Brief Review of Linear System Theory
Comment on Project:

You may observe in your system that if you run the fault+line outage
simulation to 30 seconds you find a response like this.
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This is due to a right-half-plane pole. It is very hard to find the
problem using a time domain simulation tool, but we can do it using
an eigenanalysis tool. This is what we will learn about now.

The following information is typically covered in a course on linear
system theory. At ISU, EE 577 is one such course and is highly
recommended for power system engineering students.

This material is related to VMAF, p. 281-284.

We have developed a model that appears as

AX = AAX
We may write this more compactly as
X = AX

where the “A” is implied.

Taking the LaPlace transform, with initial conditions x(0), we have:
sX(s)—x(0) = AX(s)
> sX(s)- AX(s)=x(0)
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Factoring out the vector X(s) results in:
[s1 — A]X(s) = x(0)
where | is the identity matrix of same dimension as A.

Pre-multiplying both sides by [sI-A]*, we get:

X(s) =[s1 - A]"x(0) (L-1)
and taking the inverse-LaPlace transform leads to
x(t)=L" {[sl - A]‘l>_<(0)} (L-2a)

Note that in the above, by expressing [sI-A]*, we implicitly assume
that it is invertible and therefore non-singular (this requires that our
system has non-zero determinant).

Recall that a matrix inverse is the adjoint divided by the
determinant, i.e., K1=Adj(K)/det(K).

Applying this to eq. (L-1), we have:

_ Adj{fsl - A}
XO)= el - ]

x(0)

The determinant of a matrix is a scalar quantity, and in this case, it
is a scalar polynomial in the LaPlace variable “s” so that:

det{fsl - Al}=as"+a, " +..+a,
Such a polynomial may always be factored in the form:

det{lsl —Alj=as"+a _,s"" +..+a,=(5— )5 4,)..(s— 1)

L-2b
where the A, k=1, ..., n are the roots of the polynomial. Therefore,
X(s) = Adjflst - Ay (0) - Adj{s! — AJ}x(0)

det{fs| - AJ} (s—A)(s—4,)..(s— 1) (3




Eq. (L-3) expresses the n-dimensional vector X(s) as a function of
1. The nxn matrix Adj[sl-A],

2. The nx1 vector x(0)

3. The factored polynomial (s-41)(s-41)...(S-An)

Note that the numerator is the product of an nxn matrix and an nx1
vector and therefore it is nx1, which is the dimension of the right-
hand-side and thus the vector X(s). This is as it should be, since X(s)
Is the vector of states, and there should be n states.

If none of the roots Ak, k=1, ..., n are repeated, it will be possible to
use partial fraction expansion to express eq. (L-3) in the following
way:

x(s)= R, Ra®) . R(s)
(s—=4) (s—4,) (s— 1) L

where each R(s) is an nx1 vector. The inverse LaPlace transform
will then appear as:

X(t) =r (t)e™ +r,(t)e™ +...+r, (t)e™
The Ay, k=1,...,n are, in general, complex, such that Ax=ox+jax.

The A, k=1,...,n are called the system eigenvalues.

We see that the system eigenvalues Ak, k=1,...,n dictate the nature
of the system in terms of the system modal response, where each A«
corresponds to a system mode. These modes may be oscillatory or
non-oscillatory, damped or undamped.
1. Oscillatory:
= Any mode with =0 is oscillatory. If there exists an
M=oxt+jax such that a0, then there will exist a
corresponding Ak=ox-jax. These two eigenvalues correspond
to the same system mode.
= Any mode with ex=0 is non-oscillatory.
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2. Damping: Any mode A=ox7j ax,

a. if o>0, the mode is negatively damped (unstable)

b. if ox<0, the mode is positively damped (stable)

c. if ox=0, the mode is marginally damped.

If repeated roots occur in the factorization of (L-2b), then these roots
will have time-domain expressions like t™te* (r is number of
repeated roots), and will therefore have the following effects:

a. if ox>0, the mode is negatively damped (unstable)

b. if ox<0, the mode is positively damped (stable); however,
the effects of the “t” coefficient might initially dominate the
effects of the exponential and cause very large oscillations
that could disrupt the system.

c. with ox=0, the effects of the “t” coefficient will result in
growing response (unstable)

In practice, it is very unlikely to see repeated roots for power
systems. Therefore, we safely assume there are no repeated roots.
Right eigenvectors:

For each eigenvalue, A, k=1,...,n, there exists an n-element column
vector py, called a right eigenvector, such that

AP, = AP,

Since there are n eigenvalues, there are n right eigenvectors.
We may form a matrix of these n right eigenvectors as follows:

EZIEI _an

The above matrix, P, is called the modal matrix.

