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Brief Review of Linear System Theory 

Comment on Project: 

 

You may observe in your system that if you run the fault+line outage 

simulation to 30 seconds you find a response like this. 

 
This is due to a right-half-plane pole. It is very hard to find the 

problem using a time domain simulation tool, but we can do it using 

an eigenanalysis tool. This is what we will learn about now. 

 

The following information is typically covered in a course on linear 

system theory. At ISU, EE 577 is one such course and is highly 

recommended for power system engineering students. 

This material is related to VMAF, p. 281-284.  

We have developed a model that appears as 

xAx =  

We may write this more compactly as 

 

where the “” is implied. 

 

Taking the LaPlace transform, with initial conditions x(0), we have: 

  

➔ )0()()( xsXAsXs =−  

xAx =

)()0()( sXAxsXs =−
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Factoring out the vector X(s) results in: 

 

where I is the identity matrix of same dimension as A.  

 

Pre-multiplying both sides by [sI-A]-1, we get: 

   (L-1) 

and taking the inverse-LaPlace transform leads to 

  )0()(
11 xAIsLtx
−− −=     (L-2a) 

Note that in the above, by expressing [sI-A]-1, we implicitly assume 

that it is invertible and therefore non-singular (this requires that our 

system has non-zero determinant). 

 

Recall that a matrix inverse  is the adjoint divided by the 

determinant, i.e., K-1=Adj(K)/det(K).   

 

Applying this to eq. (L-1), we have: 

 

 

The determinant of a matrix is a scalar quantity, and in this case, it 

is a scalar polynomial in the LaPlace variable “s” so that: 
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−  

Such a polynomial may always be factored in the form: 

 

 
L-2b 

where the k, k=1, …, n are the roots of the polynomial. Therefore, 

 (L-3) 
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Eq. (L-3) expresses the n-dimensional vector X(s) as a function of  

1. The nn matrix Adj[sI-A], 

2. The n1 vector x(0) 

3. The factored polynomial (s-1)(s-1)…(s-n) 

Note that the numerator is the product of an nn matrix and an n1 

vector and therefore it is n1, which is the dimension of the right-

hand-side and thus the vector X(s). This is as it should be, since X(s) 

is the vector of states, and there should be n states. 

 

If none of the roots k, k=1, …, n are repeated, it will be possible to 

use partial fraction expansion to express eq. (L-3) in the following 

way: 

 

   (L-4) 

where each Rk(s) is an n1 vector. The inverse LaPlace transform 

will then appear as: 
1 2

1 2( ) ( ) ( ) ... ( )
 = + + + ntt t

nx t r t e r t e r t e  

The k, k=1,…,n are, in general, complex, such that k=k+jk.  

 

The k, k=1,…,n are called the system eigenvalues. 

 

We see that the system eigenvalues k, k=1,…,n dictate the nature 

of the system in terms of the system modal response, where each k 

corresponds to a system mode. These modes may be oscillatory or 

non-oscillatory, damped or undamped. 

1. Oscillatory:  

▪ Any mode with k0 is oscillatory. If there exists an 

k=k+jk such that k0, then there will exist a 

corresponding k=k-jk. These two eigenvalues correspond 

to the same system mode. 

▪ Any mode with k=0 is non-oscillatory. 
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2. Damping: Any mode k=kjk,  

a. if k>0, the mode is negatively damped (unstable)  

b. if k<0, the mode is positively damped (stable) 

c. if k=0, the mode is marginally damped. 

If repeated roots occur in the factorization of (L-2b), then these roots 

will have time-domain expressions like tr-1e-λt (r is number of 

repeated roots), and will therefore have the following effects: 

a. if k>0, the mode is negatively damped (unstable)  

b. if k<0, the mode is positively damped (stable); however, 

the effects of the “t” coefficient might initially dominate the 

effects of the exponential and cause very large oscillations 

that could disrupt the system. 

c. with k=0, the effects of the “t” coefficient will result in 

growing response (unstable) 

In practice, it is very unlikely to see repeated roots for power 

systems. Therefore, we safely assume there are no repeated roots. 

Right eigenvectors: 

For each eigenvalue, k, k=1,…,n, there exists an n-element column 

vector pk, called a right eigenvector, such that  

kkk
ppA =  

Since there are n eigenvalues, there are n right eigenvectors.  

We may form a matrix of these n right eigenvectors as follows: 

 

 
n

ppP ...
1

=  

The above matrix, P, is called the modal matrix. 

