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Simulation of Multi-Machine Systems 

 

The parts of the text which we have yet to cover include: 

• Chapter 3: System response to small disturbances 

• Chapter 7: Simulation of multimachine systems 

• Chapter 8: Small-signal stability analysis (linear models) 

• Chapters 9: Excitation systems 

• Chapter 10: Effect of excitation on stability 

• Chapter 11: Dynamic modeling for wind and solar  

• Chapter 12: Voltage stability 

• Chapter 13: FACTS devices 

• Chapter 14: Protection and monitoring associated with stability 

• Chapters 15-18: Mechanical Dynamic Performance (speed 

governing and prime movers for steam/hydro/CTs/CC units) 

The highlighted text above is what we will hope to study between 

now and the end of the course. Although Chapter 8 is not included, 

we will study small-signal stability except that we will focus on 

classical models only which is treated in Chapter 3.  

(Note that Chapter 8 is to Chapter 3 as Chapter 4 is to Chapter 2, 

i.e., Chapter 4 extends the coverage of transient instability analysis 

done in Chapter 2 from the classical machine model to more 

elaborate machine models. Chapter 8 does the same thing, except 

instead of transient instability, it extends the coverage of small-

signal instability done in Chapter 3). 

 

We will study the first part of chapter 9 (9.1-9.3) and one part of 

chapter 10 (8.3) on excitation. Then we will spend a little time 

looking at Chapters 11 and 12. We will not have time to study any 

of chapter 13, 14, or 15-18 (turbine-governors) at all. We will spend 

some time on Chapter 9 and then move back to Chapter 3.  

 

So here we look at Chapter 7. 

 

Chapter 7 consists of the following sections: 
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• 7.1: Introduction 

• 7.2: Problem statement 

• 7.3: Matrix representation of a passive network 

o Network in the transient state 

o Converting to a common reference frame 

• 7.4: Converting machine coordinates to system reference 

• 7.5: Relation between machine currents and voltages 

• 7.6: System order 

• 7.7: Machines represented by classical methods 

• 7.8: Linearized model for the network 

• 7.9: Hybrid formulation 

• 7.10: Network equations with flux linkage model 

• 7.11: Total system equations 

• 7.12: Alternating solution method 

o 7.12.1 Nonlinear loads 

o 7.12.2 Network-machine interface 

• 7.13 Simultaneous solution method 

• 7.14 Design of numerical solvers 

 

We will study sections 7.1-7.5 and may look briefly at section 7.14. 

Note that Padiyar’s book also gives treatment of this in pp. 462-474. 

 

The first section of these notes, below (pp. 2-5) is a short summary 

on load modeling. We will skip this, since we just covered it. 

 

Load modeling:  

 

I will use this section to emphasize the importance of load modeling. 

Please read the 1993 Task Force paper on load modeling posted to 

the course website. Also, please review the WECC document on 

composite load model specifications, also posted to the website. 

This latter document shows the well-known illustration used for 

composite load modeling, shown below. 
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A more recent illustration illustrates that it accommodates 

distributed PV, as shown below. 

  

 
There are two basic types of commonly used load models. 

• Static: 

o Exponential 

o Polynomial 

• Induction motor 

The polynomial is probably the most common. One version of the 

polynomial is the so-called ZIP model: 

 

 

Typically, the frequency sensitivity coefficients obey 0<LP<3 and –

2<LQ<0 so that when frequency declines (meaning f<0), P 

Load Shedding Schemes ZIP Load Aggr.
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decreases and Q increases, which tends to be the case for an 

induction motor.  

 

The voltage sensitivity coefficients must obey A+B+C=1 and 

D+E+F=1. If we set A=B=D=E=0 and C=F=1, then we have a 

constant impedance model. This load model provides that power 

consumption of loads decreases as voltage drops. This characteristic 

typically decreases the severity of system response in terms of 

transient instability in that: 

• We usually see voltage drop during and after a disturbance 

• When voltage drops, constant Z loads consume less power 

according to the square of the voltage drop – which in turn 

improves the stability performance of the generators. 

 

One advantage to using the constant Z-model is that it allows us to 

easily reduce the network to generator nodes as all loads are 

represented in the Y-bus. We obtain the impedance equivalents via 

Z=|Vi|2/S*. 

 

One should note carefully here the difference between load 

modeling for transient analysis and load modeling for steady-state 

analysis.  

