Simulation of Multi-Machine Systems

The parts of the text which we have yet to cover include:

Chapter 3: System response to small disturbances

Chapter 7: Simulation of multimachine systems

Chapter 8: Small-signal stability analysis (linear models)
Chapters 9: Excitation systems

Chapter 10: Effect of excitation on stability

Chapter 11: Dynamic modeling for wind and solar

Chapter 12: Voltage stability

Chapter 13: FACTS devices

Chapter 14: Protection and monitoring associated with stability
Chapters 15-18: Mechanical Dynamic Performance (speed
governing and prime movers for steam/hydro/CTs/CC units)
The highlighted text above is what we will hope to study between
now and the end of the course. Although Chapter 8 is not included,
we will study small-signal stability except that we will focus on
classical models only which is treated in Chapter 3.

(Note that Chapter 8 is to Chapter 3 as Chapter 4 is to Chapter 2,
I.e., Chapter 4 extends the coverage of transient instability analysis
done in Chapter 2 from the classical machine model to more
elaborate machine models. Chapter 8 does the same thing, except
instead of transient instability, it extends the coverage of small-
signal instability done in Chapter 3).

We will study the first part of chapter 9 (9.1-9.3) and one part of
chapter 10 (8.3) on excitation. Then we will spend a little time
looking at Chapters 11 and 12. We will not have time to study any
of chapter 13, 14, or 15-18 (turbine-governors) at all. We will spend
some time on Chapter 9 and then move back to Chapter 3.

So here we look at Chapter 7.

Chapter 7 consists of the following sections:



We will study sections 7.1-7.5 and may look briefly at section 7.14,
Note that Padiyar’s book also gives treatment of this in pp. 462-474.

The first section of these notes, below (pp. 2-5) is a short summary

7.1: Introduction
7.2: Problem statement
7.3: Matrix representation of a passive network

o Network in the transient state

o Converting to a common reference frame
7.4: Converting machine coordinates to system reference
7.5: Relation between machine currents and voltages
7.6: System order
7.7: Machines represented by classical methods
7.8: Linearized model for the network
7.9: Hybrid formulation
7.10: Network equations with flux linkage model
7.11: Total system equations
7.12: Alternating solution method

o 7.12.1 Nonlinear loads

o 7.12.2 Network-machine interface

7.13 Simultaneous solution method
7.14 Design of numerical solvers

on load modeling. We will skip this, since we just covered it.

Load modeling:

| will use this section to emphasize the importance of load modeling.
Please read the 1993 Task Force paper on load modeling posted to
the course website. Also, please review the WECC document on
composite load model specifications, also posted to the website.
This latter document shows the well-known illustration used for

composite load modeling, shown below.
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A more recent illustration illustrates that it accommodates
distributed PV, as shown below.
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There are two basic types of commonly used load models.
e Static:
o Exponential
o Polynomial
e Induction motor
The polynomial is probably the most common. One version of the
polynomial is the so-called ZIP model:

P=P {A+ B[&“%C(ﬁﬁ'& }(1+ L, Af)

o {M[NNOIJW[ ) }(HQM)

Typically, the frequency sensitivity coefficients obey O<Lp<3 and —
2<Lo<0 so that when frequency declines (meaning Af<Q), P



decreases and Q increases, which tends to be the case for an
induction motor.

The voltage sensitivity coefficients must obey A+B+C=1 and

D+E+F=1. If we set A=B=D=E=0 and C=F=1, then we have a

constant impedance model. This load model provides that power

consumption of loads decreases as voltage drops. This characteristic

typically decreases the severity of system response in terms of

transient instability in that:

e We usually see voltage drop during and after a disturbance

e When voltage drops, constant Z loads consume less power
according to the square of the voltage drop — which in turn
improves the stability performance of the generators.

One advantage to using the constant Z-model is that it allows us to
easily reduce the network to generator nodes as all loads are
represented in the Y-bus. We obtain the impedance equivalents via
Z=|Vi|’IS”.

One should note carefully here the difference between load
modeling for transient analysis and load modeling for steady-state
analysis.

Typically, for steady-state analysis (using power flow), we represent
the load using constant power models. Some power flow programs
do allow for using other load models, e.g., ZIP. However, if your
power system contains under-load-tap-changing (ULTC)
transformers connecting between the transmission system and the
load (most commonly between the subtransmission and the
distribution systems), and most do, then use of anything except a
constant power model is usually inappropriate unless you are also
representing the ULTC transformers.

The reason for this is as follows:



Steady-state analysis of disturbances using power flow is typically
done to analyze the 3-10 minute time period following the
disturbance. The value of 3 minutes is chosen because this is enough
time for the ULTC to operate fully, restoring the voltage levels in
the distribution system, so that the loads actually see a constant
voltage and therefore behave as constant power loads.

Section 7.2, Problem statement:
Each machine is represented by the following relation:

x=f(x,vT,1) (7.1)
where X is the state vector (could be any number of states between
2-8 depending on the choice of machine model), v=[vq, Vq, VF]", T
IS the mechanical torque, and t is time.

Recall that the input vector for each of our machine models included

va and vq (or Vg and Vq where v, :% and v, =%), which are the d-

and g- axis components of the machine terminal voltage. For

example, the current-state-space model for model 1 is:
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These terms vg and vq (or Vg and V) are determined by the netwérli,
and we therefore need to interface the machine model with the
network in order to account for them.

We assume here that veand Ty, are fixed (they are actually governed
by the excitation control and the turbine-governor control; we will
study control of ve in this course (Chapters 9-10), but we will not
have time to study control of Ty, (Chapters 15-18).

Let’s assume that we are using the current state-space model of
Model 1 (which is the “full” model including the G-circuit and two
damper windings, so it is called model 2.2).