 

Left eigenvectors: 

For each eigenvalue, k, k=1,…,n, there exists an n-element column 

vector qk, called a left eigenvector, such that  

 

Since there are n eigenvalues, there are n left eigenvectors.  

We may form a matrix of these n left eigenvectors as follows: 

T

kk

T

k
qAq =
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Some properties: 

For any two eigenvalues, j, k, then 

▪ For jk, qj and pk are orthogonal, i.e., their dot product is 0:  

0=
k

T

j
pq  

▪ For j=k,  
T

jj j
q p c=  

where cj is a constant. A simple scaling of either the right or the 

left eigenvector will provide that 

 

 

Now consider, based on the above properties, we will get: 
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We can go a step further if the scaling is performed: 

IPQ
T

=  

Post-multiplying both sides by P-1 results in 
1−

= PQ
T

 

Note that neither Q or P are orthogonal matrices, but QTP is. Also:  

▪ PP-1=I  

▪ [QT]-1 QT=I 

1=
j

T

j
pq

Here we define orthogonal vectors; 
recall we previously defined an 
orthogonal matrix to be a square 
matrix whose columns and rows are 
orthogonal unit vectors, i.e., QQT=U 
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We can illustrate calculation of the right and left eigenvectors 

using the sample system given in the book (fig. 2.19, and example 

3.2), having state-space model of  

13 13

2323

1313

2323

0 0 1 0
0 0 0 1

104.096 59.524 0 0
33.841 153.460 0 0

A

 




    
     =  − −    

− −         

 

You can compute eigenvalues of this matrix in Matlab as follows: 
>> A=[0 0 1 0; 0 0 0 1; -104.096 -59.524 0 0; -33.841 -153.460 0 0] 

 

A = 

 

         0         0    1.0000         0 

         0         0         0    1.0000 

 -104.0960  -59.5240         0         0 

  -33.8410 -153.4600         0         0 

 

>> eig(A) 

 

ans = 

 

  -0.0000 +13.4164i 

  -0.0000 -13.4164i 

   0.0000 + 8.8067i 

   0.0000 - 8.8067i 

Observe the eigenvalues in Table 3.2  

 
Also observe the relative rotor angle plots of fig. 3.3-b, for the case 

when a small load was added to bus #8. Here we see that one mode 
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can be clearly observed having a period of about 0.7 sec (f=1.4Hz, 

ω=2πf=8.8 rad/sec). 

The other mode (2.1Hz) is not readily observable, although its 

presence is likely responsible for the distortion seen in the 31 plot. 

 
From matlab, we use 

[P,D]=eig(A) where A is the matrix A given above. 

 

Then the matrix of eigenvalues D is given by 

 

+13.4164i        0                   0                  0           

        0            -13.4164i        0                  0           

        0                  0             +8.8067i          0           

        0                  0                  0             - 8.8067i 

And the matrix of right eigenvectors P is given by  
-0.0459 - 0.0000i  -0.0459 + 0.0000i  -0.1030 - 0.0000i  -0.1030 + 0.0000i 

-0.0585 - 0.0000i  -0.0585 + 0.0000i   0.0459 + 0.0000i   0.0459 - 0.0000i 

0.0000 - 0.6154i   0.0000 + 0.6154i   0.0000 - 0.9075i   0.0000 + 0.9075i 

0.0000 - 0.7847i   0.0000 + 0.7847i  -0.0000 + 0.4046i  -0.0000 - 0.4046i 

 

And the matrix of left eigenvectors QT is given by P-1, which is: 
-2.8240 + 0.0000i  -6.3340 + 0.0000i   0.0000 + 0.2105i   0.0000 + 0.4721i 

-2.8240 - 0.0000i  -6.3340 - 0.0000i   0.0000 - 0.2105i   0.0000 - 0.4721i 

-3.5951 + 0.0000i   2.8194 - 0.0000i   0.0000 + 0.4082i  -0.0000 - 0.3201i 

-3.5951 - 0.0000i   2.8194 + 0.0000i   0.0000 - 0.4082i  -0.0000 + 0.3201i 

Note that here, the eigenvectors are along the rows. Taking 

transpose, we get Q, which is 
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-2.8240 + 0.0000i  -2.8240 - 0.0000i  -3.5951 + 0.0000i  -3.5951 - 0.0000i 

-6.3340 + 0.0000i  -6.3340 - 0.0000i   2.8194 - 0.0000i   2.8194 + 0.0000i 

0.0000 + 0.2105i   0.0000 - 0.2105i   0.0000 + 0.4082i   0.0000 - 0.4082i 

0.0000 + 0.4721i   0.0000 - 0.4721i  -0.0000 - 0.3201i  -0.0000 + 0.3201i 

In the above, the left eigenvectors are the columns.  