Left eigenvectors:
For each eigenvalue, Ak, k=1,...,n, there exists an n-element column
vector g, called a left eigenvector, such that

T T
9, A=44,
Since there are n eigenvalues, there are n left eigenvectors.
We may form a matrix of these n left eigenvectors as follows:




Some properties:
For any two eigenvalues, 4;, A, then
= For j=k, q; and pk are orthogonal, i.e., their dot product is O:

T
gj Ek =0 Here we define orthogonal vectors;
. recall we previously defined an
= For J—k’ orthogonal matrix to be a square
T . matrix whose columns and rows are
gj Ej - Cj orthogonal unit vectors, i.e., QQ™=U

where ¢j is a constant. A simple scaling of either the right or the

left eigenvector will provide that
T

q;p, =1
Now consider, based on the above properties, we will get:
9p 9P, 4P, - 9P| [gp, O 0 . 0]
q; 4P, 9P, %P, - %P | O gp 0 . O
QP=|‘\[p -~ pl=|dp, b, Gp, - e |7l 0 0 g . O
q, : ; DL : : : :
9,p, 9P, 9P, - 9P| [ O 0O 0O .. ogp|
We can go a step further if the scaling is performed:
Q'P=1
Post-multiplying both sides by P results in
Q' =p™

Note that neither Q or P are ortﬁogonal matrices, but QP is. Also:
= pp-iz]

= [QT1Q™=I



We can illustrate calculation of the right and left eigenvectors
using the sample system given in the book (fig. 2.19, and example
3.2), having state-space model of

Ad, 0 0 1 0] As,
AS, |_| 0O 0 0 1| Ad,
Ady, |~ |-104.096 59524 0 0| A,
Ad, -33.841 -153.460 0 0| A,

A

You can compute eigenvalues of this matrix in Matlab as follows:
>>A=[0010;0001;-104.096 -59.524 0 0; -33.841 -153.460 0 0]

A=

0 0 1.0000 0

0 0 0 1.0000
-104.0960 -59.5240 0
-33.8410 -153.4600 0

o o

>> eig(A)
ans =

-0.0000 +13.4164i
-0.0000 -13.4164i
0.0000 + 8.8067i
0.0000 - 8.8067i
Observe the eigenvalues in Table 3.2
Table 3.2. Frequencies of Oscillation of
a Nine-Bus System

Quantity Eigenvalue | Eigenvalue 2
A +i8.807 +i13.416
wrad/s 8.807 13.416
fHz 1.402 2.135
Ts 0.713 0.468

Also observe the relative rotor angle plots of fig. 3.3-b, for the case
when a small load was added to bus #8. Here we see that one mode
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can be clearly observed having a period of about 0.7 sec (f=1.4Hz,
w=2nf=8.8 rad/sec).

The other mode (2.1Hz) is not readily observable, although its
presence is likely responsible for the distortion seen in the 831 plot.
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From matlab, we use
[P,D]=eig(A) where A is the matrix A given above.

Then the matrix of eigenvalues D is given by

+13.4164i 0 0 0
0 -13.4164i 0 0
0 0 +8.8067i 0
0 0 0 - 8.8067i

And the matrix of right eigenvectors P is given by
-0.0459 - 0.0000i -0.0459 + 0.0000i -0.1030 - 0.0000i -0.1030 + 0.0000i
-0.0585 - 0.0000i -0.0585 + 0.0000i 0.0459 + 0.0000i 0.0459 - 0.0000i
0.0000 - 0.6154i 0.0000 + 0.6154i 0.0000 - 0.9075i 0.0000 + 0.9075i
0.0000 - 0.7847i 0.0000 + 0.7847i -0.0000 + 0.4046i -0.0000 - 0.4046i

And the matrix of left eigenvectors QT is given by P, which is:
-2.8240 + 0.0000i -6.3340 +0.0000i 0.0000 + 0.2105i 0.0000 + 0.4721i
-2.8240 - 0.0000i -6.3340 - 0.0000i 0.0000 - 0.2105i 0.0000 - 0.4721i
-3.5951 + 0.0000i 2.8194 - 0.0000i 0.0000 + 0.4082i -0.0000 - 0.3201i
-3.5951 - 0.0000i 2.8194 + 0.0000i 0.0000 - 0.4082i -0.0000 + 0.3201i