Note that VMAF make the following statements at the beginning of

Section 7.2, pp. 239-240 (it references (7.1) given above and below):
“Consider the set of equations (7.1). In Chapter 4, the current model
that is developed represents a set of eight first-order differential
equations for each machine.”

“The number of the variables, however, is 10: 6 currents, » and §,
and the voltages v, and v, .”

X=f(xvT,.1) (7.1)
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And so, with an 8-state model, we have the number of state
variables is eight: six currents, o and §; and the number of variables
IS ten: eight state variables and the voltages vq4 and vq,

“Assuming that there are n synchronous machines in the system,”

And assuming that all machines are modeled with the 8-state
model...

“we have a set of 8n differential equations with 10n unknowns.”

“Therefore, 2n additional equations are needed to complete the
description of the system.”

That is, the variables vq and vq result in the additional two unknowns
per machine, and so we need an additional two equations per

machine.
“These equations are obtained from the load constraints.”

Our objective is to derive expressions for vg and vq in terms of the
state variables (and so avoid adding additional variables), which in
the case of the current state-space model of Model 1 (with G-
circuit), would be the six currents, w and 6. We will do this from the
“load constraints.”

We begin by recalling the stator-side equivalents to vg, Vg, i4, and ig,
given by:

V. = Vd V.:Vii
R R
Id.:idi I_:idi
"5 T

where subscript “i” indicates that the relations apply to machine i.

We also have that

V, =V, + jVy =1+l (7.2)

for every machine i=1, ..., n.



Thus we have a vector of nodal voltages and currents for every

generator bus given by:
Vql + del V1 Iq1 + jl d1 |_1

\12 . = l= . = (74)

an+jvdn \7n an+j|dn In

where, says VMAF, “the axis q; is taken as the phasor reference in
each case” (p. 240).

(Note that we will use underlines to denote vectors and matrices,
and we will use overbars to denote phasors, which differs from
VMAF which uses bold to denote vectors and matrices).

Our problem is to express V in terms of 1. One might think that this
IS an easy problem, based on recollection of the Y-bus relation
which has that I=YV.

However, there is a major issue in doing this...

The elements of these two vectors, e.g., Vq+jVa and lgi+jlas, are,
by definition, expressed on the d-q reference frame of the
corresponding machines. We have done nothing at this point to
relate the d-q frame of one machine to that of another. VMAF say it
this way (p. 240, italics added):

“Note carefully that the voltage V, and the current 1. are referred to the q

and d axes of machine i. In other words the different voltages and currents
are expressed in terms of different reference frames. The desired relation is
that which relates the vectors V and | . When obtained, this will represent a

set of n complex algebraic equations, or 2n real equations. These are the
additional equations needed to complete the mathematical description of the
system.”

So the elements of V (and the elements of I) are expressed on

different reference frames. Any analysis using these numbers “as is”
would have relative angles between nodes in the network that mean




The figure on the
left indicates that
the only nodes in
the system are the
ones outside the
box identified as
black dots 1, 2, ,
.., .

absolutely nothing. Since relative angles have a very large effect in
determining power flow, this is highly unacceptable.

Section 7.3, Matrix representation of a passive network:

In consideration of a multimachine system in Chapter 2, using the
classical machine representation, because the machine internal EMF
Is constant, we could reduce the network to its internal machine
nodes, thus eliminating the nodes corresponding to each machine’s
terminal voltage V..

Now, however, we need to retain the node corresponding to each
machine’s terminal voltage V. because all of our higher-order
models require it through the presence in the models of vy and v
The difference between these two approaches is illustrated by the
Fig. 1 below from your text (left, internal nodes, Fig. 2.17, and right,
terminal nodes, Fig. 7.2).
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The figure on the
right has internal
nodes (as does the
figure on the left),
but also terminal
nodes and possibly
other nodes having
loads not represent-
ed as only constant
impedance (repre-
sented inside the
box labeled “trans-
Mmission system’).

Fig. 1
We assume, for now, that we represent all loads using constant
impedance shunts.
Then we can (but do not have to) use network reduction (Gaussian
elimination) to eliminate all network nodes except machine terminal
nodes.



We have already recognized that we cannot express 1=YV using eq.
(7.4) because the various vector elements are all on different
reference frames.

So let’s consider a new set of nodal voltages and currents that are
expressed to a common reference frame where one of the quantities,
often one of the voltages, has an angle designated as 0°.

We will refer to this set of nodal voltages and currents as V. and | |,
articulated as V-hat and I-hat. So the underline indicates “vector,”
and the hat indicates that all elements are referred to the network
reference frame.

So on the network reference frame, it is acceptable to write that
=YV (7.5)
where Y is the network admittance matrix. Of course, at this point,

we are simply conjecturing that we can express all voltages and
currents to a common reference frame, but we have not yet done it.

But Dr. Anderson is careful..... he recognizes that eq. (7.5) is a
steady-state relation, and he takes a little aside to check: under what
conditions can we use eg. (7.5) for transient analysis?

In the following, I simply cut out the part of VMAF which addresses

this question, Section 7.3.1, and then, just after that, | give a
summary.

10



This 2" assumption
results in neglecting
network transients,
an assumption that
may not be so good
if there are many
IBRs in the network.