 

Note also that the columns of right (or left) eigenvectors 

corresponding to complex conjugate eigenvalues are complex 

conjugate eigenvectors. 

 

The numerators of eq. (L-4) 

Let’s return to eq. (L-4), which is restated here for convenience: 

 

What are these Rk, k=1,…,n? 

 

To answer this, let’s return to eq. (L-1), which is: 

 

Let’s pre-multiply the right-hand side by PP-1 and post-multiply the 

right-hand-side by [QT]-1 QT. This is acceptable, since both of these 

products yield the identity. This results in: 

    )0()(
111

xQQAIsPPsX
TT −−−

−=  

Bracket the inner products: 

     )0()(
111

xQQAIsPPsX
TT −−−

−=  

We can show that what is inside the (highlighted) curly brackets is: 

      1111 −−−−
−=−

T
QAIsPIs  

where  

)(diag k=  

The proof is below: 
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Then, we have that: 

 
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Two comments are relevant at this point: 

1. The matrix being inverted is a diagonal matrix. Therefore, the 

matrix inverse is obtained by inverting each diagonal element. 

2. Recall the orthogonality property piqj=0 for i≠j. 

Using these comments, we can perform the matrix multiplication on 

(*#) to obtain: 
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Taking the inverse LaPlace transform, we obtain: 

 
=

=
n
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k

tT

k
pexqtx k

1

)0()(


    (L-5) 

This is a very important relationship. It shows how we can use the 

right eigenvalue to determine the shape of the kth mode.  

To understand mode shape, focus on a single term in the summation, 

the kth term; this term is entirely responsible for mode k dynamics in 

the time-domain response of each state. Call it xk(t), given by 

( ) (0)
 =

 
k

T t

k k k
x t q x e p    (L-6a) 

Inspecting eq. (L-6a), we see that the right eigenvector pk determines 

the relative distribution of the mode through the state variables xk(t). 

To see this, note that   

▪ pk and xk(t) are both n×1 vectors, with element i corresponding to 

the ith state variable; 

▪ 
tT

k

kexq


)0(  is scalar and multiplies every element of pk; so it does 

not distinguish any state any differently than another state; 

▪ pk is therefore the only thing that distinguishes one state from 

another in terms of the mode k dynamics. 

These observations become more apparent if we expand (L6-a) to: 

➔
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k k

k k
T Tt tk k

k k k k
k k

k k

x t p
x t p

x t q x e p q x e
x t p
x t p

(L-6b) 

If the states are limited to only the generator inertial states  and 

, then each element of pk gives the relative distribution of the 

mode in a particular generator’s angle or speed. 
Caution: Although the right eigenvector shows us how gens swing against 

each other, it does NOT tell us how much a state influences a mode, i.e., pk 

does not tell which machines are most effective to control the mode. 
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The right eigenvector does tell you the relative phase of each state 

in that mode. If you “plot” each element (a complex number and 

thus interpretable as a vector) corresponding to each  state (one 

for each generator) in the right eigenvector pk, you can see which 

generators are swinging against one another. This is called mode 

shape. Relative phases can be observed in time domain simulations. 

 

Some interesting ways of illustrating the relative phase of each k 

as determined by the pk’s are shown in:  

• Klein, Rogers, and Kundur, “A fundamental study of interarea 

oscillations in power systems,” IEEE Trans Power Sys, V. 6, No. 

3, Aug 1991 (its on website). See the two pages below. Fig. 2 

shows the mode shape where gens 1,2 swing against gens 11,12, 

and in the time domain simulation, Fig. 3. 
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• Also, from Wang, Howell, Kundur, Chung, and Xu, “A tool for 

small-signal security assessment of power systems,” on website. 

See mode shape, Fig. 5. 
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• And from Y. Mansour, “Application of eigenanalysis to the 

Western North American Power system,” on website. Tables 4, 

5, and 6, each table for a certain condition, give eigenvector 

elements for speed deviation at each of a number of generators. 

Figures 1, 2, and 3 show, for three conditions, geographical plots 

of the mode shapes for 4 different modes.  
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Finally, below is some work recently done reflecting mode shape 

in the Southwestern WECC system for a certain mode. 
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