTkTxkTxkTxF (38)

Observe that, in the multi-dimensional case, (38) is just a set of nonlinear algebraic equations. Thus, we may also include

the network equations into this set which enables us to solve the differential equations and the algebraic equations of the

DAE simultaneously! This is one of the beauties of implicit integration methods (the other one being that they are

numerically stable). See section 5.2 in these notes for additional perspective on this issue.

33

Apply Taylor series expansion up to the first derivative,

yielding

0)())(())((

))()((

=+=

+

kTxkTxFkTxF

kTxkTxF

 (39)

The derivative F’(x(kT)) is the derivative of F with respect

to x, not t.

Solving (39) for ∆x(kT) results in

))(())(()(
1

kTxFkTxFkTx
−

−= (40)

In Newton-Raphson, we must guess an initial solution, and

then we use (40) to iterate.

In the multi-dimensional case, (40) becomes

))(())(()(
1

kTxFkTxJkTx
−

−= (41)

where J is the Jacobian given by1

1 See Kundur, pp. 862-864 for more on this.

34

)(
1

1

1

1

kTxx
n

nn

n

x

xF

x

F

x

F

x

F

J

=

=

 (42)

Of course, (41) is solved using a linear solver such as LU-

decomposition, based on

))(()())((kTxFkTxkTxJ −= (43)

We address three issues regarding this method: linear

solvers, network solutions, and numerical instability.

5.1 Linear solvers [2]

An important observation about implicit methods is that

(43) is just a problem in the form of Ax=b and therefore

simply requires a linear solver to obtain the answer.

Although solution to simultaneous linear equations is a

very old topic, because implicit methods devote over 90%

of their computation to this problem, it is still a very

important topic for problems that require high

computational speed.

35

Researchers have put much effort into writing

computational libraries for performing solution of linear

equations. The people who write these libraries know

much more about solving linear equations than you do.

➔Never invert the matrix;

➔Always use the libraries;

➔Never write your own method.

There are a number of standard, portable solver libraries

available, including:

• BLAS (Basic linear algebra subprograms): Many linear

algebra packages including LAPACK, ScaLAPACK and

PETSc, are built on top of BLAS. Most supercomputer

vendors have versions of BLAS that are highly tuned for

their platforms.

• ATLAS (Automatically Tuned Linear Algebra Software

package) is a version of BLAS that, upon installation,

tests and times a variety of approaches to each routine

and selects the version that runs fastest. ATLAS is

substantially faster than the generic version of BLAS.

36

• LAPACK (Linear Algebra PACKage) solves dense or

special case sparse systems of equations depending on

matrix properties such as:

o Precision: single, double

o Data type: real, complex

o Shape: diagonal, bidiagonal, tridiagonal, banded, triangular,

trapezoidal, Hesenberg, general dense

o Properties: orthogonal, positive definite, Hermetian (complex),

symmetric, general.

LAPACK is built on top of BLAS, which means it can

benefit from ATLAS. LAPACK is a library that you can

download for free from www.netlib.org.

• ScaLAPACK is the distributed parallel (MPI) version of

LAPACK. It contains only a subset of the LAPACK

routines. ScaLAPACK is also available from

www.netlib.org.

• PETSc (Portable, Extensible Toolkit for Scientific

Computation) is a solver library for sparse matrices that

uses distributed parallelism (MPI). It is designed for

general sparse matrices with no special properties, but

it also works well for sparse matrices with simple

http://www.netlib.org/
http://www.netlib.org/

37

properties like banding & symmetry. It has a simpler

Application Programming Interface than ScaLAPACK.

When choosing a solver, pick a version that’s tuned for the
platform you’re running on, and use the information that
you have about your system to select the one that will be
most efficient. You will have to do some research and
discuss with people to gain a level of knowledge to enable
you to most effectively make this selection.
Figures 9 and 10 illustrate the relation between implicit
integration methods, nonlinear solvers, & linear solvers.

Fig. 9

38

Fig. 10

5.2 Network solutions

This section recaps information given on pp. 3-5 of these

notes.

In our problem formulation, because we eliminate all

nodes except machine internal nodes, we are able to

know all node voltage magnitudes and thus write the

entire problem (swing dynamics and network equations)

as a single set of state equations where the only unknowns

are the states (angles and speed).

39

However, if we represent load as something other than

constant impedance, then we may want to retain identity

of these buses. But there are no swing dynamics at these

buses, and so there will be no state equation for them, and

so if we only solve the system differential equations, we

will have no way to obtain the bus voltage magnitudes or

the angles of these buses.

We will see later that the solution to this problem is to

write a set of algebraic equations for the network. These

equations, essentially the Y-bus relation, are then solved

together with the state equations of the swing dynamics.

In the explicit integration methods, the only way to do this

is through what is called a partitioned approach where the

state equations are first solved and then the network

equations are solved separately. The reason why this is

the only way to do this is because the two sets of

equations (ODEs and algebraic equations) must use

different methods for solutions.

One problem encountered by the partitioned approach is

referred to as the interface error, where the solution to

40

the state equation is not quite consistent with the solution

to the network equations.