7.3.1 Network in the Transient State

Consider a branch in the reduced network of Figure 7.2, Let this branch, located between any two
nodes in the network, be identified by the subscript k& Let the branch resistance be ry, its inductance
be &, and its impedance be Z;. The branch voltage drop and current are oy and i

In the transient state the relation between these quantities is given by

ﬂg=f§:&+!‘k& k=12...b (7.7

where b is the number of branches.
Using subscripts abe to denote the phases abe, (7.7) can be written as

Vabek= Chiabek + Mgk k=1,2,...b (7.8)

This branch equation could be written with respect to any of the n g axis references by using the
appropriate transformation . Premultiplying (7.8) by the transformation P as defined by (4.5),

PV g = EPianr + 1 Pigper (7.9)
Then from (4.31) and (4.32)
0
Plase = logg— | —ig (7.10)
i

Substituting (7.10) in (7.9) and using (4.7},

-0
Vildgk ={; iw—ﬂ} —fﬁ +l‘gi;}# (7.11)
L T
which in the case of balanced conditions becomes
Vage =L (iﬁﬁm "‘;Dmi# (7.12)
= Ik

—)

Itis customary to make the following assumptions: (1) the system angular speed does not depart
appreciably from the rated speed, or @ = @g, and (2) the terms £i are negligible compared with the
terms @ i, The first assumption makes the term @ approximately equal to xdy, and the second
assumption suggests that the terms in i are to be neglected.

Under the above assumptions (7.12) becomes

Vegk = Fikagr +X¢

o l k=12,..b (1.13)
= Ik

Equation (7.13) gives arelation between the voltage drop and the current in one branch of the
network in the transient state, These quantities are expressed in the g-d frame of reference of any
machine. Let the machine associated with this transformation be i. The rotor angle & of this machine

is given by
Oi=wpt+a/2+ & (7.14)
where & is the angle between this rotor and a syachronously rotating reference frame.
From (7.13) multiply both sides by 1/+/3, and using (7.3),
Varioy =relgeiy =%edawy V) = Ml +Xedgegi) (7.15)
where the subscript i is added to indicate that the rotor of machine § is used as reference.

11



W Reference frame

(moving at synchronous speed)
Figure 7.3 Positicn of axes of mtor & with respeat to refersnce frame

Expressing (7.15) in phasor notation,
Vi = Varty + Varery = (e g = 3w )+ (el = dgrany ) = (e + i) (Fge + )

or

Conclusion® | Ve =2l k=12,....b, (.16 |

Equation (7.16) expresses, in complex phasor notation, the relation between the voltage
drop in branch k and the current in that branch. The reference is the g axis of some (hypothetical) rotor
i located at angle &, with respect to a synchronously rotating system reference, as shown in Figure 7.3,

Summary of Section 7.3.1: We write the time-domain voltage drop
equation for a network branch, and then transform this equation
using Park’s transformation. This transformation is based on an
assumed synchronously rotating reference frame which, at t=0, is
aligned with the a-phase of a chosen machine. This action, then,
locates the machine’s rotor, and thus the machine’s d-axis, at

6 =t +712+0;

Fig. 2 illustrates.

a-phase

d-axis o
axis

g-axis

Synchronously
rotating reference

Fig. 2

12



I will not go through this analysis but rather will simply state the
conclusions. Dr. Anderson’s conclusion is that:

Vi = Zk I_k(i) ,k=1,...,b (7.16)
where
e V, and I, are the branch voltage drops and branch currents,

respectively,

e expressed on the d-q axis reference frame of machine i, that is,
the reference is the g-axis of the i machine located at angle &
with respect to a synchronously rotating system reference,

e 7. is the impedance of branch k, and

e Db is the total number of branches in the network.

Equation (7.16), which is our standard Ohm’s Law relation, is

applicable for transient analysis if the following two conditions are

satisfied (these are the two “assumptions” on above p. 11):

1. The frequency, and therefore the reactances of the branches, are
constant.

2. Current derivatives are much less than speed-current products.

‘i'd‘ << ‘a)iq‘
‘iq‘ <<|aiy]

This is analogous to where we assumed that transformer voltages
are much less than speed voltage drops (svd), i.e., the d-q voltage
components due to transformer action (i.e., variation in d-q currents
or in d-q flux linkages) is much less than the d-g voltage components
due to the speed. We used this in deriving the E’” model in our notes
on “simplified models,” expressed as:

‘/id ‘ << ‘a)lq‘
‘/"Lq‘ <<|wl]|

13



We spent some time discussing this assumption in our notes on

“simplified models,” (under Comment on dAd/dt=dAq/dt=0 which

extended from pp. 11-13, which included the following statement:
Section 7.3.1 of VMAF addresses this last point, which is

further characterized by the following statement from [2]:

“In stability studies it has been found adequate to represent the network as a collection of
lumped resistances, inductances, and capacitances, and to neglect the short-lived electrical
transients in the transmission system.BBIBLI0N Ag 5 consequence of this fact, the terminal
constraints imposed by the network appear as a set of algebraic equations which may be
conveniently solved by matrix methods.”
We also said in “simplified models” (p. 13)

Setting dAd/dt=dAg/dt=0 1is referred to in the literature as

“neglecting stator transients” or “neglecting network transients.”

In addition to identifying the conditions under which we can use our
familiar steady-state form of Ohm’s Law (and thus the Y-bus
relation), eq. (7.16) also provides that we may express the network
to a particular machine’s d-q reference frame.

But this does not do us too much good since we have all the machine
models expressed to their own frame.

So a better approach is to express all of the machine d-q reference
frames to a network reference frame. Let’s try that (Section 7.3.2).

We have already defined the d-q reference frame of the machine.
Now we define the network reference frame, and we will denote the

network reference frame as D-Q (do NOT confuse this notation with
the upper-case D,Q notation used for the damper windings!!!!).

So our question is: how to convert a voltage (or current) on the d-q
reference frame to a voltage (or current) on the D-Q (network)
reference frame?

Fig. 3 (Fig 7.4 in text) illustrates.

14

[2] K. Prabhashankar
and W. Janischewsyj,
“Digital simulation of
multimachine power
systems for stability
studies,” IEEE Trans.
Power Apparatus and
Systems, Vol. PAS-
87, No. 1, January,
1968.

NOTE: This is ref [5]
in ch 7 of your book.




