Linearization of the Swing Equation
We will cover sections 2.5.2-2.6 and beginning of Section 3.3 in
these notes.
1.0 Single machine-infinite bus case
Consider a single machine connected to an infinite bus, as shown in
Fig. 1 below.
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Fig. 1
The admittance matrix is given by
v :{Yn le} :{ Y12 —Y12}
Yor Yool |[—Yi2 Va2 (1)

Let’s assume the machine is modeled by the swing equation with
damping (eq. 1 in our notes “multimachine” and (2.56) in VMAF).
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o Pu=EIVIYy]

o Yo=Y | L6

o V= 912 -2 (enables use of sin instead of cos-see p. 33, VMAF)
Now let the angle & change by a small amount. Then
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Also recall that by Taylor series,
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Then we also see that
sin(d —y) =sin(d, —y +Ad) =sin(d, —y) +(cos(o, —7))AS  (5)
(Eqt. 3.3)
Applying (3) to the left-hand-side of (2) and (5) to the right-hand-
side of (2), we obtain
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(6)
But from steady-state conditions, we know the mechanical power is:
P, =By sin(dog —»)
Therefore,
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Or
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Ore dt2 ore m (C0S(dp —7)) (8)
Now define
Ps =By cos(dp —7) (9)
What is it?
To answer this question, observe:
R =Py sin(6—7) (10)
dP, B
dP.
—2 = PM COS(50 _ 7) (12)
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Therefore,
dP
P =—2% =Py cos(d—
S ds S M (60 —%) (13)

Ps is called the synchronizing power coefficient.
In regard to early swing instability (which is a nonlinear
phenomena), the larger Ps is, the more stable will be the generator
for a given disturbance.

This is true because Ps indicates the slope of the power-angle curve,
and the higher this slope, the more decelerating energy is available
to the machine for a given fault. ThiLs idea is illustrated in Fig. 2.

But let’s see what it means for “small signal instability,” which is
characterized by the eigenvalues (roots) of the system differential
equation transformed to the s-domain through LaPlace transforms.

Substituting (13) into (8) results in
2H d2A5+ D dAS
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Taking the LaPlace transform (assuming all initial conditions are 0),
we obtain



ZH 520 5(5) + -2 sAS(s) + PsAS(S) = 0

(Re Re (15)
Eliminating Ad(s), we obtain the system’s characteristic equation:
2H D
(WRe WRe
(Eqt. 3.7)
Solving using the quadratic formula, we get
2
S:_Eii\/ D _ZPSCORE 17
4H  2\4H2 H (17)
Pulling wre/2H out of the radical, we have
2
D C()Re D 8PS H
S=-— + —
4H "~ 4H || ore ORe (18)
(Eqt. 3.8)
We can make some observations about (18), as follows:
1. No damping: If D=0, then
a)Re 8PS a)Re I:)S
(19a)

or

_ i [PrePs
S=+1 5 (19b)

a. Observe in (19b) that if Ps>0, (a) any response to a small
disturbance will be oscillatory, and (b) the oscillatory
frequency becomes lower as H becomes larger.

b. Observe in (19a) that if Ps<0, then

| orelPs |
S== —2H =*0 (20)

and any response is unstable.
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Figures 3, 4 illustrate, for both situations Ps>0, Ps<O0,
respectively, the pole (eigenvalue) locations in the s-plane
and the operating point location on the power-angle curve.
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Fig. 3: Ps>0
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Fig. 4: Ps<0

In Fig. 3, the oscillatory system is characterized by purely
imaginary poles (left) and a stable operating point (right).
In Fig. 4, the unstable system is characterized by the RHP-
pole (left) and an unstable equilibrium point (right). (Not
shown: We may have a marginally stable system
characterized by a pole at origin, equilibrium point 6o=90°;
it will have a constant amplitude response).
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2. With damping: If D#£0, then
2

. D n WRe D _8P8H

AH  4H WRe DRe

Let’s look at the most positive root (and so we will use “+” sign
before the radical, and we ensure the contribution from the second
term inside the radical is positive, i.e., Ps<0) and ask what are the
conditions under which it can be in the right-half-plane, that is:
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Re Re Re
?
N 8| PS | H > 0

(18)

Re
The above relation must be true. Because the above relation is
independent of damping, we conclude that if Ps<0, the system must
be unstable, independent of how much damping exists.

On the other hand, if Ps>0, then one may show (see app. of
these notes) from (18) there are 2 possible conditions, depending on
how much damping there is: (i) small-signal stable and oscillatory
(LHP poles on jw axis); (i) small-signal stable and non-oscillatory
(LHP poles on real axis). It is not possible for the system to be small-
signal unstable, a reflection of the fact that small excursions around
a point having Ps>0 (left part of power-angle curve) must be stable.
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2.0 Multi-machine case (Section 3.4)
(We will come back to sections 3.2 and 3.3.1)

Recall that for a generator connected to an infinite bus, we found
that the swing equation is

2H d°6 D do
N _

P.—P.

