Linearization of the Swing Equation

We will cover sections 2.5.2-2.6 and beginning of Section 3.3 in these notes.

1.0 Single machine-infinite bus case

Consider a single machine connected to an infinite bus, as shown in Fig. 1 below.

Fig. 1
The admittance matrix is given by

$$
Y=\left[\begin{array}{ll}
Y_{11} & Y_{12} \tag{1}\\
Y_{21} & Y_{22}
\end{array}\right]=\left[\begin{array}{cc}
y_{12} & -y_{12} \\
-y_{12} & y_{12}
\end{array}\right]
$$

Let's assume the machine is modeled by the swing equation with damping (eq. 1 in our notes "multimachine" and (2.56) in VMAF).

$$
\begin{equation*}
\frac{2 H}{\omega_{\operatorname{Re}}} \frac{d^{2} \delta}{d t^{2}}+\frac{D}{\omega_{\operatorname{Re}}} \frac{d \delta}{d t}=P_{m}-P_{e}=P_{m}-P_{M} \sin (\delta-\gamma) \tag{2}
\end{equation*}
$$

where

- $P_{M}=\left|E\|V\| Y_{12}\right|$
- $Y_{12}=\left|Y_{12}\right| \angle \theta_{12}$
- $\gamma=\theta_{12}-\pi / 2$ (enables use of \sin instead of cos-see p. 33, VMAF) Now let the angle δ change by a small amount. Then

$$
\begin{equation*}
\delta=\delta_{0}+\Delta \delta \rightarrow \frac{d \delta}{d t}=\frac{d \Delta \delta}{d t}, \frac{d^{2} \delta}{d t^{2}}=\frac{d^{2} \Delta \delta}{d t^{2}} \tag{3}
\end{equation*}
$$

Also recall that by Taylor series,

$$
\begin{equation*}
\sin x=\sin \left(x_{0}+\Delta x\right) \approx \sin x_{0}+\left.\frac{d \sin x}{d x}\right|_{x_{0}} \Delta x=\sin x_{0}+\left(\cos x_{0}\right) \Delta x \tag{4}
\end{equation*}
$$

Then we also see that

$$
\begin{equation*}
\sin (\delta-\gamma)=\sin \left(\delta_{0}-\gamma+\Delta \delta\right) \approx \sin \left(\delta_{0}-\gamma\right)+\left(\cos \left(\delta_{0}-\gamma\right)\right) \Delta \delta \tag{5}
\end{equation*}
$$

(Eqt. 3.3)
Applying (3) to the left-hand-side of (2) and (5) to the right-handside of (2), we obtain

$$
\begin{align*}
\frac{2 H}{\omega_{\mathrm{Re}}} \frac{d^{2} \Delta \delta}{d t^{2}}+\frac{D}{\omega_{\mathrm{Re}}} \frac{d \Delta \delta}{d t}= & P_{m}-P_{M} \sin \left(\delta_{0}-\gamma+\Delta \delta\right) \\
& =P_{m}-P_{M}\left[\sin \left(\delta_{0}-\gamma\right)+\left(\cos \left(\delta_{0}-\gamma\right)\right) \Delta \delta\right] \\
& =P_{m}-P_{M} \sin \left(\delta_{0}-\gamma\right)-P_{M}\left(\cos \left(\delta_{0}-\gamma\right)\right) \Delta \delta \tag{6}
\end{align*}
$$

But from steady-state conditions, we know the mechanical power is:

$$
P_{m}=P_{M} \sin \left(\delta_{0}-\gamma\right)
$$

Therefore,

$$
\begin{equation*}
\frac{2 H}{\omega_{\operatorname{Re}}} \frac{d^{2} \Delta \delta}{d t^{2}}+\frac{D}{\omega_{\operatorname{Re}}} \frac{d \Delta \delta}{d t}=-P_{M}\left(\cos \left(\delta_{0}-\gamma\right)\right) \Delta \delta \tag{7}
\end{equation*}
$$