Fig. 3

Note two things with respect to Fig. 3:
e Vi, V, are drawn leading the g-axis, whereas we know that for

generator action, the terminal voltage will lag the g-axis. This is

because Fig. 3 is drawn to facilitate understanding of how to

project any general quantity given on the d-q frame to a quantity
given on the D-Q frame. It is not drawn to depict the operation of

a generator.

e The angle d; has a new definition.

o Whereas previously we have defined ¢; as the angle by which
the machine internal voltage (and thus the g-axis) leads the
(synchronously rotating) machine terminal voltage;

o now, in Fig. 3, we define d; as the angle by which the machine
internal voltage (and thus the g-axis) leads the (synchronously
rotating) Q-axis network reference frame.

From this picture, it is easy to see how to compute Vi and Vp; from
Vi and V4.

15



It is important to recognize that we are NOT getting Voi and Vpi
from v, (or V,) directly but rather getting it from Vg and Vi, which

are the d-g axis components of v, (or V,).

For example, consider getting Vi. By inspection, we see that
Voi =V, €080, =V sin g,

where, again, we emphasize that the angle ¢; is the angle by which
machine i g-axis leads the synchronously rotating network reference
frame.

Similarly, consider getting Vpi. Again, by inspection, we see that:
Vo =V, sind; +V; c0so,

Therefore, the voltage V; when expressed to the network reference

frame, becomes \7i , expressed as:
V, =V + Vg = (V,; €088, =V sin 5, 1+ j(V, sin 8, +V,; cos ;)
Collecting terms in Vg and Vgi, we have:
V, =V + JVp; =V, (cosd; + jsing, ) + ¥, (jcosd, - sind; )
Factoring out a ““j” from the last term:
V, =V + jVp, =V, (cosd, + jsing, ) + ¥ (cosd, + jsin, )
And finally, we observe the common sum which can be factored as:
Vi =V + Vo = (Vg + JVy)(c0s5, + jsin 6,)=V,e"

In summary, the transformation that we are making is from one set
of coordinate axes

where the positive g-axis is assigned 0 degrees,
to another set of coordinate axes

\7i =Vq + Vo
where the positive Q-axis is assigned 0 degrees.

Here, the +g-axis leads the +Q axis by o; degrees.

16



And we have found that
V, =V.e¥ (7.17)
As an example, consider an arbitrary quantity V, =10£30°
(expressed on the d-q frame), and let g lead Q by 6=20°. Then
V. =V.e® =10.,30%'*" =1050°
which is illustrated in Fig. 4 below.

V, =10.30°
V, =10,50°
30°
+q
20°
+Q
Fig. 3

Before we go further, let’s clarify two things:

1. What is the angle 6i?

2. How do we identify the system reference?
We will take these questions one at a time.

1. What is the angle 6i?

Several comments here:

a. Value vs. variable: In notes on “Simulation of Synchronous
Machines,” we located the initial value of ¢; (for each
machine i) by finding E.. But make sure you are clear in
your mind that

e this value (we could call it dip) is an initial condition, and as
such, we can refer to it as a specific value;

ein general, ¢; is a variable (indeed a state variable); here, in
Chapter 7, we no longer think only of ¢; as an initial
condition but also (and primarily) as a variable that will
vary through the course of our time-domain simulation.

17



b. The meaning of the angle J; has been changed. To
understand this, we will review what d; was (item ¢ below)
and what ¢; is now (item d below).

c. What ¢; was: It is worth going back to the beginning of
chapter 4 to make sure we understand what ¢; was. On p.
84, we were shown the below diagram.

a axis

d axis 8 q axis

Direction
of Rotation

b axis C axis

Fig. 4.1 Pictorial representation of a synchronous machine

FY\M AT

It is useful to review what VMAF said about this figure
(p. 93), which I have copied out below, in quotes, with
(my) additional comments highlighted in yellow.
“The main field-winding flux is along the direction on
the d-axis of the rotor.”
=>This is 7, which | added to Figure 4.1.
“It produces an EMF that lags this flux by 90°. Therefore
the machine EMF E is primarily along the rotor g-axis.”
=> | also added this to Figure 4.1.
“Consider a machine having a constant terminal voltage
V. For the generator action the phasor Eshould be
leading the phasor Vv .”
=> | also added this to Figure 4.1.

18



the angle o has been the ) . . .
o if the phasor V is in the direction of the reference phase

Key point: Previously, “The angle between E and V is the machine torque angle
angle by which E leads g )
v (phase a). At t=0 the phasor V is located at the axis of

V.
phase a, i.e., at the reference axis in Figure 4.1. The g-
axis is located at an angle ¢, and the d-axis is located at
0=0+m/2.”
=> | have redrawn Fig. 4.1, for t=0, as Fig. 4 below.

+(-axis 4« Phase a axis.

rotation (

<

+d-axis

Fig. 4
“At t>0, the reference axis is located at an angle wrt with
respect to the axis of phase a. The d-axis of the rotor is
therefore located at
0= wrt+o+m/2 (4.6)
where wr is the rated (synchronous) angular frequency
in rad/s and ¢ is the synchronous torque angle in
electrical radians.”
=>» | have redrawn Fig. 4.1, for t>0, as Fig. 5 below.

19



Phase a axis.

+0-axis E
o
o

Fig. 5
d. What ¢ is now: In developing a system synchronously

rotating reference frame, ¢i (for machine i) changes from
ethe angle by which the machine i g-axis leads the
terminal voltage to
ethe angle by which the machine i g-axis leads the
synchronously rotating system reference.
2. How do we identify the system reference?
The system reference is identified as a synchronously rotating
vector having angle of O degrees at t=0. This is normally the
reference bus in the power flow model.