 

Typically, for steady-state analysis (using power flow), we represent 

the load using constant power models. Some power flow programs 

do allow for using other load models, e.g., ZIP. However, if your 

power system contains under-load-tap-changing (ULTC) 

transformers connecting between the transmission system and the 

load (most commonly between the subtransmission and the 

distribution systems), and most do, then use of anything except a 

constant power model is usually inappropriate unless you are also 

representing the ULTC transformers.  

 

The reason for this is as follows: 
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Steady-state analysis of disturbances using power flow is typically 

done to analyze the 3-10 minute time period following the 

disturbance. The value of 3 minutes is chosen because this is enough 

time for the ULTC to operate fully, restoring the voltage levels in 

the distribution system, so that the loads actually see a constant 

voltage and therefore behave as constant power loads. 

 

Section 7.2, Problem statement:  

Each machine is represented by the following relation: 

( , , , )mx f x v T t=      (7.1) 

where x is the state vector (could be any number of states between 

2-8 depending on the choice of machine model), v=[vd, vq, vF]T, Tm 

is the mechanical torque, and t is time. 

 

Recall that the input vector for each of our machine models included 

vd and vq (or Vd and Vq where 
3

d
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v i  

These terms vd and vq (or Vd and Vq) are determined by the network, 

and we therefore need to interface the machine model with the 

network in order to account for them. 

 

We assume here that vF and Tm are fixed (they are actually governed 

by the excitation control and the turbine-governor control; we will 

study control of vF in this course (Chapters 9-10), but we will not 

have time to study control of Tm (Chapters 15-18).  

 

Let’s assume that we are using the current state-space model of 

Model 1 (which is the “full” model including the G-circuit and two 

damper windings, so it is called model 2.2). 

 

Note that VMAF make the following statements at the beginning of 

Section 7.2, pp. 239-240 (it references (7.1) given above and below): 
“Consider the set of equations (7.1). In Chapter 4, the current model 

that is developed represents a set of eight first-order differential 

equations for each machine.” 

 “The number of the variables, however, is 10: 6 currents,   and  , 

and the voltages d  and q .” 

( , , , )mx f x v T t=      (7.1) 
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And so, with an 8-state model, we have the number of state 

variables is eight: six currents, ω and δ; and the number of variables 

is ten: eight state variables and the voltages vd and vq.  

“Assuming that there are n synchronous machines in the system,” 

And assuming that all machines are modeled with the 8-state 

model… 

“we have a set of 8n differential equations with 10n unknowns.” 

 “Therefore, 2n additional equations are needed to complete the 

description of the system.” 

That is, the variables vd and vq result in the additional two unknowns 

per machine, and so we need an additional two equations per 

machine. 
“These equations are obtained from the load constraints.” 

Our objective is to derive expressions for vd and vq in terms of the 

state variables (and so avoid adding additional variables), which in 

the case of the current state-space model of Model 1 (with G-

circuit), would be the six currents, ω and δ. We will do this from the 

“load constraints.” 

 

We begin by recalling the stator-side equivalents to vd, vq, id, and iq, 

given by: 

    
3

qi
qi

v
V =  

    
3

di

qi

i
I =  

where subscript “i” indicates that the relations apply to machine i. 

 

We also have that  

     (7.2) 

for every machine i=1, …, n.  

3
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Thus we have a vector of nodal voltages and currents for every 

generator bus given by: 

    (7.4) 

where, says VMAF, “the axis qi is taken as the phasor reference in 

each case” (p. 240). 

 

(Note that we will use underlines to denote vectors and matrices, 

and we will use overbars to denote phasors, which differs from 

VMAF which uses bold to denote vectors and matrices). 

 

Our problem is to express V in terms of I. One might think that this 

is an easy problem, based on recollection of the Y-bus relation 

which has that I=YV.  

 

However, there is a major issue in doing this… 

 

The elements of these two vectors, e.g., Vq1+jVd1 and Iq1+jId1, are, 

by definition, expressed on the d-q reference frame of the 

corresponding machines. We have done nothing at this point to 

relate the d-q frame of one machine to that of another. VMAF say it 

this way (p. 240, italics added): 
“Note carefully that the voltage iV  and the current iI  are referred to the q 

and d axes of machine i. In other words the different voltages and currents 

are expressed in terms of different reference frames. The desired relation is 

that which relates the vectors V  and I . When obtained, this will represent a 

set of n complex algebraic equations, or 2n real equations. These are the 

additional equations needed to complete the mathematical description of the 

system.” 