Or

$$
\begin{equation*}
\frac{2 H}{\omega_{\operatorname{Re}}} \frac{d^{2} \Delta \delta}{d t^{2}}+\frac{D}{\omega_{\operatorname{Re}}} \frac{d \Delta \delta}{d t}+P_{M}\left(\cos \left(\delta_{0}-\gamma\right)\right) \Delta \delta=0 \tag{8}
\end{equation*}
$$

Now define

$$
\begin{equation*}
P_{S}=P_{M} \cos \left(\delta_{0}-\gamma\right) \tag{9}
\end{equation*}
$$

What is it?
To answer this question, observe:

$$
\begin{align*}
& P_{e}=P_{M} \sin (\delta-\gamma) \tag{10}\\
& \frac{d P_{e}}{d \delta}=P_{M} \cos (\delta-\gamma) \tag{11}\\
& \left.\frac{d P_{e}}{d \delta}\right|_{\delta_{0}}=P_{M} \cos \left(\delta_{0}-\gamma\right) \tag{12}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
P_{S}=\left.\frac{d P_{e}}{d \delta}\right|_{\delta_{0}}=P_{M} \cos \left(\delta_{0}-\gamma\right) \tag{13}
\end{equation*}
$$

P_{S} is called the synchronizing power coefficient.
In regard to early swing instability (which is a nonlinear phenomena), the larger P_{S} is, the more stable will be the generator for a given disturbance.

This is true because P_{S} indicates the slope of the power-angle curve, and the higher this slope, the more decelerating energy is available to the machine for a given fault. This idea is illustrated in Fig. 2.

Fig. 2
But let's see what it means for "small signal instability," which is characterized by the eigenvalues (roots) of the system differential equation transformed to the s-domain through LaPlace transforms.

Substituting (13) into (8) results in

$$
\begin{equation*}
\frac{2 H}{\omega_{\mathrm{Re}}} \frac{d^{2} \Delta \delta}{d t^{2}}+\frac{D}{\omega_{\operatorname{Re}}} \frac{d \Delta \delta}{d t}+P_{S} \Delta \delta=0 \tag{14}
\end{equation*}
$$

Taking the LaPlace transform (assuming all initial conditions are 0), we obtain

$$
\begin{equation*}
\frac{2 H}{\omega_{\operatorname{Re}}} s^{2} \Delta \delta(s)+\frac{D}{\omega_{\operatorname{Re}}} s \Delta \delta(s)+P_{S} \Delta \delta(s)=0 \tag{15}
\end{equation*}
$$

Eliminating $\Delta \delta(s)$, we obtain the system's characteristic equation:

$$
\begin{equation*}
\frac{2 H}{\omega_{\operatorname{Re}}} s^{2}+\frac{D}{\omega_{\operatorname{Re}}} s+P_{S}=0 \tag{16}
\end{equation*}
$$

(Eqt. 3.7)
Solving using the quadratic formula, we get

$$
\begin{equation*}
s=-\frac{D}{4 H} \pm \frac{1}{2} \sqrt{\frac{D^{2}}{4 H^{2}}-\frac{2 P_{S} \omega_{\mathrm{Re}}}{H}} \tag{17}
\end{equation*}
$$

Pulling $\omega_{R e} / 2 H$ out of the radical, we have

$$
\begin{equation*}
s=-\frac{D}{4 H} \pm \frac{\omega_{\mathrm{Re}}}{4 H} \sqrt{\left(\frac{D}{\omega_{\mathrm{Re}}}\right)^{2}-\frac{8 P_{S} H}{\omega_{\mathrm{Re}}}} \tag{18}
\end{equation*}
$$

(Eqt. 3.8)
We can make some observations about (18), as follows:

1. No damping: If $D=0$, then

$$
\begin{equation*}
s= \pm \frac{\omega_{\mathrm{Re}}}{4 H} \sqrt{-\frac{8 P_{S} H}{\omega_{\mathrm{Re}}}}= \pm \sqrt{-\frac{\omega_{\mathrm{Re}} P_{S}}{2 H}} \tag{19a}
\end{equation*}
$$

or

$$
\begin{equation*}
s= \pm j \sqrt{\frac{\omega_{\mathrm{Re}} P_{S}}{2 H}} \tag{19b}
\end{equation*}
$$

a. Observe in (19b) that if $P_{S}>0$, (a) any response to a small disturbance will be oscillatory, and (b) the oscillatory frequency becomes lower as H becomes larger.
b. Observe in (19a) that if $P_{S}<0$, then

$$
\begin{equation*}
s= \pm \sqrt{\frac{\omega_{\operatorname{Re}}\left|P_{S}\right|}{2 H}}= \pm \sigma \tag{20}
\end{equation*}
$$

and any response is unstable.

Figures 3, 4 illustrate, for both situations $P_{S}>0, P_{S}<0$, respectively, the pole (eigenvalue) locations in the s-plane and the operating point location on the power-angle curve.

Fig. 3: $P_{s}>0$

Fig. 4: $P_{s}<0$
In Fig. 3, the oscillatory system is characterized by purely imaginary poles (left) and a stable operating point (right). In Fig. 4, the unstable system is characterized by the RHPpole (left) and an unstable equilibrium point (right). (Not shown: We may have a marginally stable system characterized by a pole at origin, equilibrium point $\delta_{0}=90^{\circ}$; it will have a constant amplitude response).
2. With damping: If $\mathrm{D} \neq 0$, then

$$
\begin{equation*}
s=-\frac{D}{4 H} \pm \frac{\omega_{\mathrm{Re}}}{4 H} \sqrt{\left(\frac{D}{\omega_{\mathrm{Re}}}\right)^{2}-\frac{8 P_{S} H}{\omega_{\mathrm{Re}}}} \tag{18}
\end{equation*}
$$

Let's look at the most positive root (and so we will use "+" sign before the radical, and we ensure the contribution from the second term inside the radical is positive, i.e., $\mathrm{P}_{\mathrm{S}}<0$) and ask what are the conditions under which it can be in the right-half-plane, that is:

$$
\begin{aligned}
s= & -\frac{D}{4 H}+\frac{\omega_{\mathrm{Re}}}{4 H} \sqrt{\left(\frac{D}{\omega_{\mathrm{Re}}}\right)^{2}+\frac{8\left|P_{S}\right| H}{\omega_{\mathrm{Re}}}} \stackrel{?}{>} 0 \\
& \Rightarrow \frac{\omega_{\mathrm{Re}}}{4 H} \sqrt{\left(\frac{D}{\omega_{\mathrm{Re}}}\right)^{2}+\frac{8\left|P_{S}\right| H}{\omega_{\mathrm{Re}}}} \stackrel{?}{>} \frac{D}{4 H} \\
& \Rightarrow \sqrt{\left(\frac{D}{\omega_{\mathrm{Re}}}\right)^{2}+\frac{8\left|P_{S}\right| H}{\omega_{\mathrm{Re}}} \stackrel{?}{>} \frac{D}{\omega_{\mathrm{Re}}}} \\
& \Rightarrow\left(\frac{D}{\omega_{\mathrm{Re}}}\right)^{2}+\frac{8\left|P_{S}\right| H}{\omega_{\mathrm{Re}}} \stackrel{?}{>}\left(\frac{D}{\omega_{\mathrm{Re}}}\right)^{2} \\
& \Rightarrow \frac{8\left|P_{S}\right| H}{\omega_{\mathrm{Re}}} \stackrel{?}{>} 0
\end{aligned}
$$

The above relation must be true. Because the above relation is independent of damping, we conclude that if $P_{S}<0$, the system must be unstable, independent of how much damping exists.

On the other hand, if $P_{S}>0$, then one may show (see app. of these notes) from (18) there are 2 possible conditions, depending on how much damping there is: (i) small-signal stable and oscillatory (LHP poles on $j \omega$ axis); (ii) small-signal stable and non-oscillatory (LHP poles on real axis). It is not possible for the system to be smallsignal unstable, a reflection of the fact that small excursions around a point having $P_{S}>0$ (left part of power-angle curve) must be stable.