Note that here, the eigenvectors are along the rows. Taking
transpose, we get Q, which is



-2.8240 + 0.0000i -2.8240 - 0.0000i -3.5951 + 0.0000i -3.5951 - 0.0000i
-6.3340 + 0.0000i -6.3340 - 0.0000i 2.8194 - 0.0000i 2.8194 + 0.0000i
0.0000 + 0.2105i 0.0000 - 0.2105i 0.0000 + 0.4082i 0.0000 - 0.4082i
0.0000 + 0.4721i 0.0000 - 0.4721i -0.0000 - 0.3201i -0.0000 + 0.3201i

In the above, the left eigenvectors are the columns.

Note also that the columns of right (or left) eigenvectors
corresponding to complex conjugate eigenvalues are complex
conjugate eigenvectors.

The numerators of eq. (L-4)
Let’s return to eq. (L-4), which is restated here for convenience:

x()= Rl | RO | RS
(s+4) (s+4,) (5+4,)
What are these Rk, k=1,...,n?

To answer this, let’s return to eq. (L-1), which is:

X(s)=[sl - A]"x(0)
Let’s pre-multiply the right-hand side by PP-! and post-multiply the
right-hand-side by [QT]* Q. This is acceptable, since both of these
products yield the identity. This results in:

X(s)=PP[s1 - AI'[Q" ['Q" x(0)
Bracket the inner products: o
X(s)=Plp s1 - Al [Q"]* R"x(0)

We can show that what is inside the (highlighted) curly brackets is:

[st—A* =P [s1 -Al[Q"|"

where
A =diag(4,)
The proof is below:



1Since A is square and assumed to have distinct eigenvalues, it has full rank. Given that P is
the matrix of N independent right eigenvectors, A may be diagnalized by

P~'AP = A = diag(\;)
Since the right and left eigenvector matricies P and QT are orthogonal, P = [QT]"!, and
- PLA[QT]! = A = diag(Xi)

If P and QT are the right and left eigenvector matricies for A, then they are also the right and
left eigenvector matricies for [s] — A]. Therefore

Pl sI- A)QT)™! = [sI-A]
Recalling [BCD]~! = D~*C~*B~!, both sides of the previous equation may be inverted to yield
QT[sI - A)7'[P] = [sI - A" |
Again using the orthogonality coudition P = [QT]},
P sI - AMQT) = [sI - A]™!
Then, we have that:

X(s)= P {[s1-Al" |Q" X(0) ()

Two comments are relevant at this point:
1. The matrix being inverted is a diagonal matrix. Therefore, the
matrix inverse is obtained by inverting each diagonal element.
2. Recall the orthogonality property pig;=0 for i;.
Using these comments, we can perform the matrix multiplication on
(*#) to obtain:

0 0 0 o0
=4, =
1 gl
0 0 0 0 | .1
S_ﬂ'z 92
X()=P[st-AT'[Q" xO=[p, P, P, -~ 2] o o L1 o o |ld[xO
S— 4 -
: : T
g,
0 0 0 o0 1 |
i S—4 |
g x(0)
:
g, x(0)
b, B, B b, I ", p, 9, XO)

P P P P T _
s—4 s- 5—2323 os—4 93)—f(0) o s-1,

9, XO)|



<1
f_JH

0 p, (9, x(0) &, (g, x(0)p,

X(s) = =
kz=1 S — Ay ka1 S~

Taking the inverse LaPlace transform, we obtain:

>_<(t)=an)hl>_<(0)e‘“bk (L-5)

This is a very important relationship. It shows how we can use the
right eigenvalue to determine the shape of the ki mode.

To understand mode shape, focus on a single term in the summation,
the k™ term; this term is entirely responsible for mode k dynamics in
the time-domain response of each state. Call it xx(t), given by

% (®) =| 4 x(©)e* | p, (L-6a)

Inspecting eq. (L-6a), we see that the right eigenvector px determines

the relative distribution of the mode through the state variables x(t).

To see this, note that

= px and xx(t) are both nx1 vectors, with element i corresponding to
the i" state variable;

. 91 x(0)e™" is scalar and multiplies every element of py; so it does

not distinguish any state any differently than another state;

= px is therefore the only thing that distinguishes one state from
another in terms of the mode k dynamics.