So the elements of V (and the elements of I) are expressed on 

different reference frames. Any analysis using these numbers “as is” 

would have relative angles between nodes in the network that mean 
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absolutely nothing. Since relative angles have a very large effect in 

determining power flow, this is highly unacceptable. 

 

Section 7.3, Matrix representation of a passive network:  

 

In consideration of a multimachine system in Chapter 2, using the 

classical machine representation, because the machine internal EMF 

is constant, we could reduce the network to its internal machine 

nodes, thus eliminating the nodes corresponding to each machine’s 

terminal voltage Va. 

 

Now, however, we need to retain the node corresponding to each 

machine’s terminal voltage Va because all of our higher-order 

models require it through the presence in the models of vd and vq. 

The difference between these two approaches is illustrated by the 

Fig. 1 below from your text (left, internal nodes, Fig. 2.17, and right, 

terminal nodes, Fig. 7.2).  

 
Fig. 1 

We assume, for now, that we represent all loads using constant 

impedance shunts. 

Then we can (but do not have to) use network reduction (Gaussian 

elimination) to eliminate all network nodes except machine terminal 

nodes. 

The figure on the 

left indicates that 

the only nodes in 

the system are the 

ones outside the 

box identified as 

black dots 1, 2, , 

…, n. 

The figure on the 

right has internal 

nodes (as does the 

figure on the left), 

but also terminal 

nodes and possibly 

other nodes having 

loads not represent-

ed as only constant 

impedance (repre-

sented inside the 

box labeled “trans-

mission system”). 
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We have already recognized that we cannot express I=YV using eq. 

(7.4) because the various vector elements are all on different 

reference frames.  

 

So let’s consider a new set of nodal voltages and currents that are 

expressed to a common reference frame where one of the quantities, 

often one of the voltages, has an angle designated as 0.  

We will refer to this set of nodal voltages and currents as  and , 

articulated as V-hat and I-hat. So the underline indicates “vector,” 

and the hat indicates that all elements are referred to the network 

reference frame. 

 

So on the network reference frame, it is acceptable to write that  

     (7.5) 

where Y is the network admittance matrix. Of course, at this point, 

we are simply conjecturing that we can express all voltages and 

currents to a common reference frame, but we have not yet done it. 

 

But Dr. Anderson is careful….. he recognizes that eq. (7.5) is a 

steady-state relation, and he takes a little aside to check: under what 

conditions can we use eq. (7.5) for transient analysis?  

 

In the following, I simply cut out the part of VMAF which addresses 

this question, Section 7.3.1, and then, just after that, I give a 

summary. 

 

  

V̂ Î

VYI ˆˆ =



 11 

 

This 2nd assumption 

results in neglecting 

network transients, 

an assumption that 

may not be so good 

if there are many 

IBRs in the network. 
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Summary of Section 7.3.1: We write the time-domain voltage drop 

equation for a network branch, and then transform this equation 

using Park’s transformation. This transformation is based on an 

assumed synchronously rotating reference frame which, at t=0, is 

aligned with the a-phase of a chosen machine. This action, then, 

locates the machine’s rotor, and thus the machine’s d-axis, at 

ii t  ++= 2/Re  

Fig. 2 illustrates. 

 
Fig. 2 

ωRet 
Synchronously 

rotating reference  

q-axis 

d-axis 

δi 

π/2 

a-phase 

axis 

Conclusion➔ 
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I will not go through this analysis but rather will simply state the 

conclusions. Dr. Anderson’s conclusion is that: 

, k=1, …, b    (7.16) 

where  

•  and  are the branch voltage drops and branch currents, 

respectively,  

• expressed on the d-q axis reference frame of machine i, that is, 

the reference is the q-axis of the ith machine located at angle δi 

with respect to a synchronously rotating system reference,  

• zk is the impedance of branch k, and  

• b is the total number of branches in the network. 

 

Equation (7.16), which is our standard Ohm’s Law relation, is 

applicable for transient analysis if the following two conditions are 

satisfied (these are the two “assumptions” on above p. 11): 

1. The frequency, and therefore the reactances of the branches, are 

constant. 