2.0 Multi-machine case (Section 3.4)

(We will come back to sections 3.2 and 3.3.1)
Recall that for a generator connected to an infinite bus, we found that the swing equation is

$$
\begin{equation*}
\frac{2 H}{\omega_{\operatorname{Re}}} \frac{d^{2} \delta}{d t^{2}}+\frac{D}{\omega_{\operatorname{Re}}} \frac{d \delta}{d t}=P_{m}-P_{e} \tag{21}
\end{equation*}
$$

where

- $P_{e}=P_{M} \sin (\delta-\gamma)$
- $P_{M}=\left|E\|V\| Y_{12}\right|$
- $Y_{12}=\left|Y_{12}\right| \angle \theta_{12}$

Letting $\delta=\delta_{0}+\Delta \delta$ and linearizing, we find that

$$
\begin{equation*}
\frac{2 H}{\omega_{\operatorname{Re}}} \frac{d^{2} \Delta \delta}{d t^{2}}+\frac{D}{\omega_{\operatorname{Re}}} \frac{d \Delta \delta}{d t}-P_{S} \Delta \delta=0 \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{S}=\left.\frac{d P_{e}}{d \delta}\right|_{\delta_{0}}=P_{M} \cos \left(\delta_{0}-\gamma\right) \tag{13}
\end{equation*}
$$

Let's now consider the multi-machine system assuming:

- Classical models
- Network reduced to only internal generator nodes

For generator i , we have that the swing equation is

$$
\begin{equation*}
\frac{2 H_{i}}{\omega_{\operatorname{Re}}} \frac{d^{2} \Delta \delta_{i}}{d t^{2}}+\frac{D_{i}}{\omega_{\operatorname{Re}}} \frac{d \Delta \delta_{i}}{d t}=P_{m_{i}}-P_{e_{i}} \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
P_{e i} & =E_{i}^{2} G_{i i}+\sum_{\substack{j=1 \\
j \neq i}}^{n} E_{i} E_{j} Y_{i j} \cos \left(\theta_{i j}-\delta_{i}+\delta_{j}\right) \\
& =E_{i}^{2} G_{i i}+\sum_{\substack{j=1 \\
j \neq i}}^{n} E_{i} E_{j} Y_{i j} \cos \left(\theta_{i j}-\delta_{i j}\right) \tag{24}
\end{align*}
$$

where $\delta_{i j}=\delta_{i}-\delta_{j}$.
In (24), all voltages E_{i}, E_{j}, and all Y -bus elements $Y_{i j}$ are magnitudes.
Now let's consider a small change in the angle of machine i : $\delta_{i}=\delta_{i 0}+\Delta \delta_{j}$.

The left-hand-side of (23) is precisely as in the case of the single generator vs. infinite bus case. But what happened to the right-handside? Now the right-hand-side is, by (23), $P_{m_{i}}-P_{e_{i}}$.

- $P_{m i}$ is unaffected by $+\Delta \delta_{j}$, but
- $P_{e i}$ is affected by it, by (24).

Recall $\delta_{i j}=\delta_{i}-\delta_{j}$. We consider a small change in rotor angle at generator i. To be more general, we also allow a small change in generator j. However, in general, generator j does not change as a result of the generator i change; we consider they are independent changes and we could just as well have only one of them.

$$
\delta_{i}=\delta_{i 0}+\Delta \delta_{i} \quad \delta_{j}=\delta_{j 0}+\Delta \delta_{j}
$$

Recalling from (24) that

$$
\begin{equation*}
P_{e i}=E_{i}^{2} G_{i i}+\sum_{\substack{j=1 \\ j \neq i}}^{n} E_{i} E_{j} Y_{i j} \cos \left(\theta_{i j}-\delta_{i j}\right) \tag{25}
\end{equation*}
$$

we need to see what happens to the cos term for the small change in angle.