The partitioned approach may be used with implicit

integration methods also. In this case, implicit methods

will also encounter the problem of interface error.

In addition, implicit integration methods enable a second

approach called the direct solution (or simultaneous)

approach, where the network equations are embedded in

(43) and solved at the same time as the state equations.

This very convenient method eliminates interface error.

5.3 Numerical stability for backwards rule

The following development is very similar to that given in

Section 2.2. Again, additional reading may be found in the

the text by Franklin & Powell.

I will again state “facts,” and in fact Facts 1-3 and 5 are

exactly as before. This analysis differs only in Facts 4 and

6.

Fact 1: A transfer function in Laplace, H(s) corresponding

to continuous time impulse response h(t), may be

obtained for a dynamical system.

41

Fact 2: The eigenvalues of the system are the poles of the

transfer function, i.e., the roots of the denominator of

H(s).

Fact 3: The system is stable if all poles are in the left-hand-

plane.

Fact 4: We may discretize H(s) in a number of different

ways. Whereas use of the forward integration rule

corresponds to finding a z-domain transfer function

T

z
s

sHzH 1)()(−
=

=
 (16)

where H(z) is the z-transform of the system’s discrete time

impulse response (see Franklin & Powell, pp. 54-56), use

of the backwards integration rule corresponds to finding a

z-domain transfer function

Tz

z
s

sHzH 1)()(−
=

=
 (44)

Fact 5: The discrete-time system is stable if all poles of H(z)

are within the unit circle. This is because z/(z-γ)

42

corresponds to a discrete-time pole, which has a z-

transform of:

)(kTu
z

z kT

− (17)

From (17), we see that if | γ|>1, the time-domain term will

go to infinity as time increases.

Fact 6: From Fact 4, whereas a pole of H(s), call it sp, maps

to the z-plane in the forward rule according to:

pp

p

p Tsz
T

z
s +=

−
= 1

1

 (18)

in the backwards rule, a pole of H(s), sp, maps to the z-

plane according to:

p

p

p

p
Ts

z
Tz

z
s

−
=

−
=

1

11

 (45)

Conclusion: For the forward rule, the stability of the

discrete-time system depends on

43

• The stability of the continuous time system through the

continuous time system eigenvalues, sp, and

• The time step T.

For the forward rule, we concluded that the dependence

on T was that T had to satisfy

22

2

pp

p
T

+

−

 (30)

The question we must answer now is: For the backwards

rule, (a) does stability of the discrete-time also depend on

T, and (b) if so, in what way?

Let’s take the same approach by looking at how an

eigenvalue sp maps to the z-plane through the function

(45). Our real question here is: what are the conditions on

T to force all left-hand-plane eigenvalues of H(S) to map

into the unit circle of the z-plane?

44

Fig. 11

From Fact 5, we recall that if all poles zp are within the unit

circle, H(z) is stable. So this implies that for stability, the

poles must map to the z-plane so that

1pz (19)

But the backwards rule corresponds to a mapping of

p

p
Ts

z
−

=
1

1

 (46)

s-plane

j*Im(s)=jω

σ=Re(s)
x

sp

σp

jω

STABLE

z-plane

j*Im(z)

STABLE
Re(z)

1 -1

-1

1

zp=1/(1-Tsp)

45

Trick: Add and subtract ½ to the right-hand-side:

−

−
+=

2

1

1

1

2

1

p

p
Ts

z
 (47)

Getting common denominator for the term in brackets:

−

+
+=

−

+−
+=

p

p

p

p

p
Ts

Ts

Ts

Ts
z

1

1

2

1

2

1

)1(2

12

2

1

 (48)

Now substitute sp=σp+jωp to obtain

()
()

+−

++
+=

pp

pp

p
jT

jT
z

1

1

2

1

2

1

 (49)

Now collect real and imaginary terms to get

−−

++
+=

pp

pp

p
TjT

TjT
z

)1(

)1(

2

1

2

1

 (50)

Now we will use this rule:

If for three vectors a, b, and c, a=b+c, then |a|<|b|+|c|.

Application of this rule to (5) results in

46

22

22

)()1(

)()1(

2

1

2

1

pp

pp

p

TT

TT
z

+−

++
+

 (51)

Define A as the square-root term in the numerator of (51);

B as the square-root term in the denominator, i.e.,

22

22

)()1(

)()1(

pp

pp

TTB

TTA

+−=

++=

 (52)

Then (51) becomes:

B

A
z p

2

1

2

1
+

 (53)

Now consider one eigenvalue having σP<0, corresponding

to a stable pole of the continuous time system.

Then (52) indicates that B>A>0.

Then 0<A/B<1.

Then the right-hand-side of (53) must be in (0.5,1), i.e.,

1
2

1

2

1
+

B

A
z p (54)

47

And so the discrete-time-system must be stable. The

implication is that numerical integration using the

backwards rule of a stable continuous-time-system will

result in a stable discrete-time-system, independent of

choice of T.