2. Current derivatives are much less than speed-current products. 

 

This is analogous to where we assumed that transformer voltages 

are much less than speed voltage drops (svd), i.e., the d-q voltage 

components due to transformer action (i.e., variation in d-q currents 

or in d-q flux linkages) is much less than the d-q voltage components 

due to the speed. We used this in deriving the E’’ model in our notes 

on “simplified models,” expressed as: 

 

)()( ikkik IzV =

)(ikV )(ikI

dq

qd

ii

ii













dq

qd















 14 

We spent some time discussing this assumption in our notes on 

“simplified models,” (under Comment on dd/dt=dq/dt=0 which 

extended from pp. 11-13, which included the following statement: 

Section 7.3.1 of VMAF addresses this last point, which is 

further characterized by the following statement from [2]: 
“In stability studies it has been found adequate to represent the network as a collection of 

lumped resistances, inductances, and capacitances, and to neglect the short-lived electrical 

transients in the transmission system.[8],[5],[9],[10] As a consequence of this fact, the terminal 

constraints imposed by the network appear as a set of algebraic equations which may be 

conveniently solved by matrix methods.” 
We also said in “simplified models” (p. 13) 

Setting dλd/dt=dλq/dt=0 is referred to in the literature as 

“neglecting stator transients” or “neglecting network transients.” 

 

In addition to identifying the conditions under which we can use our 

familiar steady-state form of Ohm’s Law (and thus the Y-bus 

relation), eq. (7.16) also provides that we may express the network 

to a particular machine’s d-q reference frame.  

 

But this does not do us too much good since we have all the machine 

models expressed to their own frame.  

 

So a better approach is to express all of the machine d-q reference 

frames to a network reference frame. Let’s try that (Section 7.3.2). 

 

We have already defined the d-q reference frame of the machine. 

 

Now we define the network reference frame, and we will denote the 

network reference frame as D-Q (do NOT confuse this notation with 

the upper-case D,Q notation used for the damper windings!!!!). 

 

So our question is: how to convert a voltage (or current) on the d-q 

reference frame to a voltage (or current) on the D-Q (network) 

reference frame? 

 

Fig. 3 (Fig 7.4 in text) illustrates.  

[2] K. Prabhashankar 

and W. Janischewsyj, 
“Digital simulation of 

multimachine power 

systems for stability 
studies,” IEEE Trans. 

Power Apparatus and 

Systems, Vol. PAS-
87, No. 1, January, 

1968. 

NOTE: This is ref  [5] 
in ch 7 of your book. 
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Fig. 3 

 

Note two things with respect to Fig. 3: 

• iV , ˆ
iV  are drawn leading the q-axis, whereas we know that for 

generator action, the terminal voltage will lag the q-axis. This is 

because Fig. 3 is drawn to facilitate understanding of how to 

project any general quantity given on the d-q frame to a quantity 

given on the D-Q frame. It is not drawn to depict the operation of 

a generator. 

• The angle δi has a new definition.  

o Whereas previously we have defined δi as the angle by which 

the machine internal voltage (and thus the q-axis) leads the 

(synchronously rotating) machine terminal voltage;  

o now, in Fig. 3, we define δi as the angle by which the machine 

internal voltage (and thus the q-axis) leads the (synchronously 

rotating) Q-axis network reference frame. 

From this picture, it is easy to see how to compute VQi and VDi from 

Vqi and Vdi.  

 

 

 i 

 i 
 Vdi 

 ii VV ˆ,  

 Q 

 D 

 q 

 d 

 Vqi 

Vqicosδi 

 

Vdi 

Vdisinδi 

Vqisinδi 

Vdicosδi 
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It is important to recognize that we are NOT getting VQi and VDi 

from 
i

V  (or iV̂ ) directly but rather getting it from Vdi and Vqi, which 

are the d-q axis components of  iV  (or iV̂ ).  

 

For example, consider getting VQi. By inspection, we see that  

 

where, again, we emphasize that the angle i is the angle by which 

machine i q-axis leads the synchronously rotating network reference 

frame. 

 

Similarly, consider getting VDi. Again, by inspection, we see that: 

 

Therefore, the voltage  when expressed to the network reference 

frame, becomes iV̂ , expressed as: 

 

Collecting terms in Vqi and Vdi, we have: 

( ) ( )cos sin cos sinˆ
i Qi Di qi i i di i iV =V + jV =V δ + j δ +V j δ - δ  

Factoring out a “j” from the last term: 

( ) ( )cos sin cos + sinˆ
i Qi Di qi i i di i iV =V + jV =V δ + j δ + jV δ j δ  

And finally, we observe the common sum which can be factored as: 

 

 

In summary, the transformation that we are making is from one set 

of coordinate axes 

where the positive q-axis is assigned 0 degrees,  

to another set of coordinate axes 

 

where the positive Q-axis is assigned 0 degrees. 