We know from trigonometry that

$$
\cos (x-y)=\sin x \sin y+\cos x \cos y
$$

Then

$$
\begin{equation*}
\cos \left(\theta_{i j}-\delta_{i j}\right)=\sin \theta_{i j} \sin \delta_{i j}+\cos \theta_{i j} \cos \delta_{i j} \tag{26}
\end{equation*}
$$

Application of (26) to (25) yields:

$$
\begin{align*}
P_{e i} & =E_{i}^{2} G_{i i}+\sum_{\substack{j=1 \\
j \neq i}}^{n} E_{i} E_{j}\left\{Y_{i j} \sin \theta_{i j} \sin \delta_{i j}+Y_{i j} \cos \theta_{i j} \cos \delta_{i j}\right\} \\
& =E_{i}^{2} G_{i i}+\sum_{\substack{j=1 \\
j \neq i}}^{n} E_{i} E_{j}\left\{B_{i j} \sin \delta_{i j}+G_{i j} \cos \delta_{i j}\right\} \tag{27}
\end{align*}
$$

(Eqt. 3.21)
Now we need to linearize the $\cos \delta_{i j}$ and $\sin \delta_{i j}$ terms using $\delta_{i j}=\delta_{i j 0}+\Delta \delta_{i j}$.
From Taylor series with first order term only,

$$
\begin{equation*}
\sin \delta_{i j}=\sin \left(\delta_{i j 0}+\Delta \delta_{i j}\right)=\sin \delta_{i j 0}+\Delta \delta_{i j} \cos \delta_{i j 0} \tag{28}
\end{equation*}
$$

$\cos \delta_{i j}=\cos \left(\delta_{i j 0}+\Delta \delta_{i j}\right)=\cos \delta_{i j 0}-\Delta \delta_{i j} \sin \delta_{i j 0}$
Substituting (28) and (29) into (27), we get

$$
\begin{array}{r}
P_{e i}=E_{i}^{2} G_{i i}+\sum_{\substack{j=1 \\
j \neq i}}^{n} E_{i} E_{j}\left\{B_{i j}\left(\sin \delta_{i j 0}+\Delta \delta_{i j} \cos \delta_{i j 0}\right)\right. \\
\left.+G_{i j}\left(\cos \delta_{i j 0}-\Delta \delta_{i j} \sin \delta_{i j 0}\right)\right\} \tag{30}
\end{array}
$$

Now collect terms in $\Delta \delta_{i j}$:

$$
\begin{align*}
P_{e i}=E_{i}^{2} G_{i i} & +\sum_{\substack{j=l \\
j^{\prime} i}}^{n} E_{i} E_{j}\left\{B_{i j} \sin \delta_{i j 0}+G_{i j} \cos \delta_{i j 0}\right\} \\
& +\sum_{\substack{j=1 \\
j^{\prime} i}}^{n} E_{i} E_{j}\left\{B_{i j} \cos \delta_{i j 0}-G_{i j} \sin \delta_{i j 0}\right\} \Delta \delta_{i j} \tag{31a}
\end{align*}
$$

But the top line of the RHS in (31a) is the steady-state power $P_{m i}$:

$$
\begin{equation*}
P_{m i}=E_{i}^{2} G_{i i}+\sum_{\substack{j=1 \\ j^{\prime} i}}^{n} E_{i} E_{j}\left\{B_{i j} \cos \delta_{i j 0}-G_{i j} \sin \delta_{i j 0}\right\} \Delta \delta_{i j} \tag{31b}
\end{equation*}
$$