Likewise, we can consider the case of having one

eigenvalue having σP>0, corresponding to an unstable

pole of the continuous time system. But in this case, it will

not be good enough to simply show that |zp| can be

greater than 1; we will need to show that |zp| must be > 1

so that we can be certain an unstable continuous time

system results in an unstable discrete time system. Doing

so results in

222

22

)1(

1

pp

p

p

TT

T
z

+−

+
=

 (55)

Here we can see that, for σP>0, if TσP<1, then the

numerator is greater than the denominator, and |zp|>1.

The condition TσP<1 is easy to satisfy in practice, since

unstable eigenvalues typically have very small real parts.

I think I started from (46) to derive

(55), but need to check this…

48

Equation (55) may also be used to verify our earlier

conclusion: for σP<0, the denominator is always greater

than the numerator, and |zp|<1.

6.0 Trapezoidal rule

The trapezoidal rule is an implicit method that

approximates the area under the curve of the second term

below

−

+−=

kT

TkT

dkxfTkTxkTx))(()()((10)

using the formula for the area of a trapezoid, as:

TbaA)(
2

1
+= (56)

Fig. 12

T

b a

49

Figure 13 illustrates the application of the trapezoidal

method.

Fig. 13

Therefore (10) becomes

()))(()((
2

)()(kTxfTkTxf
T

TkTxkTx +−+−=

 (57)

kT-T kT

f(x(kT))
f(x(t))

error

f(x(kT-T))

50

Discretization using Trapezoidal integration corresponds

to finding a z-domain transfer function of

1

12)()(
+

−
=

=
z

z

T
s

sHzH (58)

(Tustin’s method, or the bilinear transformation). This

corresponds to the mapping

2/1

2/1

p

p

p
Ts

Ts
z

−

+
=

 (59)

as indicated in Fig. 14.

Fig. 14

s-plane

j*Im(s)=jω

σ=Re(s)
x

sp

σp

jω

STABLE

z-plane

j*Im(z)

STABLE
Re(z)

1 -1

-1

1

zp=(1+Tsp/2)/(1- Tsp/2)

51

We may again show that the trapezoidal integration

approach is numerically stable.

Appendix: Stability Domain Analysis of Integration

Methods

Assume that the general form of a differential equation is),(xtfx = . We linearize f in its

neighborhood as follows.

 +

−+

−+=

),(),(

)()(),(

nnnn xt

n

xt

nnn
x

f
xx

t

f
ttxtfx (1)

The high order items can be omitted. Let
),(nn xtx

f

= , and we can get

n

xt

nnn x
t

f
ttxtfxx

nn

 −

−++=

),(

)(),((2)

If 0 , we can do transformation

−

+−++= n

xt

nnn x
t

f
ttxtfxx

nn

),(

)
1

(),(
1

,

Thus (1) can be transformed to

xx = (3)

Expression (3) is usually called test equation (see the definition as follows). For a set of differential

equations, i are the engenvalues of Jacobian matrix.

Now we apply a numerical method to expression (3), for example Forward Euler method.

nnnnnn xzRxhRxhxhxx)()()1(1 ==+=+=+ (4)

where hz = .

Assume that there is disturbance n on nx , and the resulting disturbance on 1+nx is 1+n .

52

Then,
nn zR)(1 =+

If we want nn +1 , we just need 1)(zR .

Definition3: The function)(zR is called the stability function of the method. It can be interpreted as

the numerical solution after one step for

 xx = , with 10 =x , hz = ,

the famous Dahlquist test equation. The set

 1)(; = zRzS C

is called the stability domain of the method.

In order to analyze the numerical stability of p-order Explicit Runge-Kutta(ERK) method, we just need to

calculate their stability domain.

Conclusion3 : If the Explicit Runge-Kutta is of order p, then

)(
!!2

1)(1
2

++++++= p
p

zO
p

zz
zzR

The stability domain of first to fourth order Explicit Runge-Kutta methods is shown in the figure below.

53

Stability domain of p-order Explicit Runge-Kutta

Similarly, we can find stability domain of some implicit methods, as generalized in below table.

Numerical

Method

Formula

Expression

Stability

Function

Backward Euler)(11 ++ += nnn xhfxx
z

zR
+

=
1

1
)(

Trapezoidal rule)()(
2

11 ++ ++= nnnn xfxf
h

xx
2/1

2/1
)(

z

z
zR

−

+
=

Implicit Midpoint rule

++= ++)(

2

1
11 nnnn xxhfxx

2/1

2/1
)(

z

z
zR

−

+
=

54

For power system domain simulation, Trapezoidal rule is usually used. It can be seen from its stability

function that the stability domain of Trapezoidal rule is the whole left complex domain.

[1] B. Stott, “Power system dynamic response calculations,” Proceedings

of the IEEE, Vol. 67, No. 2, Feb., 1979.

[2] 2007 presentation slides from Paul Gray, University of Northern

Iowa, Henry Neeman, University of Oklahoma, Charlie Peck, Earlham

College.

[3] E. Hairer, G. Wanner, Solving ordinary differential equations II: stiff

and differential-algebraic problems, Springer-Verlag, 1996.