Some additional clarifying comments: Consider the beginning

of Section 7.4 (p. 244), where it reads (bold underline added):
“Consider a voltage Vani at node i. We can apply Park’s
transformation to this voltage to obtain vqqi. From (7.2)

Vi =Vg + IV L= 1g + 11y (7.2)

this voltage can be expressed in phasor notation as Vi,
using the rotor of machine i as reference.”

20



=>» This statement is a little misleading. Since the d-axis is
aligned with the rotor, “using the rotor as reference”
implies using the d-axis as reference. However, the
phasors of (7.2) are expressed with the g-components
along the real axis (0°) and the d-components along the
imaginary axis (90°), implying the g-axis is the
reference. It may be that when A&F wrote “using the
rotor as reference,” they meant “using the rotor frame
as reference,” which could be interpreted as “using the
g-axis as the reference.” We will assume there that they
meant to indicate they will use the g-axis as reference.
Pg. 244 continues by saying, “It can also be expressed to

the system reference as Vi using the transformation (7.17).
V, =V.e¥ (7.17)
=>» | have redrawn the figure, as below, to illustrate:
| 4 -d-axis

+Q-axis

+Q-axis

+d-axis

=>Expression (7.17) can Dbe understood as

follows...Observe that the angle of phasor Vi, identified
as Ji oid, and given on the d-q frame, must be negative (the
g-axis leads Vi, and so if we express V. relative to the g-

21



axis, with the g-axis having a 0° angle, the angle of Vv,
must be negative).

=>On the other hand, if we express Vv relative to the Q-
axis (to obtain V), we observe that the angle must be

positive as Vi is leading the Q-axis. We obtain this via:

ZVi :é]ol é‘lnew (*)

Now, renaming diog and dinew t0 be consistent with
VMAF, we can write (*) as:

LVi = 4\7i+ é‘l (**)
which is obtained from
V, =V.ek (7.17)

Now recall the equation relating branch voltage drops to branch
currents:

\7k(i) = Zy I_k(i) , k=1,...,b (7.16)

Remember what the “i”” notation indicates — that the quantity is
expressed to the d-qg coordinate axes of machine i.

But we want all quantities on the D-Q (network) coordinate axes,
and now we know how to achieve this..

V, =V, e ==V,

A —

—j6;

I =1 e! ==l = Ike 9
Substitution into (7.16) yields:
Vel =z 1 e
And we see that the exponentlals cancel so that:
Vi =70, k=1,...,b

Combining (7.18) with (7.16) we see that

(7.18)
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k N
This is expected — it says that the ratio of a voltage drop across an
element to the current through the element will remain the same if
we rotate all voltages and all currents by a particular angle.

LV
= =X _T_ k=1, ...,b
Kk

Writing the above equation for every branch in the network results
in the following matrix relation:

il fze 0 0 07|
V,| |0 2z, 0 0|,
17 ]lo o . of:
Vo] L0 0 0 z,]T,|

We may write the above relation in more compact form;

(7.19)

Some comments about the above:

e Since all off-diagonal elements are zero, we have assumed that
there is no mutual coupling in the network. (Mutual coupling can
exist, however, between lines that are physically parallel and
located in close proximity, a condition that is found when several
circuits share a common right-of-way.)

e The matrix zy is square with non-zero values along the diagonal
and is therefore invertible. We denote its inverse as yn, such that:

I,=yV, (7.20)

e The matrix of impedances zy, is called the primitive impedance
matrix, the matrix of admittances y, the primitive admittance
matrix, and the equations using the z- and y- forms are called the
primitive network equation, named by Gabriel Kron (see pic).

For treatment of Kron’s primitive
matrices, see pp. 288-289 and pp.
366-368 of P. Anderson, “Analysis
23 of Faulted Power Systems,” The
lowa State University Press, 1973.




e The primitive network equation does not describe the network at
all, i1.e., it gives absolutely no information as to how the
individual branches are interconnected in the network.

In order to provide network connection information, we need the
node-incidence matrix A, given by:

8y 8p - Ay,
a a e a
A= 2 2 2n
[Qpr 8pp 7t @y |

where

e b (number of rows) is the number of branches in the network.
e n (number of columns) is the number of nodes in the network.

e & isgiven by:
+1if currentin branch k is leaving node i
a,; =1-1if currentin branch k is entering node i
0if branch k is not connected to node i
Note that A isa b x n matrix:

° Number of branches = number of rows
° Number of nodes = number of columns

— - Y=o l y13 =-j10 PdFlpUl Y23 =-j10
1 0 0 -1 T

1 -1 0 O @ — \J ®
O 1 —1 0 g) Poa P43=1.1787pu

00 -11
1 0 -1 0]

1>
I
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Let’s denote the nodal voltages and currents, expressed to the
network frame, as V and i .

The nodal currents may be related to the branch currents by
summing over all currents leaving node i. Since a node corresponds
to a column of the node-incidence matrix, we can relate the nodal
currents to the branch currents through a multiplication of AT with

the branch current vector, i.e.,
a T
| = A |b (*)

The matrix AT has each row corresponding to a node, and therefore

the elements of each row will pick out of 1, the appropriate branch

flows emanating from that node to provide the total injected current
into that node.

Note dimensions of terms in this relation, we obtain an n x 1 matrix
from the product of an n x b matrix with a b x 1 matrix.

So the above relation illustrates that the node-incidence matrix can
be used to sum quantities. In this particular case, we summed branch
currents to get the nodal currents according to KCL.

What about relating nodal voltages to branch voltage drops? In this
case, we consider KVL and recall that we need to “sum” the nodal

voltages to obtain the voltage drops. So we need to express V ,, as a

product of V. and A in some fashion.
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If you toy with these matrices from purely a dimensional point of
view, you will see that

AV =V, (**)
where the dimensions indicate that we obtain a b x 1 from the

product of ab xn with ann x1. We may also derive this from power

relations (ref: P. Anderson, “Analysis of Faulted Power Systems,”
pp. 371-372).