These observations become more apparent if we expand (L6-a) to:

o o T

_ _ At _ Ad

3| X2 =2 O =g x(@e* | p, =g x(Oe || B |\ )
X4 (1 Pra

If the states are limited to only the generator inertial states 46 and
Aw, then each element of py gives the relative distribution of the

mode in a particular generator’s angle or speed.

Caution: Although the right eigenvector shows us how gens swing against
each other, it does NOT tell us how much a state influences a mode, i.e., p«
does not tell which machines are most effective to control the mode.
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The right eigenvector does tell you the relative phase of each state
in that mode. If you “plot” each element (a complex number and
thus interpretable as a vector) corresponding to each Aw state (one
for each generator) in the right eigenvector px, you can see which
generators are swinging against one another. This is called mode
shape. Relative phases can be observed in time domain simulations.

Some interesting ways of illustrating the relative phase of each Aax

as determined by the pi’s are shown in:

e Klein, Rogers, and Kundur, “A fundamental study of interarea
oscillations in power systems,” IEEE Trans Power Sys, V. 6, No.
3, Aug 1991 (its on website). See the two pages below. Fig. 2
shows the mode shape where gens 1,2 swing against gens 11,12,
and in the time domain simulation, Fig. 3.
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3.0 METHODS OF ANALYSIS

Both small signal stability analysis and transient stability analysis
were used, in a complementary way, in our study of inter-area
oscillations. Small signal stability analysis, using modal techniques
[7], is most appropriate for determining the nature of inter-area
modes in power systems. In this case, the system studied was small
enough to allow the analysis of all system modes, using MASS
computer program [8]. The system eigenvalues, eigenvectors, and
participation factors [7] were computed for a number of different
system conditions and configurations.

In some instances, in particular in our investigation of the effects
of loads, we found it useful to augment the small signal stability
analysis with transient stability runs. The graphic nature of the
output of the transient stability program aids in picturing the
pattern of voltage oscillations, and their relationship with the
eigenvectors calculated using modal analysis,

4.0 EEFECTS OF TIE LINE IMPEDANCE AND FLOW

In these tests, all four generating units were represented identically
by detailed generator and fast static exciter models. All loads were
represented as constant impedances. The tie line impedance was
varied by changing the number of tie circuits in service. Power
transfers between the two areas were created, either by an uneven
distribution of generation between the areas, or by an uneven split
of the total system load.

4.1 Effect on Frequency and Damping

The frequency and damping ratio of the inter-area mode for
various combinations of tie line power flow and number of tie
circuits in scrvice are given in Table 1. As is to be expected: the
frequency and damping ratio, of the inter-area mode, drop as the
tie line impedance or power flow is increased.

TABLE 1

Effects of Tie Line Impedance and Flow on
Frequency and Damping of the Inter-Area Mode

POWER FLOW

AREA 1 to 2 TIES FREQ DAMPING

__(8)  L/S O AREA)  AREA2  (H) _RATIO
0 3 140071367 1400/1367 0.748 0.018
o 2 - L 0.661 o.om
ot 1 | ‘ 0.513 0.002
400 3 1400/967 145071767 0.732 0.015
600 3 1400/767 1457/1967 0.683 0.008
400 1 1400/967 145071767 0.359 -0.002
380 1 1800/1367 1045/1367 0.363 -0.021

4.2 Effect op Mode Shape

The normalized eigenvector components, corresponding to rotor
speeds, of the inter-area mode, for various tie line impedances and
power flows, are shown in Figure 2. The results lead to the
following conclusions.

1. In a symmetric system with no power transfer between the two
areas, as in tests | and 2, the generating units in one area
oscillate exactly in anti-phase to the ones in the second ares
(generator 1 versus 11, and 2 versus 12). The units which
oscillate in anti-phase, have the same amplitude. The outer
units oscillate more than the inner ones.

2. In an asymmetric system, as in test 3, where the generation in
each area supplies the area load and hence, there is no flow on
the tie line, the phase difference between the generating units in
the two areas is slightly less than 180°.

3. In an asymmetric system with power flow on the tie line, as in
tests 4 and 5, the phase difference between the generating units
in the two areas is noticeably less than 180°, about 150° in this

case. The generating units in the receiving area oscillate with a
higher amplitude than the ones in the sending area.

Results of time domain simulations for the systems in test 2 and 4
are shown in Figures 3 and 4 respectively. These results correlate
well with those of the eigenvalue/vector analysis.