Recall that the right-hand-side of the swing equation is $P_{m i}-P_{e i}$. Substitution of (31a) and (31b) results in

$$
\begin{align*}
P_{m i}-P_{e i} & =E_{i}^{2} G_{i i}+\sum_{\substack{j=l \\
j=1}}^{n} E_{i} E_{j}\left\{B_{i j} \cos \delta_{i j 0}-G_{i j} \sin \delta_{i j}\right\} \Delta \delta_{i j} \\
-E_{i}^{2} G_{i i}-\sum_{\substack{j=l \\
j=i}}^{n} E_{i} E_{j}\left\{B_{i j} \sin \delta_{i j 0}+G_{i j} \cos \delta_{i j 0}\right\} & -\sum_{\substack{j=1 \\
j j_{i}}}^{n} E_{i} E_{j}\left\{B_{i j} \cos \delta_{i j 0}-G_{i j} \sin \delta_{i j 0}\right\} \Delta \delta_{i j} \\
& =-\sum_{\substack{j=l \\
j i l}}^{n} E_{i} E_{j}\left\{B_{i j} \cos \delta_{i j 0}-G_{i j} \sin \delta_{i j 0}\right\} \Delta \delta_{i j} \tag{31c}
\end{align*}
$$

therefore the swing equation (23), which is

$$
\begin{equation*}
\frac{2 H_{i}}{\omega_{\operatorname{Re}}} \frac{d^{2} \Delta \delta_{i}}{d t^{2}}+\frac{D_{i}}{\omega_{\operatorname{Re}}} \frac{d \Delta \delta_{i}}{d t}=P_{m_{i}}-P_{e_{i}} \tag{23}
\end{equation*}
$$

becomes

$$
\begin{equation*}
\frac{2 H_{i}}{\omega_{\operatorname{Re}}} \frac{d^{2} \Delta \delta_{i}}{d t^{2}}+\frac{D_{i}}{\omega_{\operatorname{Re}}} \frac{d \Delta \delta_{i}}{d t}=-\sum_{\substack{j=1 \\ j \neq i}}^{n} E_{i} E_{j}\left\{B_{i j} \cos \delta_{i j 0}-G_{i j} \sin \delta_{i j 0}\right\} \Delta \delta_{i j} \tag{32}
\end{equation*}
$$

Define everything inside the expression within the summation of (32), except $\Delta \delta_{i j}$, as $P_{S i j}$, that is

$$
\begin{equation*}
P_{S i j}=E_{i} E_{j}\left\{B_{i j} \cos \delta_{i j 0}-G_{i j} \sin \delta_{i j 0}\right\} \tag{33}
\end{equation*}
$$

Then (32) becomes

$$
\begin{equation*}
\frac{2 H_{i}}{\omega_{\operatorname{Re}}} \frac{d^{2} \Delta \delta_{i}}{d t^{2}}+\frac{D_{i}}{\omega_{\operatorname{Re}}} \frac{d \Delta \delta_{i}}{d t}=-\sum_{\substack{j=1 \\ j \neq i}}^{n} P_{S i j} \Delta \delta_{i j} \tag{34}
\end{equation*}
$$

Given the mechanical power is constant, the right-hand-side of (34) gives the negative of the change in electric power out of the machine due to the small changes $\Delta \delta_{i j}$, that is

$$
\begin{equation*}
\Delta P_{e i}=\sum_{\substack{j=1 \\ j \neq i}}^{n} P_{S i j} \Delta \delta_{i j} \tag{35}
\end{equation*}
$$

(Eqt. 3.23)
What is $P_{S i j}$? We answer this question by observing that the power flowing from generator internal node i to generator internal node j is

$$
\begin{equation*}
P_{i j}=E_{i} E_{j}\left\{B_{i j} \sin \delta_{i j}+G_{i j} \cos \delta_{i j}\right\} \tag{36}
\end{equation*}
$$

Differentiating, we get

$$
\begin{equation*}
\frac{\partial P_{i j}}{\partial \delta_{i j}}=E_{i} E_{j}\left\{B_{i j} \cos \delta_{i j}-G_{i j} \sin \delta_{i j}\right\} \tag{37}
\end{equation*}
$$

Evaluating at $\delta_{i j 0}$, we get

$$
\begin{equation*}
\left.\frac{\partial P_{i j}}{\partial \delta_{i j}}\right|_{\delta_{i j 0}}=E_{i} E_{j}\left\{B_{i j} \cos \delta_{i j 0}-G_{i j} \sin \delta_{i j 0}\right\}=P_{S i j} \tag{38}
\end{equation*}
$$

(Eqt. 3.24)
Note that if bus j is the infinite bus, neglecting resistance, we have:

$$
P_{S i j}=E_{i} E_{j} B_{i j} \cos \delta_{i j 0}
$$

which is the same as the synchronizing power coefficient in the infinite bus case (we called it P_{S}).