 

Here, the +q-axis leads the +Q axis by i degrees. 

idiiqiQi VVV  sincos −=

idiiqiDi VVV  cossin +=

iV

)cossin()sincos(ˆ
idiiqiidiiqiDiQii VVjVVjVVV  ++−=+=

ij

iiidiqiDiQii eVjjVVjVVV
 =++=+= )sin)(cos(ˆ

DiQii jVVV +=ˆ
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And we have found that  

     (7.17) 

As an example, consider an arbitrary quantity  

(expressed on the d-q frame), and let q lead Q by i=20. Then  

 

which is illustrated in Fig. 4 below. 

 
Fig. 3 

Before we go further, let’s clarify two things: 

1. What is the angle δi? 

2. How do we identify the system reference? 

We will take these questions one at a time. 

 

1. What is the angle δi? 

Several comments here:  

a. Value vs. variable: In notes on “Simulation of Synchronous 

Machines,” we located the initial value of δi (for each 

machine i) by finding aE . But make sure you are clear in 

your mind that  

• this value (we could call it δi0) is an initial condition, and as 

such, we can refer to it as a specific value;  

• in general, δi is a variable (indeed a state variable); here, in 

Chapter 7, we no longer think only of δi as an initial 

condition but also (and primarily) as a variable that will 

vary through the course of our time-domain simulation.  

ij

ii eVV


=ˆ

= 3010iV

===  50103010ˆ 2020 jj

ii eeVV

 

 20 

 30 

 = 3010iV  

= 5010ˆ
iV  

 +Q 

 +q 
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b. The meaning of the angle δi has been changed. To 

understand this, we will review what δi was (item c below) 

and what δi is now (item d below).  

c. What δi was: It is worth going back to the beginning of 

chapter 4 to make sure we understand what δi was. On p. 

84, we were shown the below diagram. 

 
It is useful to review what VMAF said about this figure 

(p. 93), which I have copied out below, in quotes, with 

(my) additional comments highlighted in yellow. 

“The main field-winding flux is along the direction on 

the d-axis of the rotor.” 

 ➔This is F , which I added to Figure 4.1. 

“It produces an EMF that lags this flux by 90°. Therefore 

the machine EMF E is primarily along the rotor q-axis.” 

 ➔I also added this to Figure 4.1. 

“Consider a machine having a constant terminal voltage 

V. For the generator action the phasor E should be 

leading the phasor V .” 

 ➔I also added this to Figure 4.1. 

F  E  

V  
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“The angle between E and V is the machine torque angle 

δ if the phasor V is in the direction of the reference phase 

(phase a). At t=0 the phasor V is located at the axis of 

phase a, i.e., at the reference axis in Figure 4.1. The q-

axis is located at an angle δ, and the d-axis is located at 

θ=δ+π/2.” 

 ➔I have redrawn Fig. 4.1, for t=0, as Fig. 4 below. 

 

 
Fig. 4 

“At t>0, the reference axis is located at an angle ωRt with 

respect to the axis of phase a. The d-axis of the rotor is 

therefore located at 

θ= ωRt+δ+π/2    (4.6) 

where ωR is the rated (synchronous) angular frequency 

in rad/s and δ is the synchronous torque angle in 

electrical radians.” 

➔I have redrawn Fig. 4.1, for t>0, as Fig. 5 below. 

δ 

θ 

+q-axis 

+d-axis 

V  

aE  

rotation 

Phase a axis. 

Key point: Previously, 

the angle δ has been the 

angle by which E  leads 

V . 
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Fig. 5 

d. What δi is now: In developing a system synchronously 

rotating reference frame, δi (for machine i) changes from  

• the angle by which the machine i q-axis leads the 

terminal voltage to  

• the angle by which the machine i q-axis leads the 

synchronously rotating system reference. 

2. How do we identify the system reference? 

The system reference is identified as a synchronously rotating 

vector having angle of 0 degrees at t=0. This is normally the 

reference bus in the power flow model. 