But we observe in (**) that each row of A corresponds to a particular
branch, and the non-zero elements of that row correspond to a bus
that is connected to that branch. There will only be two such buses,
and the product AV will pick off the two voltages at either end of the
branch to find their difference, which is contained in V.

i)

Substitution of eq. (7.20), £b = Xb\_ib ,into eq. (*), I=A b,yields:

| = AT |Ab = AT Xb\zb (F*%)

oY A

and substitution of eq. (**), AY. =V, into (***) yields:

I=A"yV,=A"y AV

EA Zb——

Here, we clearly see that the familiar Y-bus (admittance matrix) is
obtained from the primitive admittance matrix from:

Y=A'y A

Zb
so that we have, finally,

I=yv (7.21)
which relates nodal voltages and current injections given on the D-
Q (network) coordinate axes.

Now define a square n x n transformation matrix T according to:
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i 0 0 0] e 0 0 O
0 e 0 o0 T4 _ 0 el 0 0
0 0 . 0 0 o . O
0 0 0 el 0 0 0 el

-
2
I

Then we can obtain the nodal currents and voltages expressed on D-
Q (network) coordinate axes from the nodal currents and voltages
expressed on d-q (individual machine i) coordinate axes from:

=Tl andV =TV
Substitution into eq. (7.21), I =YV . yields:
TI=YTV3I=TYTV=-MV> I=M
where clearly,

M=T7'YT

What does the transformation do?

It allows us to relate currents in the d-g coordinate frame of one

machine, I1,12,...,In to voltages in the d-qg coordinate frame of all
other machines.

You see, | =YV (where the current and voltage vectors are given

relative to the different gi axes of the various machines) does not
work!

1 =MV is the replacement we need, where M =T YT .

Example 7.1: The matrix M can be evaluated by performing the
appropriate matrix multiplications:

First, get Y. Then...
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M=T7YT=

e 0 0 0 |Yse' v,el™ ... ye®fe 0 0 0
0 e’ 0 0 |Yye! Yye! .. Y,e! | 0 e%* 0 0
o o0 . 0| ° P P 0o 0 .0

0 0 0 e’ |y.elm ye!® ooy e 0 0 0 e

Ylle 61 Y12 e 1(612-615) e Ylne 1(61,—01)
Y21ej(021_§21) Yzzejezz anej(gzn—52n)
_Ynle 1(6n1=6n1) Ynle 1(6h2=612) v Ynne 16 |
where 6ik=4i - .

With Yix as the Y-bus element magnitude, we have element in
position i,k as Y,e" =G, + jB, , and the general form of the term in
row i, col k, in the matrix M is:

M, =Y, e %) =, glhei% :(Gik + jBik)(COSé}k - jSiné}k)
=> Multiplying and then gathering real and imaginary parts:
M, =(G, cos8, + B, sins, )+ j(B, cosd, —G,sindg, )

Fora (5) Foc ()
So the i-k™ term in matrix M is given by Fe+s(dik)+j Fe-c(dik). This
simplifies for the diagonal elements, since &i=0, to Gii+}Bii. SO
Mij= Fc+s(dik)+]j Fa-c(di)
Mii= Gii+]Bii
Separating real and imaginary parts, we obtain M=H+jS where
Hik= Fc+s(dik)

Hi=Gij
Sik=Fg-c(Jik)
Sii=Bii
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You should review examples 7.2 and 7.3 in the text.

Example 7.2: Derive the relations between the d and g machine
voltages and currents for a two-machine system.

Solution:
Get Y.
First, compute M as in Example 7.1, and then express it as M=H+jS.
Then, express
Vql + del
(H+jS) : =(H+jS)(V, +iV,)
Voo + Vg

qn

1=MV

(7.40)

S 1+jly = (HV, =SV, )+j(SV, +HV,)

For the real part,

i Iql_ _ i Gll FG+B (512 )_ _Vql_ _|: Bll FB—G (512 ):| |:le:| (7 40a)
L qu_ _FG+B (521) Gzz N _Vq2_ FB—G (521) Bzz 2 .

and the imaginary part

Idl = Bll FB—G (512 )_ _Vql_ Gll FG+B (512) le
Loz | __FB—G (521) B,, __qu__{FGJrB (521) G,, }{ } (74Ob)

<

Example 7.3: Derive the complete system equations for a two-
machine system. The machines are to be represented by a two-axis
model of Section 4.15.3. Loads are to be represented by constant
Impedances.

Solution approach:
1. Get Y, but because of the simplicity of the two-axis model
(same as classical but internal voltage is not constant), we can
include ri+jx’q in with it, as indicated below.
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Reduce the network to its internal generator nodes (so that the
internal impedance ri+jx’qi is included in the network Y matrix.
Compute M=T1YT and from this, H and S.

Express (7.40a) and (7.40b).

Write down the equations from the machine model of section
4.15.3, once for gen 1 and once for gen 2, using the given
assumption that x’g=x’gi. This machine model, with this
assumption, is

ToiBa = —Eq—(Xg—%) 14

TyiBy = Eeoi—Eg+ (X =% ) g

T, = Tmi_(ldiEclii—i_IqiEcI}i)_Dia)i (7.41)
o, = -1 i=12

Substitute for lg; and lg; from step 4.

This is an eighth-order system, but two equations for angle
derivatives can be combined into one and so it is a seventh-
order system.

Additional comments:

The overall problem is given by

X=f(x,v,T,.1)
=MV

where the current and voltage vectors are given relative to the
different gi axes of the various machines, and M is formulated as
follows:

30



And because

we have that

Now here is an issue. If we have entirely constant impedance loads,
then all loads can be included into the matrix Y, and the above
formulation is OK.