We will look at multimachine systems; before we do, we consider something important in the next notes: response to load changes.

One last issue: what is the difference between synchronizing power coefficient, generation shift factor (GSF) and power transfer distribution factor? We answer this here.

- Synchronizing power coefficient (SPC):

$$
\begin{equation*}
P_{S i j}=\left.\frac{\partial P_{i j}}{\partial \delta_{i j}}\right|_{\delta_{i j 0}}=E_{i} E_{j}\left\{B_{i j} \cos \delta_{i j 0}-G_{i j} \sin \delta_{i j 0}\right\} \tag{a1}
\end{equation*}
$$

Observe that the SPC gives

- change in flow on circuit $\{i, j\}$ with respect to
\bigcirc a change in angular separation across $\{i, j\}$.
- Generation shift factor (GSF):

$$
\begin{equation*}
t_{\{b\}, i}=\left.\frac{\partial P_{\{b\}}}{\partial P_{i}}\right|_{\substack{\text { Reallocation } \\ \text { Policy }}} \tag{b1}
\end{equation*}
$$

Observe that the GSF gives

- change in flow across any branch b with respect to
- a change in injection at bus i, subject to a reallocation policy (i.e., how the bus i change in injection is compensated).
- Power transfer distribution factor (PTDF) for 1-bus injection change:

$$
\begin{equation*}
P T D F_{\{b\}, i}=\left.\frac{\partial P_{\{b\}}}{\partial P_{i}}\right|_{\substack{\text { Reallocation } \\ \text { Policy }}} \tag{c}
\end{equation*}
$$

The PTDF for 1-bus injection change is the same as the GSF.

- Power transfer distribution factor for 2-bus injection change:

$$
\begin{equation*}
P T D F_{\{i j,, i, j}=\left.\frac{\partial P_{\{i j\}}}{\partial P_{i}}\right|_{\substack{\text { Reallocation } \\ \text { Policy }}}-\left.\frac{\partial P_{\{i j\}}}{\partial P_{j}}\right|_{\substack{\text { Reallocation } \\ \text { Policy }}} \tag{c}
\end{equation*}
$$

The upshot of the above is that relating SPC to GSF is enough to relate SPC to PTDF. We relate SPC to GSF as follows:
From (a1), we write that

$$
\begin{equation*}
P_{S i j}=\left.\frac{\Delta P_{i j}}{\Delta \delta_{i j}}\right|_{\delta_{i j 0}} \Rightarrow \Delta P_{i j}=\left.P_{S i j}\right|_{\delta_{i j}} \Delta \delta_{i j} \tag{a2}
\end{equation*}
$$

From (b1), we write that

$$
\begin{equation*}
t_{\{b\}, i}=\left.\frac{\Delta P_{\{b\}}}{\Delta P_{i}}\right|_{\substack{\text { Reallocation } \\ \text { Policy }}} \Rightarrow \Delta P_{\{b\}}=\left.\left.t_{\{b\}, i}\right|_{\substack{\text { Reallocation } \\ \text { Policy }}} \Delta P_{i}\right|_{\substack{\text { Reallocation } \\ \text { Policy }}} \tag{b2}
\end{equation*}
$$