 

Some additional clarifying comments: Consider the beginning 

of Section 7.4 (p. 244), where it reads (bold underline added): 

“Consider a voltage vabci at node i. We can apply Park’s 

transformation to this voltage to obtain vdqi. From (7.2) 

    (7.2) 

this voltage can be expressed in phasor notation as iV , 

using the rotor of machine i as reference.” 

diqii jVVV += diqii jIII +=

δ 

θ 

+d-axis 

+q-axis 
ωRt 

Phase a axis. 
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➔ This statement is a little misleading. Since the d-axis is  

aligned with the rotor, “using the rotor as reference” 

implies using the d-axis as reference. However, the 

phasors of (7.2) are expressed with the q-components 

along the real axis (0°) and the d-components along the 

imaginary axis (90°), implying the q-axis is the 

reference. It may be that when A&F wrote “using the 

rotor as reference,” they meant “using the rotor frame 

as reference,” which could be interpreted as “using the 

q-axis as the reference.” We will assume there that they 

meant to indicate they will use the q-axis as reference.  

Pg. 244 continues by saying, “It can also be expressed to 

the system reference as iV  using the transformation (7.17). 

     (7.17) 

➔ I have redrawn the figure, as below, to illustrate: 

 
➔Expression (7.17) can be understood as 

follows…Observe that the angle of phasor iV , identified 

as δi,old, and given on the d-q frame, must be negative (the 

q-axis leads iV , and so if we express iV  relative to the q-

ij

ii eVV


=ˆ

δi,old 

+d-axis 

+q-axis 

-d-axis 

Vdi 

Vqi 

+Q-axis 
+D-axis 

δi,new 
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axis, with the q-axis having a 0° angle, the angle of iV  

must be negative).  

 

➔On the other hand, if we express iV  relative to the Q-

axis (to obtain ˆ
iV ), we observe that the angle must be 

positive as iV is leading the Q-axis. We obtain this via: 

, ,i i old i newV   = +     (*) 

Now, renaming δi,old and δi,new to be consistent with 

VMAF, we can write (*) as: 

i i iV V  =  +     (**) 

which is obtained from 

     (7.17) 

 

Now recall the equation relating branch voltage drops to branch 

currents: 

,  k=1, …, b    (7.16) 

 

Remember what the “i” notation indicates – that the quantity is 

expressed to the d-q coordinate axes of machine i. 

 

But we want all quantities on the D-Q (network) coordinate axes, 

and now we know how to achieve this…. 

 

 

Substitution into (7.16) yields: 

 

And we see that the exponentials cancel so that: 

  k=1, …, b   (7.18) 

Combining (7.18) with (7.16) we see that 

ij

ii eVV


=ˆ

)()( ikkik IzV =

ii j

kik

j

ikk eVVeVV
 −

== ˆˆ
)()(

ii j

kik

j

ikk eIIeII
 −

== ˆˆ
)()(

ii j

kk

j

k eIzeV
 −−

= ˆˆ

kkk IzV ˆˆ =
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k

k

k

k
k

I

V

I

V
z ==

ˆ

ˆ

  k=1, …, b 

This is expected – it says that the ratio of a voltage drop across an 

element to the current through the element will remain the same if 

we rotate all voltages and all currents by a particular angle. 

 

Writing the above equation for every branch in the network results 

in the following matrix relation: 

 

We may write the above relation in more compact form: 

 

     (7.19) 

 

Some comments about the above: 

• Since all off-diagonal elements are zero, we have assumed that 

there is no mutual coupling in the network. (Mutual coupling can 

exist, however, between lines that are physically parallel and 

located in close proximity, a condition that is found when several 

circuits share a common right-of-way.) 

• The matrix zb is square with non-zero values along the diagonal 

and is therefore invertible. We denote its inverse as yb, such that: 

     (7.20) 

 

• The matrix of impedances zb is called the primitive impedance 

matrix, the matrix of admittances yb the primitive admittance 

matrix, and the equations using the z- and y- forms are called the 

primitive network equation, named by Gabriel Kron (see pic). 
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22

11

2

1



bbb IzV ˆˆ =

bbb VyI ˆˆ =

For treatment of Kron’s primitive 

matrices, see pp. 288-289 and pp. 

366-368 of P. Anderson, “Analysis 

of Faulted Power Systems,” The 

Iowa State University Press, 1973. 
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• The primitive network equation does not describe the network at 

all, i.e., it gives absolutely no information as to how the 

individual branches are interconnected in the network. 

 

In order to provide network connection information, we need the 

node-incidence matrix A, given by:  

 

 

where  

• b (number of rows) is the number of branches in the network. 

• n (number of columns) is the number of nodes in the network. 

• aki is given by: 

 

Note that A is a b  n matrix: 

• Number of branches = number of rows 

• Number of nodes = number of columns 


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Let’s denote the nodal voltages and currents, expressed to the 

network frame, as  and .  