WDRe dt* wRe dt B (21)
where
o P.=PRysin(d—y)
o Pu=EIVIYyl
o Yo=Y | L6,
Letting O = 6y +Ad and linearizing, we find that
2
2H 4°A5 | D dAG o5 -
WRe dt wRe dt

where

dP,
=—= =Py, Ccos(dy—

ds 5 M ( 0 7/) (13)
Let’s now consider the multi-machine system assuming:
e Classical models
e Network reduced to only internal generator nodes
For generator i, we have that the swing equation is

2H; d°A5;, D, dAS,
| > L, I Pm. _ Pe
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where

Ps

i (23)



n

Pei = EizGii —+ Z EIEJY” COS(@ij _5i +5J)
1
};ti

n
= EiZGii + Z Ei EJY” COS(Hij — 5”) (24)
)
};ti
where 0ij=0i-0j.

In (24), all voltages E;, E;, and all Y-bus elements Yj; are magnitudes.

Now let’s consider a small change in the angle of machine i:
0i=0i0TAJj.

The left-hand-side of (23) is precisely as in the case of the single
generator vs. infinite bus case. But what happened to the right-hand-

side? Now the right-hand-side is, by (23), Pm, —Fe..

e Ppiis unaffected by +Ag;, but

o P is affected by it, by (24).
Recall dij=di-0;. We consider a small change in rotor angle at
generator i. To be more general, we also allow a small change in
generator j. However, in general, generator j does not change as a
result of the generator i change; we consider they are independent
changes and we could just as well have only one of them.

0i=0io+AJi 0j=0jo+AJj

Recalling from (24) that

n
2
Pei = Ei Gii + Z EIEJYIJ COS(gij —5“')
j=1 (25)
J#i
we need to see what happens to the cos term for the small change in
angle.



We know from trigonometry that
COS(X — Yy) =Sin XSin y + C0OS X COS y
Then
cos(6; — &jj) =sin G SIn 5;; + COSG; COSS; (26
Application of (26) to (25) yields:

n
Pei = EizGii + Z EIEJ ij sin 9” sin 5” +Yij COSQij COS&ij}
j=1
};éi
n
= EiZGii +ZE|EJ{B|J sin 5” +Gij COSé‘ij} (27)
j=1
};ti
(Eqt. 3.21)
Now we need to linearize the cosdij and sindi terms using
0ij=0ijo T A0jj.
From Taylor series with first order term only,
sin &;; =sIn(d;j + Adjj) =SIN Gjjp + Ad;j COSSijp  (28)
C0Sd5; = €0S(Jjj0 + Adjj) = COSGjjp — Ad;j SIN Gjjp (29)
Substituting (28) and (29) into (27), we get
, n
Pei = Ei Gii + Z EIEJ {BIJ (Sln 5|J0 +A5ij COSé‘ijO)
j=1
J#
+ Glj (COS §ij0 — Aglj sin 5”0)}
(30)
Now collect terms in Adj;:



P, = E’G, + > EE,{B;sind, + G cosdy|
=1
J

n
: (31a)
+ D EE,{B,00sdy, - Gysindo | 4,
i
But the top line of the RHS in (31a) is the steady-state power Pp;:
n
— 2 .
Py = E’G; + X EE;{Bc0sdy, - Gysindyp | A5y (31,
=1
Jii
Recall that the right-hand-side of the swing equation is Pp-Pei.
Substitution of (31a) and (31b) results in

P, -P, = EG, + 3 EE, {Byc0sdy, - Gysindy, } 45,
i1
J

~-E/G, - i EE, {Bijsinéij0 + Gijcoséijo} - iEiEj {Bijcoséijo - Gysindy, } 40
=1 =1
J Ju
= —zn: E.E, {B;c0sdy, - Gysindy, | 45;
=1

ji

(31c)
therefore the swing equation (23), which is
2H, d’AS, D; dAS;
2 + - Pmi B Pei (23)
WRe Ot wge Ot

becomes

d2As. D L
2H; d°Ag; | D; dAS; = - EiE; By c0s iy — Gijsin 60 jAS;
i1

CORe dt 2 CORe dt B J

J#i

(32)
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Define everything inside the expression within the summation of
(32), except Adij, as Psij, that is

PSij = EIEJ {BU COS&ijO_Gij Sin 5”0} (33)
Then (32) becomes
. 2 - . . n
2H; d A25, N D; dAJ; _ _Z Py AG;
C()Re dt C()Re dt j=1 (34)
J#
Given the mechanical power is constant, the right-hand-side of (34)

gives the negative of the change in electric power out of the machine
due to the small changes Adj;, that is

n

AP, = D PsijAd;
=1
J#I1

(35)