5.0 EFFECT OF EXCITATION SYSTEMS
5.1 Effect on Frequency and Damping

To test the effect of the excitation systems on the frequency and
damping of the inter-area mode we carried out two sets of tests:
one set with identical exciters on all four units and the other set
with one fast exciter and three slow or manually controlled
exciters.

5.1.1 Tests with Identical Exciters

In this set of tests we explored the effect of the following four
types of exciters on the inter-area mode:

- Manually controlled exciters

- Slow dc exciters

- Fast static exciters with and without transient
gain reduction (TGR).

Only the automatic voltage regulator effects were investigated.
Other controls, such as power system stabilizers, were not
considered.

We considered two operating conditions: a stressed system with only
one tie circuit 1/S and 400 MW power transfer from Area | to 2,
and an unstressed system with no power transfer between the areas.
Constant impedance loads were assumed in these tests.

The results, summarized in Table 2, show that the inter-area mode
is best damped with manually controlled exciters, and worst
damped with fast exciters with TGR. The frequency is highest for
fast exciters without TGR and lowest for slow exciters.

TEST 1 2 3 4 5
TESTVS 3 1 1 1 1
AREA 1 GEN/LOAD 1400/ 1367 1400/ 1367 1120/ 1100 1400 / 967 1800 / 1367
AREA 2 GENJLOAD 1400 / 1367 1400 /1367 1700/ 1650 1450/ 1767 1045/ 1367
FLOW AREA 1 TO 2 (MW) 0 0 0 400 380
NORMALIZED SPEED
EIGENVECTOR

—— 1 1 2 1 2 i 2 ) e

e GEN 2 "2 1 12 1 12 1 1 & 7 1

== GENT A b

oo GEN12

FIGURE 2
Effect of Tie Line Impedance and
Flow on Mode Shape
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5.1.2 Tests with One Fast Exciter

One slow, or manually controlled exciter, was replaced in turn with
a fast exciter, with the objective of studying the impact that the
relative locations of the generating unit have. Except for the
exciter, the generating units are identical; therefore, the differences
in the results of the tests are due only to the location of the
generating unit having the fast exciter.

The results, summarized in Table 3, lead to the following

conclusions:

1. The effect of one fast exciter on the damping of the inter-area
mode depends on its location and on the other types of exciters
in the system.

In the case of one fast exciter and three manually controlled
exciters, a fast exciter in the receiving area significantly
improves the damping of the mode, while a fast exciter in the

sending area reduces the damping. In the case of one fast
exciter and three slow exciter the opposite is true.

2. The effect of a fast exciter on the frequency of the inter-area
mode depends on the location of the exciter. A fast exciter in
the sending area increases the frequency, while one in the
receiving area reduces it.

In an attempt to understand these results, we examined the open
loop (no AVR) transfer function between field voltage and
terminal voltage (E,(s)/E(s)) for GEN 2 and GEN 12 under
various power transiers Igem the areas and found that this
transfer function has a zero around 0.3 Hz. Obviously, when there
is no flow on the tie line, this transfer function for GEN 2 is
identical to that for GEN 12, As the flow on the tie line is
increased, these two transfer functions begin to differ mainly in
terms of this zero. When the loop is closed through the exciter, the
inter-area pole migrates towards this zero and so causing the
difference in the effect of the fast exciter on GEN 2 and GEN 12,

For example, in the case of manually controlled exciters, with no
flow on the tie line, the zero has a negative real part., As the inter-
area power transfer is increased, the zero associated with the
transfer function of the sending area generator, GEN 2, moves to
the right and crosses into the right half of the s-plane. The zero
associated with the transfer function of the generator in the
receiving area, GEN 12, moves to the left.
TABLE 2 g
Effect of Excitation Systems on Frequency and Damping
of the Inter-Area Mode

POWER FLOW
AREA 1 to 2 EXCITER FREQ DAMPING
(. EES e Hz) RATIO
0 MANUALLY CONTROLLED 0.481 0.023
. FAST WITHOUT TGR 0.513 0.002
» FAST WITH TGR 0.485 -0,016
e SLOW 0.470 0.004
400 MANUALLY CONTROLLED 0.340 0.033
~ FAST WITHOUT TGR 0.358 -0.002
- FAST WITH TGR 0.301 -0.017
» SLOW 0.330 0.009
TABLE 3
Effect of One Fast Exciter
on the Inter-Area Mode
__EXCITERS ON THE REMAINING UNITS
—SLOw  MANUALLY CONTROLLED
GENERATOR WITH FREQ DAMPING FREQ  DAMPING
_FAST EXCITER (Hz) ~ _RATIO (Hz) ~ _BATIO
None 0.330 0.009 0.340 0.033
1 0.419 0.019 0.388  -0.048
2 0.467 -0.010 0.440 -0.062
n 0.286 -0.163 0.289 0.140
12 0.241 -0.283 0.208 0.357