 

The nodal currents may be related to the branch currents by 

summing over all currents leaving node i. Since a node corresponds 

to a column of the node-incidence matrix, we can relate the nodal 

currents to the branch currents through a multiplication of AT with 

the branch current vector, i.e.,  

      (*) 

The matrix AT has each row corresponding to a node, and therefore 

the elements of each row will pick out of bÎ the appropriate branch 

flows emanating from that node to provide the total injected current 

into that node. 

 

Note dimensions of terms in this relation, we obtain an n  1 matrix 

from the product of an n  b matrix with a b  1 matrix. 

 

So the above relation illustrates that the node-incidence matrix can 

be used to sum quantities. In this particular case, we summed branch 

currents to get the nodal currents according to KCL.  

 

What about relating nodal voltages to branch voltage drops? In this 

case, we consider KVL and recall that we need to “sum” the nodal 

voltages to obtain the voltage drops. So we need to express  as a 

product of  and A in some fashion.  

 

 

 

 

 

 

 

V̂ Î

b

T
IAI ˆˆ =

bV̂

V̂
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If you toy with these matrices from purely a dimensional point of 

view, you will see that  

      (**) 

where the dimensions indicate that we obtain a b  1 from the 

product of a b  n with an n  1. We may also derive this from power 

relations (ref: P. Anderson, “Analysis of Faulted Power Systems,” 

pp. 371-372).  

 

But we observe in (**) that each row of A corresponds to a particular 

branch, and the non-zero elements of that row correspond to a bus 

that is connected to that branch. There will only be two such buses, 

and the product AV will pick off the two voltages at either end of the 

branch to find their difference, which is contained in Vb. 

 

Substitution of eq. (7.20), ,into eq. (*), ,yields: 

     (***) 

and substitution of eq. (**), , into (***) yields: 

 

Here, we clearly see that the familiar Y-bus (admittance matrix) is 

obtained from the primitive admittance matrix from: 

 

so that we have, finally,   

      (7.21) 

which relates nodal voltages and current injections given on the D-

Q (network) coordinate axes. 

 

Now define a square n  n transformation matrix T according to: 

bVVA ˆˆ =

bbb VyI ˆˆ =
b

T
IAI ˆˆ =

bb

T

b

T
VyAIAI ˆˆˆ ==

bVVA ˆˆ =

VAyAVyAI
b

T

bb

T ˆˆˆ ==

AyAY
b

T
=

VYI ˆˆ =
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➔  

 

Then we can obtain the nodal currents and voltages expressed on D-

Q (network) coordinate axes from the nodal currents and voltages 

expressed on d-q (individual machine i) coordinate axes from: 

ITI =ˆ  and VTV =ˆ  

Substitution into eq. (7.21), , yields: 

VTYIT = ➔ VMVTYTI ==
−1

➔ VMI =  

where clearly,  

TYTM
1−

=  

What does the transformation do? 

 

It allows us to relate currents in the d-q coordinate frame of one 

machine, nIII ,...,, 21  to voltages in the d-q coordinate frame of all 

other machines. 

 

You see, VYI =  (where the current and voltage vectors are given 

relative to the different qi axes of the various machines) does not 

work! 

 

VMI =  is the replacement we need, where TYTM
1−

= . 

 

Example 7.1: The matrix M can be evaluated by performing the 

appropriate matrix multiplications: 

 

First, get Y. Then… 
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TYTM
1−

= =
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where ik=i - k. 

 

With Yik as the Y-bus element magnitude, we have element in 

position i,k as ikjθ

ik ik ikY e = G + jB , and the general form of the term in 

row i, col k, in the matrix M is: 

( )( )( )
cos sinik ik ik ikj j j

ik ik ik ik ik ik ikM Y e Y e e G jB j
     − −

= = = + −  

➔ Multiplying and then gathering real and imaginary parts:

( ) ( )
( ) ( )

cos sin cos sin

G B ik B G ik

ik ik ik ik ik ik ik ik ik

F F

M G B j B G

 

   

+ −

= + + −
 

So the i-kth term in matrix M is given by FG+B(ik)+j FB-G(ik). This 

simplifies for the diagonal elements, since ii=0, to Gii+jBii. So  

Mij= FG+B(ik)+j FB-G(ik) 

Mii= Gii+jBii 

Separating real and imaginary parts, we obtain M=H+jS where 

Hik= FG+B(ik) 

Hii=Gii 

 

Sik=FB-G(ik) 

Sii=Bii 
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You should review examples 7.2 and 7.3 in the text. 

