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Linearization of the Swing Equation  

We will cover sections 2.5.2-2.6 and beginning of Section 3.3 in 

these notes. 

1.0 Single machine-infinite bus case 

Consider a single machine connected to an infinite bus, as shown in 

Fig. 1 below. 

 
Fig. 1 

The admittance matrix is given by 
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Let’s assume the machine is modeled by the swing equation with 

damping (eq. 1 in our notes “multimachine” and (2.56) in VMAF). 
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where  
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• 121212 || = YY  

• 2/12  −=  (enables use of sin instead of cos-see p. 33, VMAF) 

Now let the angle δ change by a small amount. Then 
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Also recall that by Taylor series,  
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Then we also see that  

0 0 0sin( ) sin( ) sin( ) (cos( ))         − = − +  − + −   (5) 

(Eqt. 3.3) 

Applying (3) to the left-hand-side of (2) and (5) to the right-hand-

side of (2), we obtain 
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But from steady-state conditions, we know the mechanical power is: 
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Now define 
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What is it? 

To answer this question, observe: 
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Therefore, 
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PS is called the synchronizing power coefficient.  

In regard to early swing instability (which is a nonlinear 

phenomena), the larger PS is, the more stable will be the generator 

for a given disturbance.  

 

This is true because PS indicates the slope of the power-angle curve, 

and the higher this slope, the more decelerating energy is available 

to the machine for a given fault. This idea is illustrated in Fig. 2. 

 
Fig. 2 

 

But let’s see what it means for “small signal instability,” which is 

characterized by the eigenvalues (roots) of the system differential 

equation transformed to the s-domain through LaPlace transforms. 

 

Substituting (13) into (8) results in 
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Taking the LaPlace transform (assuming all initial conditions are 0), 

we obtain 
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Eliminating ∆δ(s), we obtain the system’s characteristic equation: 
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(Eqt. 3.7) 

Solving using the quadratic formula, we get 
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Pulling ωRe/2H out of the radical, we have 
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(Eqt. 3.8) 

We can make some observations about (18), as follows: 

1. No damping: If D=0, then  
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a. Observe in (19b) that if PS>0, (a) any response to a small 

disturbance will be oscillatory, and (b) the oscillatory 

frequency becomes lower as H becomes larger. 

b. Observe in (19a) that if PS<0, then  
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and any response is unstable. 
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Figures 3, 4 illustrate, for both situations PS>0, PS<0, 

respectively, the pole (eigenvalue) locations in the s-plane 

and the operating point location on the power-angle curve. 

 
Fig. 3: PS>0 

 
Fig. 4: PS<0 

In Fig. 3, the oscillatory system is characterized by purely 

imaginary poles (left) and a stable operating point (right). 

In Fig. 4, the unstable system is characterized by the RHP-

pole (left) and an unstable equilibrium point (right).  (Not 

shown: We may have a marginally stable system 

characterized by a pole at origin, equilibrium point δ0=90°; 

it will have a constant amplitude response). 
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2. With damping: If D≠0, then 
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Let’s look at the most positive root (and so we will use “+” sign 

before the radical, and we ensure the contribution from the second 

term inside the radical is positive, i.e., PS<0) and ask what are the 

conditions under which it can be in the right-half-plane, that is: 
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The above relation must be true. Because the above relation is 

independent of damping, we conclude that if PS<0, the system must 

be unstable, independent of how much damping exists. 

On the other hand, if PS>0, then one may show (see app. of 

these notes) from (18) there are 2 possible conditions, depending on 

how much damping there is: (i) small-signal stable and oscillatory 

(LHP poles on jω axis); (ii) small-signal stable and non-oscillatory 

(LHP poles on real axis). It is not possible for the system to be small-

signal unstable, a reflection of the fact that small excursions around 

a point having PS>0 (left part of power-angle curve) must be stable. 
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2.0 Multi-machine case (Section 3.4) 

(We will come back to sections 3.2 and 3.3.1) 

 

Recall that for a generator connected to an infinite bus, we found 

that the swing equation is  
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where  

• )sin(  −= Me PP  

• |||||| 12YVEPM =  

• 121212 || = YY  

Letting  += 0 and linearizing, we find that  
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Let’s now consider the multi-machine system assuming: 

• Classical models 

• Network reduced to only internal generator nodes 

For generator i, we have that the swing equation is  
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where δij=δi-δj. 

  

In (24), all voltages Ei, Ej, and all Y-bus elements Yij are magnitudes. 

 

Now let’s consider a small change in the angle of machine i: 

δi=δi0+∆δj. 