If we have constant current loads, then those loads may be included
in the vector 1. And clearly having both constant impedance and
constant current loads can be handled according to these two
approaches (use Y for constant impedance loads and | for constant
current loads).

But if we have constant power loads, then those loads, when

converted to a constant current representation through 1=(S/V)*, are

a function of voltage. In that case, the problem we are solving is
X=f(xVvT,1)

1V) =MV
where the algebraic equations must be solved iteratively.

Either way, we have the interface problem (caused by the need to
compute states at time t using algebraic values at time t-1),
illustrated in a figure from Brian Stott’s paper below.
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P e e e S e e e | [P SO R e S e
¥
i EXCITATION MCHINE. BOTORI® "~~~
| CONTROL _ SYSTEM — ELECTRICAL INTERCONNECTED
! EQUATIONS ¢ EQUATIONS TRANSMISSION
SYSTEM
(synchronously rotating or
Pm complex reference frame)
TURBINE > MACHINE ROTOR
! GOVERNOR MECHANICAL
i EQUATIONS “— EQUATIIONSS e sjlizees e o rn s
X [
DIFFERENTIAL EQUATIONS<€ > ALGEBRAIC EQUATIONS
IFig. 1. Schematic of transient model of synchronous generator connected to transmission network.

Stott, Section IV of his paper, introduces a classification system for
solving a differential-algebraic equation (DAE), which is what we have.

He says that solution approaches are characterized by three attributes:

1. The way in which machine and network equations are interfaced with each other:
a. Partitioned: alternating
b. Simultaneous (combined or algebraically)

2. The integration method used:
a. Explicit
b. Implicit

3. The technique for solving the algebraic equations (an issue if you have constant

power loads and you solve using the alternating method.
| provide some cutouts from Stott’s paper below.

There is also material from the Powertech TSAT User Manual of interest here, below:

Solution of the entire differential-algebraic equation sets

The overall system differential and algebraic equations are solved using a partitioned approach:
s Numerical integration is performed to solve the differential equations.
o Tterative solution is performed to solve the algebraic equations.
» The current injections and the bus voltages are the interface variables.

This is shown in Figure 3-2.
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Algebraic equations

Generator
stator equations

i

Excitation system
equations

Generator rotor
circuit equations

Prime mover /
governor equations

Generator
swing equation

v, 1 V. 1)

Transmission

network (V. 1) je&—

equations
(v, 1)
v, v, 0

>

Differential equations

K

MNonlinear Other static
loads models

Figure 3-2: The Overall system model of time domain simulations

In addition, | encourage you to do three things: (1) Read section 7.11 to get a high-
level view of the machine-network problem; (2) Read 7.12, where we take care of (a)
the nonlinear load problem and (b) network-machine interface including machine
saliency, when x’¢#x’q, and things don’t simplify; (3) Read sections 7.13 and 7.14 to

remind you of what we learned in numerical solvers.
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B,

The network is described by a large sparse algebraic nodal
admittance matrix equation. This matrix is usually complex
and symmetrical, and constant in between infrequent branch-
switching operations. Each bus load is modeled as an exponen-
tial or polynomial function of the bus voltage magnitude and
occasionally of the frequency. Unless all loads have the
simplest representation as fixed shunt admittances, the overall
network/load equation set is nonlinear, with a similar structure
to that of the standard load-flow problem.

The Transmission Network

C. General Overall Form of System Equations

The complete power-system model comprises a set of first-
order differential equations

y=fy,x) (1)

and an algebraic set
0=g(y,x). (2)

Set (1) comprises the differential equations of all machines.
Since each machine is coupled to the other machines only
through the network, set (1) is a collection of separate un-
coupled subsets. In the model shown in Fig. 1, there are two
such subsqts per machine, but which become joined together
whenever & is fed back to the excitation control.

Set (2) comprises the stator equations of each machine,
transformed into the complex network reference frame,
coupled to the equations of the network and loads, plus the
equations defining the fed-back stator quantities u,

D. Specific Form of System Equations

Equation (1) has a quasi-linear structure that can be
shown as:

y=f(y,u)=A-y+B-u. (1a)

Matrix A is square, sparse, and block-diagonal. Matrix B is
tectangular, sparse, and blocked, (Note that the matrix form
is not necessarily retained in the programming.) When satura-
tion is not represented, both 4 and B are constant in many of
the most common specific models.

The algebraic set (2) can be subdivided into two parts:

IE, VY=YV (2a)

and
u=ulE, V) (2b)

where (2a) is the sparse bus admittance matrix equation of the
loaded network. I is the vector of bus current injections. For
a load, the injection is a function of the bus voltage, and fora
generator, it is the stator current as a function of the stator
internal and terminal voltages, transformed into the network
frame. Equation (2b) simply serves to calculate u.
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B. The Partitioned-Solution Approach

This is the traditional approach, used in nearly all present-
day industrial programs. The differential-equation set (1) is
solved by integration separately for y, and the algebraic set
(2) is solved separately for x. These solutions are alternated
with each other in some manner. The respective solutions may
or may not be iterative, and true elimination of interface error
may or may not be achieved, depending on the specific meth-
ods and system models.

The two salient defining features of the Partitioned approach
are: a)the integration method and the network-solution
method may in principle be chosen independently of each
other, and b)it is always possible, through the use of
extrapolation/interpolation techniques (see Section V-D) to
solve the network only every few integration steps, This latter
is generally the case in mid- and long-term stability calculations,
although it is much less common in the short-term mode.