5.2 Effect on Mode Shaoe

The effect of different generator and excitation system models on
the mode shape were explored under two operating conditions: an
unstressed system with no power flow on the tie, and a stressed
:ymmwi:hdoomwnowfm'm.‘\mltoAmZonnxin;lede
circuit.

The following alternative generator-excitation system models were
considered:

-Classical machine model (Fixed voltage behind transient
reactance)

- Detailed machine model with a manually controlled exciter

- Detailed machine model with a fast exciter (no TGR)

- Detailed machine with a slow exciter

The results of these tests are depicted in Figure 5. It can be seen
that in 2 symmetric system, with no power flow on the tie line, the
generating units in one area oscillate in anti-phase to those in the

e Also, from Wang, Howell, Kundur, Chung, and Xu, “A tool for

small-signal security assessment of power systems,” on website.

See mode shape, Fig. 5.
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No. Frequency (Hz) Damping Ratio (%)
1 0.306 8.53
2 0.366 3.92
3 0.380 231
4 0.416 3.51
5 0.446 3.04
6 0.468 3.60
7 0.549 2.51
8 0.563 3.82
9 0.600 3.95

Table 3 — Interarea modes of Test System 2

Figure 5 shows the mode shape of the first mode (at 0.306 Hz). Each
symbol in the figure represents the normalized right eigenvector entry
for a generator. From this mode shape, it is seen that the generators in
the eastern portion of the system have a large phase angle (close to
180°) against the generators in the western portion of the system.
Therefore, this mode represents an east-west (interarea) oscillation in
the system.

Figure 5 — Mode shape of the 0.306 Hz mode
Computation of a specified local mode

The objective of this example is to find the local mode at the Rush
Island generating units in the Ameren UE area. This mode is the focus
of several investigations [10] after the oscillation incident in 1992
involving the Rush Island units.

This mode occurred as a result of a contingency that effectively
disconnected two of three circuits connecting the Rush Island units to
the rest of the system. Under this condition, a local mode around 1
Hz at Rush Island may become poorly damped to cause sustained
oscillations. To find this mode, the option in SSAT to compute
modes related to a generator is used, after applying the contingency
to the base case. This mode tums out to be at 1.28 Hz with a
damping ratio of 4.19%. Figure 6 shows a time-domain simulation
verification performed using the fiull nonlinear simulation in which

one of the Rush Island unit speed is plotted. The simulation clearly

shows an oscillation at about 1.3 Hz.

160.300
80.200 {
$0.100
80,000 J‘v] AVIUAV\A
v
50.000
'mub 000 2000 6000 12.000 15,000
Time In seconds
Figure 6 — Simulation verification of
the Rush Island mode

The significance of this example is to show the capability of SSAT to
selectively compute local modes in a large model. Using the usual
eigenvalue analysis approach, this kind of computation would likely
need preliminary model reduction work, or an extensive mode scan in
the crowded local mode frequency range. Being able to directly locate
the required mode with the base study model helps significantly
improve the efficiency of the studies.

VL CONCLUSIONS

This paper presents a tool (SSAT) for small-signal security
assessment of power systems. It is developed as a result of the calls
from the power industry for a program to meet the increasing need of
system studies. The focus of this development-has been to provide
superior modelling support and capabilities for the security
assessment, while taking advantages of the recent advancement in the
basic computational algorithm development (such as eigenvalue
solvers). The theoretical foundations of SSAT are described and its

computational capabilities illustrated with numerical examples.
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e And from Y. Mansour, “Application of eigenanalysis to the
Western North American Power system,” on website. Tables 4,
5, and 6, each table for a certain condition, give eigenvector
elements for speed deviation at each of a number of generators.
Figures 1, 2, and 3 show, for three conditions, geographical plots
of the mode shapes for 4 different modes.
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Finally, below is some work recently done reflecting mode shape
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in the Southwestern WECC system for a certain mode.
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