 

Example 7.2: Derive the relations between the d and q machine 

voltages and currents for a two-machine system. 

 

Solution:  

Get Y. 

First, compute M as in Example 7.1, and then express it as M=H+jS. 

Then, express 

( ) ( )( )

( ) ( )

1 1j

j j j

j

j

 +
 

= = + = + + 
 + 

 + = − + +

q d

q d

qn dn

q d q d q d

V V

V V

j

I MV H S H S V V

I I HV SV SV HV

  (7.40) 

For the real part,  

( )

( )

( )

( )
1 111 12 11 12 1

2 221 22 21 22 2

q qG B B G d

q qG B B G d

I VG F B F V

I VF G F B V

 

 

+ −

+ −
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= −        

       
 (7.40a) 

and the imaginary part 

( )

( )

( )

( )
111 12 11 121 1

221 22 21 222 2

qB G G Bd d

qB G G Bd d

VB F G FI V

VF B F GI V
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− +

− +

       
= +       

       
 (7.40b) 

 

 

 

Example 7.3: Derive the complete system equations for a two-

machine system. The machines are to be represented by a two-axis 

model of Section 4.15.3. Loads are to be represented by constant 

impedances. 

 

Solution approach:  

1. Get Y, but because of the simplicity of the two-axis model 

(same as classical but internal voltage is not constant), we can 

include ri+jx’q in with it, as indicated below. 
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2. Reduce the network to its internal generator nodes (so that the 

internal impedance ri+jx’qi is included in the network Y matrix. 

3. Compute M=T-1YT and from this, H and S. 

4. Express (7.40a) and (7.40b).  

5. Write down the equations from the machine model of section 

4.15.3, once for gen 1 and once for gen 2, using the given 

assumption that x’qi=x’di. This machine model, with this 

assumption, is 

( )

( )

( )

' ' ' '

0

' ' ' '

0

' '

1 1,2

q i di di qi i qi

d i qi FDi qi di i di

ji i mi di di qi qi i i

i i

E E x x I

E E E x x I

T I E I E D

i





  

 

= − − −

= − + −

= − + −

= − =

  (7.41) 

6. Substitute for Iqi and Idi from step 4. 

7. This is an eighth-order system, but two equations for angle 

derivatives can be combined into one and so it is a seventh-

order system. 

 

Additional comments: 

The overall problem is given by 

( , , , )= mx f x v T t  

VMI =  

where the current and voltage vectors are given relative to the 

different qi axes of the various machines, and M is formulated as 

follows: 
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TYTM
1−

=  

And because  

 
we have that 

TAyATTYTM
b

T11 −−
==  

 

Now here is an issue. If we have entirely constant impedance loads, 

then all loads can be included into the matrix Y, and the above 

formulation is OK. 

 

If we have constant current loads, then those loads may be included 

in the vector I. And clearly having both constant impedance and 

constant current loads can be handled according to these two 

approaches (use Y for constant impedance loads and I for constant 

current loads).  

 

But if we have constant power loads, then those loads, when 

converted to a constant current representation through I=(S/V)*, are 

a function of voltage. In that case, the problem we are solving is  

( , , , )= mx f x v T t  

VMVI =)(  

where the algebraic equations must be solved iteratively. 

 

Either way, we have the interface problem (caused by the need to 

compute states at time t using algebraic values at time t-1), 

illustrated in a figure from Brian Stott’s paper below. 

 

AyAY
b

T
=
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Stott, Section IV of his paper, introduces a classification system for 

solving a differential-algebraic equation (DAE), which is what we have. 

He says that solution approaches are characterized by three attributes: 
1. The way in which machine and network equations are interfaced with each other: 

a. Partitioned: alternating 

b. Simultaneous (combined or algebraically)  

2. The integration method used: 

a. Explicit 

b. Implicit 

3. The technique for solving the algebraic equations (an issue if you have constant 

power loads and you solve using the alternating method. 

I provide some cutouts from Stott’s paper below.  

There is also material from the Powertech TSAT User Manual of interest here, below: 
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In addition, I encourage you to do three things: (1) Read section 7.11 to get a high-

level view of the machine-network problem; (2) Read 7.12, where we take care of (a) 

the nonlinear load problem and (b) network-machine interface including machine 

saliency, when x’d≠x’q, and things don’t simplify; (3) Read sections 7.13 and 7.14 to 

remind you of what we learned in numerical solvers.  
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