C. Simultaneous-Solution Approach

Implicit integration methods convert (1) into a set of
algebraic equations in the unknowns y, and x,, i.e., the values
at the end of the step. In the Simultaneous-solution approach,
these algebraized equations are lumped together with (2) to
form a single larger algebraic set, all of whose variables are
then solved simultaneously. Inherently in this approach,
equation (1) is solved with the same frequency as (2), and
there is no interface error., The Simultaneous-solution ap-
proach has been adopted in at least one routinely used indus-
trial program, and a number of prototype test programs, It
has been attracting interest as possibly a superior scheme.



VII. THE MODELING AND SOLUTION OF THE NETWORK
A. The Network Model

The network model comprises the loaded transmission
system plus the machine stators. In order to construct and
solve the network equation (2a), the d, g-axis stator equation
(A.6) of each machine has to be expressed in the form (A.8),
i.e., transformed into the network complex reference frame,
From (A.8), the stator internal voltage is now Ere +/Eim and
the stator impedance is Z.

In (2a) as originally stated, the nodal injection at a machine
terminal bus is the machine stator current, obtained by solving
(A.8). There is some advantage in taking the Norton equivalent
of each machine stator. Then a shunt impedance Z; is inserted
at the machine terminal bus, and the injected current becomes
(Efe +}'Ei'm)/2s. The network equation (2a), restated here for
convenience, now becomes:

IE, V)=Y-V (8a)

where Y includes the machine-terminal Norton shunts. Vector
I comprises the machine-terminal Norton injections that are
functions of E and the load-bus currents that are functions of
voltage magnitude and perhaps frequency.! This form of the
network equation will be assumed henceforth, unless otherwise
stated.

B. The Network Solution Problem

The problem is to solve either (8b) or (8c) for ¥. For a given
value E, obtained from the solution of the differential equa-
tions (1), the machine-bus Norton injections and shunts are
constant.2 The nonlinearity of (8) is then due entirely or
mainly to load currents that are functions of ¥. Unless all
loads are represented as fixed shunt impedances (injected
current always zere), an iterative solution of (8) not unlike a
standard load-flow solution [31] needs to be performed,

For mid-term and long-term dynamic studies, excitation con-
trol is assumed to hold the machine terminal (or other bus)
voltage magnitude constant [24], [25], which introducesa con-
ventional constant-V load-flow constraint into (2a). When
automatic transformer tap changing is represented in longer
term studies, the relevant admittances in ¥ can change fre-
quently. Very occasionally, network branch admittance varia-
tion with frequency is represented, in which case the elements
of Y change continually. Such network changes can be dealt
with by bus-injection techniques to avoid continual matrix
alterations.

C. Network Solution Techniques

In this subsection, we consider four alternative methods for
solving (8). Only the last two are now regarded as of interest
for efficient modern large-scale industrial applications, but
programs employing the first two are still in practical use.

1) Gauss-Seidel: This method has the merits of low storage,
ease of programming, and of being able to accommodate any
changes in the matrix elements with ease because the algorithm
operates directly on the branch admittances.

The economical complex-symmetrical storage scheme can be
used in the programming, even if nonbilateral elements are
present. Since the Norton admittances are usually large, Y is
better conditioned than in the standard load-flow case. Except
at fault and switching times, each iterative solution has good
starting values of ¥ from the previous solution(s), preferably
extrapolated.

Usually, the ‘“load-flow” problem has no voltage-controlled
(PV) buses, in which case the best convergent version seems to
be the secondary correction method [31]. Nevertheless, con-
vergence to acceptable accuracy can vary a great deal from
problem to problem, from 2-3 iterations to hundreds (or no

4} Newton Method: The Newton method cannot be applied
to most power network equations in complex form; therefore
the expanded version (8c) is used. This equation can be
written as

Fe =Ie - YE .

Ve (12)

where F€ is zero at the solution. Each iteration of the Newton
solution requires the construction of the Jacobian-matrix
equation:

F&=-J¢-Ay® (13)

and its direct solution by sparse triangulation for the correc-
tion vector AV €. This solution corresponds to the “rectangular
current mismatch” Newton load-flow method, which is the
natural version for the stability application although it is less
so for conventional load flow [18], [31], [38]. When, as is
usual, the series branches of the network have constant admit-
tances, the Jacobian matrix J¢ differs from Y€ only in the bus
“self”” terms—~those in the 2 X 2 diagonal blocks.
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3) Nonimpedance Loads: Nonimpedance loads are dealt
with in a similar manner to machine saliency. In the factored-
Y° approach, a proportion of each load is represented as a
fixed complex shunt in ¥ ¢, and the residue of the load enters

I¢ as a nonlinear function of ¥ to be iterated to convergence.
Low-voltage cutoff must be provided so that for instance con-
stant-power loads do not demand infinite current during a
solid fault. In standard Z-matrix load flow, this “fringing cur-
rent” technique was found to aid convergence considerably.
Here, it is valuable though not equally successful because of
the much greater bus voltage variation. Both [18] and the
author have found that typical numbers of iterations are 2-6.
In other words, nonimpedance loads cause more trouble than
dynamic saliency.

In Newton’s method, partial derivative terms are added to
the 2 X 2 diagonal blocks in J¢ to represent the loads incre-
mentally, and this is better than the nonincremental fringing-
current modeling. Newton’s method is now noticeably supe-
rior, and the above-mentioned numbers of iterations reduce
to 2-3.

How accurate the solution for nonimpedance loads must
be is a matter for some conjecture, since the load character-
istics are rarely well known. On the other hand, it is widely
agreed that some improvement over the classical fixed-im-
pedance model is necessary [12]. Reference [27] investigated
the effect on accuracy of keeping the load current constant
over the step (which was essential in that Runge-Kutta method
with a noniterative network solution.}) The results and the
discussion of the paper suggest that the errors only become
important for marginally stable longer duration studies. Using
voltage extrapolations to estimate the required intermediate
load currents would be more reliably accurate.
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