Now

1. Consider our power system is experiencing conditions such that the angular separation between buses i and j is $\delta_{\mathrm{ij} 0}$.
2. Line b is terminated by buses i and j , i.e., $\mathrm{b} \equiv\{\mathrm{i}, \mathrm{j}\}$.
3. We make a change in injected power at bus i equal to $\Delta \mathrm{P}_{\mathrm{i}}$ compensated by a "reallocation policy" where an equal and opposite change, $\Delta \mathrm{P}_{\mathrm{j}}$, is made at bus j .
Then (a2) and (b2) are equivalent:

$$
\Delta P_{i j}=\left.P_{S i j}\right|_{\delta_{i j 0}} \Delta \delta_{i j}=\Delta P_{\{b\}}=\left.\left.t_{\{b\}, i}\right|_{\substack{\text { Reallocation } \\ \text { Policy: } \Delta P_{j}=-\Delta P_{i}}} \Delta P_{i}\right|_{\substack{\text { Reallocation } \\ \text { Policy: } \Delta P_{j}=-\Delta P_{i}}}
$$

That is:

$$
\left.P_{S i j}\right|_{\delta_{i j 0}} \Delta \delta_{i j}=\left.\left.t_{\{b\}, i}\right|_{\text {Roalicy: } \Delta P_{j}=-\Delta \mathrm{P}} ^{\text {Reallation }} \Delta P_{i}\right|_{\text {Policy: } \Delta P_{j}=-\Delta \mathrm{P}} ^{\text {Reallocation }}
$$

which shows us that

Appendix

On p. 6 of these notes, we wrote
"On the other hand, if $P_{S}>0$, then one may show (see app. of these notes) from (18) there are 2 possible conditions, depending on how much damping there is: (i) small-signal stable and oscillatory (LHP poles on $j \omega$ axis); (ii) small-signal stable and non-oscillatory (LHP poles on real axis). It is not possible for the system to be smallsignal unstable, a reflection of the fact that small excursions around a point having $P_{S}>0$ (left part of power-angle curve) must be stable."

Here, we prove the last statement, i.e., with $P_{S}>0$, that it is not possible for the system to be small-signal unstable. Starting from (18) (eq. 3.8 in VMAF):

$$
\begin{equation*}
s=-\frac{D}{4 H} \pm \frac{\omega_{\mathrm{Re}}}{4 H} \sqrt{\left(\frac{D}{\omega_{\mathrm{Re}}}\right)^{2}-\frac{8 P_{S} H}{\omega_{\mathrm{Re}}}} \tag{18}
\end{equation*}
$$

If we assume that $P_{S}>0$, then (18) becomes

$$
\begin{equation*}
s=-\frac{D}{4 H} \pm \frac{\omega_{R e}}{4 H} \sqrt{\left(\frac{D}{\omega_{R e}}\right)^{2}-\frac{8\left|P_{S}\right| H}{\omega_{R e}}} \tag{A-1}
\end{equation*}
$$

If it is unstable, then the pole with the largest real part (and so we use the " + " sign in (A-1)) must be in RHP:

$$
\begin{align*}
& \quad-\frac{D}{4 H}+\frac{\omega_{R e}}{4 H} \sqrt{\left(\frac{D}{\omega_{R e}}\right)^{2}-\frac{8\left|P_{S}\right| H}{\omega_{R e}}>0} \tag{A-2}\\
& \frac{\omega_{R e}}{4 H} \sqrt{\left(\frac{D}{\omega_{R e}}\right)^{2}-\frac{8\left|P_{S}\right| H}{\omega_{R e}}>\frac{D}{4 H} \Rightarrow \sqrt{\left(\frac{D}{\omega_{R e}}\right)^{2}-\frac{8\left|P_{S}\right| H}{\omega_{R e}}>\frac{D}{\omega_{R e}}(\mathrm{~A}-3)}} \begin{array}{l}
\Rightarrow\left(\frac{D}{\omega_{R e}}\right)^{2}-\frac{8\left|P_{S}\right| H}{\omega_{R e}}>\left(\frac{D}{\omega_{R e}}\right)^{2} \Rightarrow-\frac{8\left|P_{S}\right| H}{\omega_{R e}}>0
\end{array}
\end{align*}
$$

However, (A-4) is impossible. QED.