(Eqt. 3.23)
What is Ps;;? We answer this question by observing that the power
flowing from generator internal node i to generator internal node j
IS

P” = EIEJ {B” S|n§” +Glj COSé]J} (36)
Differentiating, we get
oP; |
— = ElEJ{B” COS5ij _Gij Sin 5”} (37)

ij
Evaluating at dij0, we get
oP; |
5 = ElEJ{B” COS&ijO_Gij SIN 5”0}: PSij

} (38)
' §ij0

(Eqt. 3.24)
Note that if bus j is the infinite bus, neglecting resistance, we have:

PSij = EIEJBIJ COS&ijO
which is the same as the synchronizing power coefficient in the
infinite bus case (we called it Ps).
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We will look at multimachine systems; before we do, we consider
something important in the next notes: response to load changes.

One last issue: what is the difference between synchronizing power
coefficient, generation shift factor (GSF) and power transfer
distribution factor? We answer this here.

Synchronizing power coefficient (SPC):
oP

_

Sij —

= EE, {B, c0s 5, — G, sin 5, }

i (al)
s,
Observe that the SPC gives

o change in flow on circuit {i,j} with respect to

o achange in angular separation across {i,j}.

Generation shift factor (GSF):

_ Oy

{b}i
a P, Reallocation
Policy

(b1)

Observe that the GSF gives
o change in flow across any branch b with respect to
o achange ininjection at bus i, subject to a reallocation policy
(i.e., how the bus i change in injection is compensated).
Power transfer distribution factor (PTDF) for 1-bus injection
change:

oP,
_ _ {b}

Reallocation (C)
Policy

The PTDF for 1-bus injection change is the same as the GSF.
Power transfer distribution factor for 2-bus injection change:
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oP.. P,
_ YNijy Ay
PTDF{ij},i,j - oP reallocat oP. _ (C)
i |Reallocation j |Reallocation
Policy Policy

The upshot of the above is that relating SPC to GSF is enough to
relate SPC to PTDF. We relate SPC to GSF as follows:
From (al), we write that

P.
j _
PSij = E - APij = PSij e Aé‘ij (a2)
U 1550
From (b1), we write that
S ! AP, =t AP |eatiocat
B API Reallocation ~ o ggﬁlggcation i‘sgﬁggca“on
Policy

(b2)

Now

1. Consider our power system is experiencing conditions such
that the angular separation between buses 1 and j is Oijo.

2. Line b is terminated by buses 1 and j, i.e., b={1,j}.

3. We make a change in injected power at bus 1 equal to AP;
compensated by a “reallocation policy” where an equal and
opposite change, AP;j, is made at bus j.

Then (a2) and (b2) are equivalent:

ARy =Fy| . Ady = APy, =1y, i AP |Reallocati

1= Pl 491 = A% =tonlggn | ARt
That is:
I:)Sij Aé‘ij :t{b},i Reallocation AI:)i|ReaIIocation

Sijo Policy: AP;=—AP Policy: AP; =—AP
which shows us that

A6,
t . —P.. !
{b},i |Reallocation Sij
Policy: APj=—AP 5 API |Real|ocation
ijo Policy: AP;=—AP
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Appendix

On p. 6 of these notes, we wrote

“On the other hand, if Ps>0, then one may show (see app. of
these notes) from (18) there are 2 possible conditions, depending on
how much damping there is: (i) small-signal stable and oscillatory
(LHP poles on jw axis); (ii) small-signal stable and non-oscillatory
(LHP poles on real axis). It is not possible for the system to be small-
signal unstable, a reflection of the fact that small excursions around
a point having Ps>0 (left part of power-angle curve) must be stable.”

Here, we prove the last statement, i.e., with Ps>0, that it is not
possible for the system to be small-signal unstable. Starting from
(18) (eg. 3.8 in VMAF):

2
D g (ID] _ 8RH

C4H T 4H ore ) oge (18)
If we assume that Ps>0, then (18) becomes
2
_ D o [ D) 8IRIH
4H ~ 4H \\\ oy, o (A-1)

If it is unstable, then the pole with the largest real part (and so we
use the “+” sign in (A-1)) must be in RHP:

2
D o [D) 8IRIH
A4H 4H (Ve W

(A-2)

e

o, [ DY 8 B|H_ D pY S8|P|H_ D
! - >—=— - Z—— (A3

4H 6ORe 6ORe 4H a)Re 6ORe Re
2 2
— D _8|PS|H>[D] :}-M>O (A-4)
Wpe Wpe Wpe Wpe

However, (A-4) is impossible. QED.
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