 

The left-hand-side of (23) is precisely as in the case of the single 

generator vs. infinite bus case. But what happened to the right-hand-

side? Now the right-hand-side is, by (23), 
ii em PP − . 

• Pmi is unaffected by +∆δj, but  

• Pei is affected by it, by (24). 

Recall δij=δi-δj. We consider a small change in rotor angle at 

generator i. To be more general, we also allow a small change in 

generator j. However, in general, generator j does not change as a 

result of the generator i change; we consider they are independent 

changes and we could just as well have only one of them. 

δi=δi0+∆δi    δj=δj0+∆δj 

Recalling from (24) that 
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we need to see what happens to the cos term for the small change in 

angle. 
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We know from trigonometry that 

yxyxyx coscossinsin)cos( +=−  

Then  
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Application of (26) to (25)  yields: 
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(Eqt. 3.21) 

Now we need to linearize the cosδij and sinδij terms using 

δij=δij0+∆δij. 

From Taylor series with first order term only,  
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Substituting (28) and (29) into (27), we get 
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Now collect terms in ∆δij: 
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But the top line of the RHS in (31a) is the steady-state power Pmi: 
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Recall that the right-hand-side of the swing equation is Pmi-Pei. 

Substitution of (31a) and (31b) results in 
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Define everything inside the expression within the summation of 

(32), except ∆δij, as PSij, that is 

 00 sincos ijijijijjiSij GBEEP  −=    (33)  

Then (32) becomes 
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Given the mechanical power is constant, the right-hand-side of (34) 

gives the negative of the change in electric power out of the machine 

due to the small changes ∆δij, that is 
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(Eqt. 3.23) 

What is PSij? We answer this question by observing that the power 

flowing from generator internal node i to generator internal node j 

is  
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Differentiating, we get 
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Evaluating at δij0, we get 

  Sijijijijijji
ij

ij
PGBEE

P

ij

=−=



00 sincos

0





  (38) 

(Eqt. 3.24) 

Note that if bus j is the infinite bus, neglecting resistance, we have: 

0cos ijijjiSij BEEP =  

which is the same as the synchronizing power coefficient in the 

infinite bus case (we called it PS). 
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We will look at multimachine systems; before we do, we consider 

something important in the next notes: response to load changes. 

 

One last issue: what is the difference between synchronizing power 

coefficient, generation shift factor (GSF) and power transfer 

distribution factor? We answer this here. 

 

• Synchronizing power coefficient (SPC): 
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Observe that the SPC gives  

o change in flow on circuit {i,j} with respect to  

o a change in angular separation across {i,j}. 

 

• Generation shift factor (GSF): 
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Observe that the GSF gives  

o change in flow across any branch b with respect to  

o a change in injection at bus i, subject to a reallocation policy 

(i.e., how the bus i change in injection is compensated). 

• Power transfer distribution factor (PTDF) for 1-bus injection 

change: 
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The PTDF for 1-bus injection change is the same as the GSF. 

• Power transfer distribution factor for 2-bus injection change: 
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The upshot of the above is that relating SPC to GSF is enough to 

relate SPC to PTDF. We relate SPC to GSF as follows: 

From (a1), we write that 
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From (b1), we write that 
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Now  

1. Consider our power system is experiencing conditions such 

that the angular separation between buses i and j is δij0.  

2. Line b is terminated by buses i and j, i.e., b≡{i,j}. 

3. We make a change in injected power at bus i equal to ΔPi 

compensated by a “reallocation policy” where an equal and 

opposite change, ΔPj, is made at bus j. 

Then (a2) and (b2) are equivalent: 
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Appendix 

 

On p. 6 of these notes, we wrote 

“On the other hand, if PS>0, then one may show (see app. of 

these notes) from (18) there are 2 possible conditions, depending on 

how much damping there is: (i) small-signal stable and oscillatory 

(LHP poles on jω axis); (ii) small-signal stable and non-oscillatory 

(LHP poles on real axis). It is not possible for the system to be small-

signal unstable, a reflection of the fact that small excursions around 

a point having PS>0 (left part of power-angle curve) must be stable.” 

 

Here, we prove the last statement, i.e., with PS>0, that it is not 

possible for the system to be small-signal unstable. Starting from 

(18) (eq. 3.8 in VMAF): 
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If we assume that PS>0, then (18) becomes 
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If it is unstable, then the pole with the largest real part (and so we 

use the “+” sign in (A-1)) must be in RHP: 
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However, (A-4) is impossible. QED. 


